

Abstract—Terrain Splitting and Mapping (TSM) problem

was originally proposed by the authors in [12]. It was designed
to increase the terrain display and query capabilities from a
large terrain dataset. This problem is very important in 3D
WebGIS and has been being considered as one of some main
focuses in the following year. Indeed, the aim of this note is
presenting some extensions of the TSM problem. Then, two
novel algorithms based on Simulated Annealing and Greedy
algorithms are described. The Experiment section in this paper
reveals some interesting results and promises to efficiently
support to the original problem.

Index Terms—3D WebGIS, greedy algorithms, simulated
annealing, TSM problem.

I. INTRODUCTION
One of the most challenging problem in 3D Geographical

Information System (3D GIS) that are currently faced by
many GIS scientists is the capabilities to query and display
terrains. Depending on how large the resolutions of DEM
terrains are [4], [7], [13], [14], [15], [16], [18], their volumes
or sizes are increased as a result. Therefore, it is impossible to
view these terrains in Web environment which require
processing in short time. Assume that we are equipped a 2D
Polygonal Vector Data (2PVD) in association with the DEM
terrain, our purpose is to map each polygon in 2PVD into
equivalent area of the terrain. Besides, this DEM terrain
should be divided into some small ones that contain one or
more polygons in 2PVD.

The requirements above are exactly Terrain Splitting and
Mapping (TSM) problem which was originally proposed by
the authors in [12]. This problem is very important in creating
3D WebGIS systems and handling large DEM terrains.
Moreover, as stated in [8], [9], [10], [11], it is considered to
be the main focus of GIS scientists in the following years.

The problem is elaborated as follows.
Assume that we have a DEM terrain and some polygons in

2PVD as well as the number of processors k . We have to
split the original terrain following by some polygons and the
number of processors above and satisfying the conditions

 Condition A1: The area of a small DEM terrain in a
processor is smaller than a given saving threshold α
multiplying the area of original 3D terrain:

Manuscript received March 16, 2011; revised September 26, 2011. This

work is supported by a research grant of Vietnam National University, Hanoi
for promoting Science and Technology.

All authors are with the Vietnam National University, 334 Nguyen Trai,
Thanh Xuan, Hanoi, Viet Nam

Le Hoang Son is the corresponding author (e-mail: sonlh@ vnu.edu.vn).

DEMi SSP ×≤ α , for ki ,1= .

 Condition A2: The difference between two areas of
terrains in two processors is smaller than a given
threshold multiplying the area of original 3D terrain:

DEMji SSPSP ×≤− ε , for ki ,1= , kj ,1= and

ji ≠ .
 Condition A3: Each polygon in a 2PVD is fully

contained in any processor.
Our objective function is formulated as

min
1

1 →=∑
=

k

i
iSPJ

(1)

These are some parameters that we need to concern: two

input parameters),(kε and an output resultα . Initially,
these parameters are assigned by some specific values. Then,
the SESA algorithm [12] which, in essence, is a conditional
greedy partitioning algorithm is used to sweep over all
possible partitions and try to find a suitable one. Certainly,
some geometric conditions are used to limit the iteration steps.
If no solution is found with these parameters, new ones are
generated and the above process is repeated until maximal
allowable parameter changing steps is reached or a solution is
found.

However, as we can see above, the parameters are
initialized randomly and re-generated many times until an
acceptable solution is found. In case of no solution in all steps,
the answer time is quite slow. Obviously, this limitation is
unacceptable and should be overcome. In fact, if we can
choose the correct parameters then we can quickly conclude
whether a solution may exist or not.

Consider two extensions of the TSM problem following by
the number of processors k and the parameterε . The first
one looks for the optimal pair of parameters),(kα with a
given parameter ε . Similarly, the second one finds the
optimal pair of parameters),(εα with a given number of

processors k . Obviously, if we can find these optimal
parameters then they can be used immediately to find a
suitable partition in SESA algorithm without re-generation.
In the other words, they are the correct parameter that we
have mentioned above.

