
 
 

 

  
Abstract—Terrain Splitting and Mapping (TSM) problem 

was originally proposed by the authors in [12]. It was designed 
to increase the terrain display and query capabilities from a 
large terrain dataset. This problem is very important in 3D 
WebGIS and has been being considered as one of some main 
focuses in the following year. Indeed, the aim of this note is 
presenting some extensions of the TSM problem. Then, two 
novel algorithms based on Simulated Annealing and Greedy 
algorithms are described. The Experiment section in this paper 
reveals some interesting results and promises to efficiently 
support to the original problem.  
 

Index Terms—3D WebGIS, greedy algorithms, simulated 
annealing, TSM problem.  
 

I. INTRODUCTION 
One of the most challenging problem in 3D Geographical 

Information System (3D GIS) that are currently faced by 
many GIS scientists is the capabilities to query and display 
terrains. Depending on how large the resolutions of DEM 
terrains are [4], [7], [13], [14], [15], [16], [18], their volumes 
or sizes are increased as a result. Therefore, it is impossible to 
view these terrains in Web environment which require 
processing in short time. Assume that we are equipped a 2D 
Polygonal Vector Data (2PVD) in association with the DEM 
terrain, our purpose is to map each polygon in 2PVD into 
equivalent area of the terrain. Besides, this DEM terrain 
should be divided into some small ones that contain one or 
more polygons in 2PVD.  

The requirements above are exactly Terrain Splitting and 
Mapping (TSM) problem which was originally proposed by 
the authors in [12]. This problem is very important in creating 
3D WebGIS systems and handling large DEM terrains. 
Moreover, as stated in [8], [9], [10], [11], it is considered to 
be the main focus of GIS scientists in the following years. 

The problem is elaborated as follows. 
Assume that we have a DEM terrain and some polygons in 

2PVD as well as the number of processors k . We have to 
split the original terrain following by some polygons and the 
number of processors above and satisfying the conditions 

 Condition A1: The area of a small DEM terrain in a 
processor is smaller than a given saving threshold α  
multiplying the area of original 3D terrain: 
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DEMi SSP ×≤ α , for ki ,1= . 

 Condition A2: The difference between two areas of 
terrains in two processors is smaller than a given 
threshold multiplying the area of original 3D terrain: 

DEMji SSPSP ×≤− ε , for ki ,1= , kj ,1=  and 

ji ≠ . 
 Condition A3: Each polygon in a 2PVD is fully 

contained in any processor. 
Our objective function is formulated as 
 

min
1

1 →=∑
=

k

i
iSPJ  

 
(1)

  
These are some parameters that we need to concern: two 

input parameters ),( kε  and an output resultα . Initially, 
these parameters are assigned by some specific values. Then, 
the SESA algorithm [12] which, in essence, is a conditional 
greedy partitioning algorithm is used to sweep over all 
possible partitions and try to find a suitable one. Certainly, 
some geometric conditions are used to limit the iteration steps. 
If no solution is found with these parameters, new ones are 
generated and the above process is repeated until maximal 
allowable parameter changing steps is reached or a solution is 
found.  

However, as we can see above, the parameters are 
initialized randomly and re-generated many times until an 
acceptable solution is found. In case of no solution in all steps, 
the answer time is quite slow. Obviously, this limitation is 
unacceptable and should be overcome. In fact, if we can 
choose the correct parameters then we can quickly conclude 
whether a solution may exist or not. 

Consider two extensions of the TSM problem following by 
the number of processors k  and the parameterε . The first 
one looks for the optimal pair of parameters ),( kα with a 
given parameter ε . Similarly, the second one finds the 
optimal pair of parameters ),( εα with a given number of 

processors k . Obviously, if we can find these optimal 
parameters then they can be used immediately to find a 
suitable partition in SESA algorithm without re-generation. 
In the other words, they are the correct parameter that we 
have mentioned above. 

In this paper, we will present two novel algorithms for 
these extensions. One of them is based on Simulated 
Annealing and designed for optimization of ),( kα . The rest 
is based on Greedy algorithm and used for optimization of
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),( εα . Both these algorithms will be tested through 
experiments and checked the suitability for the original 
problem.  

The remainder of this paper is organized as follows. 
Section 2 presents a method based on Simulated Annealing to 
find the optimal pair of parameters ),( kα . A greedy 

algorithm to find the optimal pair of parameters ),( εα is 
presented in Section 3. Some experiments are carried out in 
Section 4. Finally, we will make conclusion and future works 
in the last section. 
 