In this paper, we will present two novel algorithms for
these extensions. One of them is based on Simulated
Annealing and designed for optimization of),(kα . The rest
is based on Greedy algorithm and used for optimization of

Some Extensions of Terrain Splitting and Mapping
Problem

Le Hoang Son, Pham Huy Thong, Truong Thi Hanh Phuc, Nguyen Dinh Hoa, and Nguyen Thi Hong
Minh

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

590

),(εα . Both these algorithms will be tested through
experiments and checked the suitability for the original
problem.

The remainder of this paper is organized as follows.
Section 2 presents a method based on Simulated Annealing to
find the optimal pair of parameters),(kα . A greedy

algorithm to find the optimal pair of parameters),(εα is
presented in Section 3. Some experiments are carried out in
Section 4. Finally, we will make conclusion and future works
in the last section.

II. EXTENSION 1: CHOOSING OPTIMAL ()k,α

Although the number of processors is often determined
beforehand following by the system’s conditions and the
available processors, somehow it is chosen by experience.
Indeed, some operations are done ineffectively. We can not
assume that more processors lead to less computational time.
In fact, this consideration is not totally correct because more
processors mean the number of groups increase. Thus, more
time is spent to traverse new partitions. Of course, size of
terrain in each processor is smaller in this situation. However,
the cost of computational time is what we must pay for that
benefit.

Our goal in this section is choosing a suitable number of
processors that makes the output parameter α become
smallest if possible. Formally, given a fixed parameter 0ε ,

we have to find the pair ()k,α where []0,2 Kk ∈ is

number of processor and 0K is the maximal, allowable

number of processors. Normally, 0K is set to ⎥⎦
⎤

⎢⎣
⎡

2
N

 where

N is the number of polygons in 2PVD

min2
1

1 →×+×= ∑
=

kcSPcJ
k

i
i

 (2)

With constraints

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≠==

≤≤

×≤−

×≤

jikjki

Kk

SSPSP

SSP

DEMji

DEMi

,,1;,1

2 0

0ε

α

(3)

In the formula (2), 1c and 2c is adjusted factor

⎩
⎨
⎧

=+
∈∈

1
]1,0[];1,0[

21

21

cc
cc

(4)

We begin with the following theorem.
Theorem 1: The smallest value of parameter saving

threshold α is equal to the quotient between areas of the

maximal polygon and original terrain

]1,[tαα ∈ where
DEM

t
t S

SP
=α

 (5)

Proof:
Suppose that we have N polygons and each polygon

belongs to one processor. In this case, the number of
processor is equal to N . Additionally, if the area of polygon
t (tSP) is the largest among all polygons’ area, then we
obtain

i
DEM

i

DEM

t
t S

SP
S
SP αα =≥=

ki ,1=∀ , ti ≠

(6)

Therefore tα is chosen to be the final saving threshold in

this partition.
Assume that we have another partition. Because the

number of processors is less than the number of polygons,
some polygons will be definitely merged together in a same
processor. These are two cases for this situation

 The areas of processors that contain many polygons are
smaller than tSP .

In this case, tα is still the maximum among all iα

ki ,1=∀ , ti ≠ . Therefore, it is chosen to be the final
saving threshold in this partition.

 The areas of processors that contain many polygons are
larger than tSP .

Thus, there exists a processor having maximal area among
all blocks (0SP). Then, its parameter oα is also chosen and

to αα ≥ (7)

Eventually, the chosen parameter for this partition is

greater or equal to tα .
Similarly, we do the same process for other partitions and

find a conclusion
]1,[tαα ∈

Our idea for the problem (2) – (4) is using the Simulated
Annealing to find the optimal pair of solutions. Simulated
annealing (SA) [1], [6], [17] is a generic probabilistic
meta-heuristic for the global optimization problem locating a
good approximation to the global optimum of a given
function in a large search space. Its idea comes from the
annealing in metallurgy. Indeed, each step of the SA
algorithm replaces the current solution by a random "nearby"
solution, chosen with a probability that depends both on the
difference between the corresponding function values and
also on a global parameter temperature, that is gradually
decreased during the process. The dependency is such that
the current solution changes almost randomly when the
temperature is large, but increasingly downhill as it goes to

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

591

zero. The allowance for uphill moves potentially saves the
method from becoming stuck at local optima.

The algorithm to find the pair ()k,α based on simulated
annealing is presented as follows.

SA-TSA (N, C1, C2, K0, 0ε , T0, tΔ , temp, m)

1. Calculate the parameter tα following by (5).

2. Initialize a pair of random parameters ()k,α where

]1,[tαα ∈ and []0,2 Kk ∈ . Record this pair

() ()kk ,, 11 αα ←

() ()kk ,',' αα ←

3. Calculate the value of this pair

() kcckfvaluevalue ×+×=←← 21,1 αα

4. While tempT >0

a) Find another neighbor pair of parameters ()',' kα by
random control

 If (rand () > 0.5)

 If (tαα >)

),(' ααα trand←
 Else
)1,(' trand αα ←
 End If
Else
),2(' 0Krandk ←

End If

b) Create m random partitions to split a set of N
elements into 'k block by using Stick Procedure and
random alternative permutation.

),,(_ iknStickFind

If 0=k then stop
)1,1()(+−← knRandiStick

)1,1),((_ +−− ikiSticknStickFind
End Procedure

)',,(_ kNmPartitionsCreate (8)

1←h
)1,',(_ kNStickFind

Check Constraints
If (constraints are not satisfied)
While mh ≤
 1+← hh
Find two random blocks in the current

partition.
If (Number of element in one of two blocks

above contains more than an element)
Find a random element in this block

Move this element to remainder block
End If
Check Constraints
If (constraints are satisfied) then stop
End While

End If
Store the suitable partition if exist
End Procedure

c) If at least a random partition satisfies the constrains
(3) then

i. Calculate

() ()kfkf ,',' αα −←Δ (9)

ii. If 0<Δ then

() ()

() ()',',
',',

kfkf
kk
αα

αα
←

←

 (10)

iii. Otherwise, if ()0 rande T >
Δ−

 then re-calculate

()k,α and its value by the formulae (10)

iv. If () valuekf <,α then trace it

()kfvalue ,α←
Store this partition (*)

d) Reduce the temperature

tTT Δ×← 00 (11)

5. If valuevalue =1
a) Create m random partitions to split a set of N

elements into 1k blocks similar to Step 4b.
b) If at least a produced partition satisfies the constraints

(3) then stop and conclude that the pair ()11 , kα is

outputted results with the value ()11 , kf α and a
partition above.

6. Otherwise, conclude the pair ()k,α is outputted

results with the value ()kf ,α and a partition (*).

Fig. 1. A solution path

In case of no partition is satisfied after all, the program will
return the default parameters ()),1(, 0Kk =α . Fig 1
illustrates a solution path by example.

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

592

Fig. 2. The Bin Packing problem when α is fixed

A special case of the problem (2) – (4) can be found when
we fix the parameter tαα = . Indeed, if we assign the

maximal polygon which holds tα value to the first bin and
other polygons to remainders bin with a constraint that area
of these bins is smaller than or equal to tSP then this problem
turns back to the Bin Packing problem. Therefore, we can use
First Fit decreasing [2], Next Fit decreasing [5] or Best Fit
algorithm [3] for this problem. However, the pair ()k,α is
not optimal.

Another strategy for this special case is using Binary
Search for a suitable parameter k . However, it is far from
optimum and similar to the Bin Packing’s algorithm, should
not be applied for the problem (2) – (4).

In practical, some parameters should be initialized as
follows

 6.01 =C ; 4.02 =C

 400 =K processors

 %20 =ε

 4000 =T (degree)

 999.0=Δt
 001.0=temp

 1000=m partitions
With these configurations, a large enough number of tests

will help us find optimums efficiently.

III. EXTENSION 2: CHOOSING OPTIMAL ()εα ,

Given a number of processors k , this extension aims to
find the smallest outputted parameter α with a ‘loose’
parameterε . This means we do not pay much attention to the
value ofε , but the smallest value of α instead. Indeed, we
still examine the TSM problem in this extension with a slight
change of the parameter ε above.

In contrast to the SESA algorithm [12], the new one should
response quickly to a request. Hence, its complexity has to be
linear instead of power. Therefore, a greedy algorithm is
suitable for this requirement.

Similar to previous extension, we begin the algorithm with
the following theorem.