II. EXTENSION 1: CHOOSING OPTIMAL ( )k,α  

Although the number of processors is often determined 
beforehand following by the system’s conditions and the 
available processors, somehow it is chosen by experience. 
Indeed, some operations are done ineffectively. We can not 
assume that more processors lead to less computational time. 
In fact, this consideration is not totally correct because more 
processors mean the number of groups increase. Thus, more 
time is spent to traverse new partitions. Of course, size of 
terrain in each processor is smaller in this situation. However, 
the cost of computational time is what we must pay for that 
benefit. 

Our goal in this section is choosing a suitable number of 
processors that makes the output parameter α  become 
smallest if possible. Formally, given a fixed parameter 0ε , 

we have to find the pair ( )k,α  where [ ]0,2 Kk ∈  is 

number of processor and 0K  is the maximal, allowable 

number of processors. Normally, 0K  is set to ⎥⎦
⎤

⎢⎣
⎡

2
N

 where 

N is the number of polygons in 2PVD 
 

min2
1

1 →×+×= ∑
=

kcSPcJ
k

i
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In the formula (2), 1c  and 2c  is adjusted factor 
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We begin with the following theorem. 
Theorem 1: The smallest value of parameter saving 

threshold α  is equal to the quotient between areas of the 

maximal polygon and original terrain 
 

]1,[ tαα ∈  where 
DEM

t
t S

SP
=α  

 
 (5)

 
Proof: 
Suppose that we have N  polygons and each polygon 

belongs to one processor. In this case, the number of 
processor is equal to N . Additionally, if the area of polygon 
t  ( tSP ) is the largest among all polygons’ area, then we 
obtain 
 

i
DEM

i

DEM

t
t S

SP
S
SP αα =≥=  

ki ,1=∀ , ti ≠  

 
(6)

 
Therefore tα  is chosen to be the final saving threshold in 

this partition.  
Assume that we have another partition. Because the 

number of processors is less than the number of polygons, 
some polygons will be definitely merged together in a same 
processor. These are two cases for this situation 

 The areas of processors that contain many polygons are 
smaller than tSP . 

In this case, tα  is still the maximum among all iα  

ki ,1=∀ , ti ≠ .  Therefore, it is chosen to be the final 
saving threshold in this partition. 

 The areas of processors that contain many polygons are 
larger than tSP . 

Thus, there exists a processor having maximal area among 
all blocks ( 0SP ). Then, its parameter oα  is also chosen and  
 

to αα ≥  (7)

 
Eventually, the chosen parameter for this partition is 

greater or equal to tα . 
Similarly, we do the same process for other partitions and 

find a conclusion 
]1,[ tαα ∈  

Our idea for the problem (2) – (4) is using the Simulated 
Annealing to find the optimal pair of solutions. Simulated 
annealing (SA) [1], [6], [17] is a generic probabilistic 
meta-heuristic for the global optimization problem locating a 
good approximation to the global optimum of a given 
function in a large search space. Its idea comes from the 
annealing in metallurgy. Indeed, each step of the SA 
algorithm replaces the current solution by a random "nearby" 
solution, chosen with a probability that depends both on the 
difference between the corresponding function values and 
also on a global parameter temperature, that is gradually 
decreased during the process. The dependency is such that 
the current solution changes almost randomly when the 
temperature is large, but increasingly downhill as it goes to 
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zero. The allowance for uphill moves potentially saves the 
method from becoming stuck at local optima. 

The algorithm to find the pair ( )k,α  based on simulated 
annealing is presented as follows. 

SA-TSA (N, C1, C2, K0, 0ε , T0, tΔ , temp, m) 

1. Calculate the parameter tα  following by (5). 

2. Initialize a pair of random parameters ( )k,α  where

]1,[ tαα ∈  and [ ]0,2 Kk ∈ . Record this pair 
 

( ) ( )kk ,, 11 αα ←  

( ) ( )kk ,',' αα ←  

 

 
3. Calculate the value of this pair 

 
( ) kcckfvaluevalue ×+×=←← 21,1 αα  

 
4. While tempT >0  

a) Find another neighbor pair of parameters ( )',' kα  by 
random control 

 
 If (rand ( ) > 0.5) 

 If ( tαα > ) 

  ),(' ααα trand←  
 Else 
  )1,(' trand αα ←  
 End If 
Else  
 ),2(' 0Krandk ←  

End If 
 

b) Create m  random partitions to split a set of N  
elements into 'k  block by using Stick Procedure and 
random alternative permutation. 