Theorem 2: With all iSP (ki ,1=) that satisfy three
conditions from A1 to A3 then we obtain

αε ≤ (12)

Proof:
First, we easily recognize that

⎩
⎨
⎧ −

≥
⎭
⎬
⎫

⎩
⎨
⎧

= ;max,1;max
DEM

ji

DEM

i

S
SPSP

ki
S
SP

 }kjiji ,1,; =≠

 (13)

Follow the conditions A1 and A2 about α andε , we obtain

the formula (12).
Theorem 2 motivates us to use a ‘loose’ parameterε as

above. Because ε never exceedsα , indeed if the outputted
parameter is smallest then ε is still in acceptable range. This
range is found at [12] when the authors pointed out the
relationship between specific parameters α and their
equivalent range of parametersε .

The idea of this greedy algorithm is to select k
representative polygons having maximal areas and insert
them into k blocks, one by one. Then, for the remainders,
each polygon is put into a block that makes its total area be
smallest among all possible coupling of other blocks (best fit).
Therefore, the parameter α will be smallest if possible.

Summarization of the greedy algorithm is described as
follows.

R-SESA ()kN ,

1. Select k polygons, which have maximal area, from
[]Polygon which is a set of N polygons.

2. Insert these k maximal polygons into the partition

iP and mark these polygons.

{ }][ii jPolygonP = ; ki ,1=

3. Repeat the following steps from 3a to 3e until all

polygons are marked.

a. Select an unmarked polygon][jPolygon

b. Calculate each parameter sα , ks ,1= for each
partition by the formula (13) when inserting
that polygon into it.

c. Find the partition which has minimal parameter

sα among alls. Assume that it is lP .

d. Insert][jPolygon into lP

lP = lP + { }][jPolygon .

e. Mark][jPolygon .

Example: With 5=N , 2=k and the area of each
polygon is

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

593

1001 =SP ; 3002 =SP ; 1503 =SP ;

504 =SP ; 2505 =SP ; 1000=DEMS
The following steps illustrate our algorithm.
Step 1: Two maximal polygons are]2[Polygon and

]5[Polygon .

Step 2: Make the first partition and mark]2[Polygon

and]5[Polygon .

Fig. 3.The first partition

Step 3: Select an unmarked polygon]1[Polygon and
find the suitable partition to put it into.

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧ +

⎭
⎬
⎫

⎩
⎨
⎧ +

=
DEMDEMDEMDEM S

SPSP
S
SP

S
SP

S
SPSP 152512 ;max;;maxminα

035.015 =
+

=⇒
DEMS

SPSPα

Step 4: Make the second partition and mark the polygon
]1[Polygon .

Fig. 4. The second partition

Step 5: Repeat Step 3 and Step 4 for the unmarked
polygon]3[Polygon and receive the third partition

Fig. 5. The third partition

Step 6: The last partition is

Fig. 6. The last partition

Step 7: All polygons are marked. The algorithm is stopped
with α = 4% and ε = 0.2%.

A quick evaluation of time complexity of this algorithm
can be seen as follows. The total running time is equal to the
sum of time to find k representatives and to select a best
block. The first task requires)*(kNO and the second one

consumes)*)((kkNO − time complexity. Because the

number of processors k is often much smaller than the

number of elements N , indeed the total time complexity is
approximate)(NO . This time complexity is equal to the one
in SESA algorithm [12] in best cases. Therefore, this
algorithm can be used for initial estimation before running
SESA algorithm.

IV. EXPERIMENTS
In this section, we have implemented the proposed

algorithms SA-TSA and R-SESA in C programming
language and executed them on a Linux Cluster 1350 with
eight computing nodes of 51.2GFlops. Each node contains
two Intel Xeon dual core 3.2GHz, 2GB RAM. These
algorithms were run against a large DEM terrain whose
resolution is 25m and it contains more than 24 million
elevation points. The 2PVD and DEM data are originated
from Bolzano-Bolzen province, Italy in 2005 [11].

Fig. 7. GIS data of Bolzano-Bolzen province [11]

Fig. 8.Towns Polygon Shape

Fig. 9. Lakes Polygon Shape

First, we find the relationship between two parameters α
(Alpha) and ε (Epsilon) when running the R-SESA
algorithm with three polygon shapes in 2PVD: Towns, Lakes
and Gemeinden following by the number of processors (Fig 8,
Fig 9, and Fig 10). Obviously, for each terrain, the values of
α are inversely proportional to the number of processors.

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

594

This means when the number of processors increases, the
value of α reduces. Moreover, the parameter ε varies
depending on types of terrain.

Fig. 10. Gemeinden Polygon Shape

For sparse terrains having many polygons, for instance
Towns (821 polygons - Fig 8), maximal valueε is 2.87%.
But with dense terrains having small number of polygons-
Lakes (347 polygons - Fig 9) and Gemeinden (116 polygons-
Fig 10), the maximal valueε increases to 5.97%. However,
these values are still better than the ones in SESA algorithm
when running with similar polygons and number of
processors. To obtain the trade-off between these two
parameters, we should set the number of processors about 64.

Second, we compare the running time, α and ε (Fig 11)
of R-SESA and SESA algorithms [12] when the number of
polygons increases and the number of processors is eight.

Fig. 11. Compare R-SESA vs. SESA by number of polygons

From Fig 11, we recognize that the running time of
R-SESA is much faster than the SESA. More polygons are
added, more difference between two lines is shown. Similarly,
the parameters α and ε of R-SESA is better than SESA.
For example, the parameter α of R-SESA is about 10.54%
to 29.28% of SESA’s parameter. When the number of
polygons is greater than 800, the difference between two
lines seems to be stable, about 30%. Therefore, we may say
that the R-SESA can reduce more memory space in each
processor than SESA does. Besides, the parameter ε of
R-SESA is also better than SESA’s. When the number of
polygons is 200, the difference between two lines is shortest
among all. However, when this number is larger, two lines
are far away from each other. In stable state, the parameter ε
of R-SESA is about 1.26% of the one in SESA algorithm.

Fig. 12. Compare R-SESA vs. SESA by number of processors

Again, we compare the running time, α and ε (Fig 12)
of R-SESA and SESA algorithms with Towns polygon shape
when the number of processors increases.

Fig. 13. Relationship of),(kα in Towns Polygon Shape

Obviously, more processors lead to more partitions. Indeed,
the running time of SESA algorithm increases as a result.
Meanwhile, R-SESA seems not change too much. It always
keeps the running time about several milliseconds.
Furthermore, the α line of R-SESA tends to go down and
reduce its value while the line of SESA seems unchanged.
This shows the saving memory percent in R-SESA is better
than SESA’s while the parameter ε of R-SESA is many
times smaller than SESA’s.

Fig. 14.Relationship of),(kα in Lakes Polygon Shape

Fig. 15.Relationship of),(kα in Gemeinden Polygon Shape

Fourth, we look for the pair of parameters),(kα when
running the SA-TSA algorithm with three polygon shapes in
2PVD: Towns, Lakes and Gemeinden following by the
parameter ε - Epsilon (Fig 13, Fig 14, and Fig 15). The
algorithm is run in the same configurations described in
Section 2.

From Fig 13, we can easily recognize that when ε is
smaller than 1.5%, the number of processors tends to go

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

595

down. Meanwhile, the parameter α increases. However,
these two bars are totally reversed when %5.1>ε . This can
be explained by the requisition of less partition to more
processor for the adaptation of parameterε . Moreover, the
parameter α is getting smaller when ε increases.

Similarly, in Fig 14, the variation of these two bars is the
same with the ones in Fig 13. However, only a minor change
can be seen that the changing point increases to 4.8% instead
of 1.5% as above.

In Fig 13 and Fig 14, we check the algorithm with sparse
polygons (Towns and Lakes). However, the results seem to
be different with dense polygons (Gemeinden- Fig 15).
Indeed, these two bars are directly proportional to each other.
However, when %8.4>ε , the parameter α does not
reduce as usual. Instead, it increases by one percent when
moving to the next step. Therefore, the parameter

%8.4=ε is the perfect threshold in this case.
Throughout three figures above, the best value of SA-TSA

%59.1=α is recorded when %5.1=ε of Lakes
polygons (Fig 14). Comparing with R-SESA when the best
result of α is from 1.24% to 4.58% at 64 processors, we
may choose ε as the prior parameter than the number of
processors.

Fig. 16.Running times of SA-TSA by number of polygons

Fig. 17.Running times of SA-TSA by ε

Finally, we study the running time of SA-TSA algorithm
following by the number of polygons (Fig 16) and parameter
ε (Fig 17). From these results, we recognize that when the
number of polygons increases, the running time is longer as a
result. However, the increasing ratio is not equal for different
number of polygons. For example, when this number changes
from 100 to 200, the running time is 8 times longer. But if
changing from 200 to 400, there is only 1.8 times. The
decrement of increasing ratio shows the fact that when a
solution is found in a specific number of polygons, the
running time in that point is approximate to other later ones.
Therefore, we can easily predict the running time of SA-TSA

algorithm when 800>N .
Fig 17 shows other correlation of ε and the running time.

This dependency is not direct proportional to the increment of
ε . Normally, the range of this parameter is ()5,0 . Below the
value of three, the higher the parameter ε is, more time is
required to process. The average increment of processing
time in this range is approximately 18 percents. For the range
()4.5,3 , the time tends to go down with average reduced
ratio is about 10 percents. In fact, the longest time is located
at 3=ε . Thus, for the benefits of time-saving and good
saving threshold, we should choose the middle point of each
range as the suitable value of ε .

The experimental results above have shown some
properties of parameters of our algorithms.

V. CONCLUSION
In this paper, we have investigated some extensions of the

TSM problem following by the number of processors k and
the parameterε . Throughout a brief introduction, we have
shown how importance these extensions are for the original
TSM problem. Then, two novel algorithms dealing with them
are presented. The first one is based on Simulated Annealing
and designed for the optimization of the pair),(kα . The
remainder based on Greedy algorithms is used to find the pair

),(εα in)(NO time complexity. Both these algorithms
are carefully tested through a lot of experiments and
successfully proved the suitability for the TSM problem.
Besides, they can be the references for further studies.

In the future, we will study an effective synthesis of these
extensions for the original problem. Moreover, some further
researches on the terrain parameters are also our task.

ACKNOWLEDGMENT
The authors wish to thank anonymous reviewers and the

research group at the Center for High Performance
Computing, VNU for supporting and giving useful comments.
This work is supported by a research grant of Vietnam
National University, Hanoi for promoting Science and
Technology.

APPENDIX
The source code and test dataset can be found at this

address: http://chpc.vnu.vn/gis/e-tsm.rar

REFERENCES
[1] Amir Masoud Rahmani and Mojtaba Rezvani, "A Novel Genetic

Algorithm for Static Task Scheduling in Distributed Systems,"
International Journal of Computer Theory and Engineering (IJCTE),
vol. 1, no. 1, 2009, pp. 1-6.

[2] Brenda S. Baker, “A new proof for the first-fit decreasing bin-packing
algorithm,” Journal of Algorithms, vol. 6, issue 1, March 1985, pp.
49-70.

[3] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L.
Graham, “Worst-Case Performance Bounds for Simple
One-Dimensional Packing Algorithms,” SIAM J. Computer, vol. 3,
issue 4, 1974, pp. 299-325.

[4] GAO Ying-jie et al, “Development of DEM on 1:10000 Scale and Its
Application in Geo-sciences,” Journal of Anhui Agricultural Sciences,
vol. 2, 2009.

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

596

[5] J. Csirik et al, “A probabilistic analysis of the next fit decreasing bin
packing heuristic,” Operations Research Letters, vol. 5, issue 5,
November 1986, pp. 233-236.

[6] Kirkpatrick, S.; C. D. Gelatt, M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, New Series, vol. 220, issue 4598, 1983,
pp. 671–680.

[7] LIU Yongqiong, WU Yanlan, HU Hai, HU Peng, “Assessment method
of digital elevation models accuracy and its limitations,” Journal of
Geomatics, vol. 5, 2009.

[8] Le Hoang Son, “On the Development of Three Dimensional WebGIS
Systems: Some New Trends and Prospects,” In Proceedings of the
2010 3rd IEEE International Conference on Computer Science and
Information Technology (IEEE ICCSIT 2010), July 9 - 11, 2010,
Chengdu, China, vol. 1, pp. 182 - 186.

[9] Le Hoang Son, “An Approach to Construct SGIS-3D: a Three
Dimensional WebGIS System Based on DEM, GeoVRML and Spatial
Analysis operations,” In Proceedings of the 2nd IADIS International
Conference Web Virtual Reality and Three-Dimensional Worlds 2010
(IADIS Web3DW 2010), July 27 - 29, 2010, Freiburg, Germany, pp.
317 – 326.

[10] Le Hoang Son, “An Exploratory Study about Spatial Analysis
Techniques in Three Dimensional Maps for SGIS-3D systems,” In
Proceedings of the 2010 IEEE International Conference on
Electronics and Information Engineering (IEEE ICEIE 2010), August
1 - 3, 2010, Kyoto, Japan, vol. 1, pp. 199 - 203.

[11] Le Hoang Son, Pham Huy Thong, Nguyen Duy Linh, Truong Chi
Cuong and Nguyen Dinh Hoa, “Developing JSG Framework and
Applications in COMGIS Project,” International Journal of Computer
Information Systems and Industrial Management Applications
(IJCISIM), vol. 3, 2011, pp. 108-118.

[12] Le Hoang Son, Pham Huy Thong, Nguyen Duy Linh, Nguyen Dinh
Hoa, and Truong Chi Cuong, “Some Results of 3D Terrain Splitting By
2D Polygonal Vector Data,” International Journal of Machine
Learning and Computing (IJMLC), vol. 1, no. 4, October 2011 (to be
published).

[13] M. van Kreveld, “Digital Elevation Models: overview and selected
TIN algorithms,” In Algorithmic Foundation of GIS, M. van Kreveld, J
Nievergelt, T. Roos and P. Widmayer, Ed., Springer-Velag, 1997.

[14] MA Chi, SONG Wei-dong, “Creating urban DEM by use of
topographic map with DWG format,” Journal of Anshan University of
Science and Technology, vol. 5, 2004.

[15] Sandra Lanig, Arne Schilling, Beate Stollberg and Alexander Zipf,
“Towards Standards-Based Processing of Digital Elevation Models for
Grid Computing through Web Processing Service (WPS),” In
Proceeding of Computational Science and Its Applications (ICCSA
2008), Lecture Notes in Computer Science, 2008, Volume 5073/2008,
pp. 191-203.

[16] S. Rayburga, M. Thomsa and M. Neave, “A comparison of digital
elevation models generated from different data sources,”
Geomorphology, vol. 106, issues 3-4, 15 May 2009, pp. 261-270.

[17] V. Cerny, “A thermodynamical approach to the travelling salesman
problem: an efficient simulation algorithm,” Journal of Optimization
Theory and Applications, vol. 45, 1985, pp. 41-51.

[18] WANG Ke-ke, ZHANG Li-chao, PAN Zhen, WANG Qing-shan,
ZHANG Shi-quan, “Research on Multiresolution Dynamic Creating

Networks Algorithm of DEM based on DirectX,” Beijing Surveying
and Mapping, vol. 2, 2008.

Le Hoang Son is a researcher at the Center for High
Performance Computing, Hanoi University of
Science, VNU. He is a member of IACSIT and also
member of the editorial board of the International
Journal of Engineering and Technology (IJET). His
major field includes Data Mining, Geographic
Information Systems and Parallel Computing. Email:
sonlh@vnu.edu.vn

Pham Huy Thong is a researcher and Master student
at the Center for High Performance Computing,
Hanoi University of Science, VNU. His research
interests include Geographic Information Systems
and Molecular Dynamics Simulation. Email:
thongph@vnu.edu.vn

Truong Thi Hanh Phuc is a Master student of
College of Technology, VNU and an employee of
FPT Software JSC. Her interest research is
Geographic Information Systems. Email:
phuctth@gmail.com

Nguyen Dinh Hoa is an associate professor and
vice director of the Information Technology
Institute, VNU. His research areas include linear
programming, optimization, data structure and
algorithms, and Geographic Information Systems.
He is member of the organizing committees of
many prestigious national conferences since 1998.
Email: hoand@vnu.edu.vn

Nguyen Thi Hong Minh is a doctor and dean of
training bureau at School of Graduate Studies,
VNU. Her major researches include Parallel
algorithms and Molecular Dynamics Simulation.
So far, she has performed many important, major
projects of VNU. Email: minhnth@vnu.edu.vn

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

597