 ),,(_ iknStickFind  

If 0=k  then stop 
)1,1()( +−← knRandiStick  

)1,1),((_ +−− ikiSticknStickFind  
End Procedure 

 
)',,(_ kNmPartitionsCreate                (8)

1←h  
)1,',(_ kNStickFind   

Check Constraints  
If (constraints are not satisfied) 
While mh ≤  
  1+← hh  
Find two random blocks in the current 

partition. 
If (Number of element in one of two blocks 

above contains more than an element)  
Find a random element in this block 

Move this element to remainder block 
End If 
Check Constraints  
If (constraints are satisfied) then stop 
End While 

End If 
Store the suitable partition if exist 
End Procedure 

c) If  at least a random partition satisfies the constrains 
(3) then 

i. Calculate  
 

( ) ( )kfkf ,',' αα −←Δ   (9)

 
ii. If 0<Δ then  

 
( ) ( )

( ) ( )',',
',',

kfkf
kk
αα

αα
←

←
 

 (10)

 

iii. Otherwise, if ()0 rande T >
Δ−

 then re-calculate 

( )k,α  and its value by the formulae (10) 

iv.  If ( ) valuekf <,α  then trace it 
 

( )kfvalue ,α←  
Store this partition (*) 

 

 
d) Reduce the temperature 
 

tTT Δ×← 00   (11)

5. If  valuevalue =1  
a) Create m  random partitions to split a set of N  

elements into 1k  blocks similar to Step 4b. 
b) If at least a produced partition satisfies the constraints 

(3) then stop and conclude that the pair ( )11 , kα  is 

outputted results with the value ( )11 , kf α  and a 
partition above. 

6. Otherwise, conclude the pair ( )k,α  is outputted 

results with the value ( )kf ,α  and a partition (*). 
 

 
Fig. 1. A solution path 

In case of no partition is satisfied after all, the program will 
return the default parameters ( ) ),1(, 0Kk =α . Fig 1 
illustrates a solution path by example. 
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Fig.  2. The Bin Packing problem when α  is fixed 

A special case of the problem (2) – (4) can be found when 
we fix the parameter tαα = . Indeed, if we assign the 

maximal polygon which holds tα value to the first bin and 
other polygons to remainders bin with a constraint that area 
of these bins is smaller than or equal to tSP  then this problem 
turns back to the Bin Packing problem. Therefore, we can use 
First Fit decreasing [2], Next Fit decreasing [5] or Best Fit 
algorithm [3] for this problem. However, the pair ( )k,α  is 
not optimal. 

Another strategy for this special case is using Binary 
Search for a suitable parameter k . However, it is far from 
optimum and similar to the Bin Packing’s algorithm, should 
not be applied for the problem (2) – (4).  

In practical, some parameters should be initialized as 
follows 

 6.01 =C ; 4.02 =C  

 400 =K  processors 

 %20 =ε  

 4000 =T  (degree) 

 999.0=Δt  
 001.0=temp  

 1000=m  partitions 
With these configurations, a large enough number of tests 

will help us find optimums efficiently. 
 

III. EXTENSION 2: CHOOSING OPTIMAL ( )εα ,   

Given a number of processors k , this extension aims to 
find the smallest outputted parameter α  with a ‘loose’ 
parameterε . This means we do not pay much attention to the 
value ofε , but the smallest value of α  instead. Indeed, we 
still examine the TSM problem in this extension with a slight 
change of the parameter ε  above. 

In contrast to the SESA algorithm [12], the new one should 
response quickly to a request. Hence, its complexity has to be 
linear instead of power. Therefore, a greedy algorithm is 
suitable for this requirement. 

Similar to previous extension, we begin the algorithm with 
the following theorem. 

Theorem 2: With all iSP  ( ki ,1= ) that satisfy three 
conditions from A1 to A3 then we obtain 

 

αε ≤   (12)
 
Proof: 
First, we easily recognize that 
 

⎩
⎨
⎧ −

≥
⎭
⎬
⎫

⎩
⎨
⎧

= ;max,1;max
DEM

ji

DEM

i

S
SPSP

ki
S
SP  

                                                  }kjiji ,1,; =≠  

 
 

 (13)

 
Follow the conditions A1 and A2 about α andε , we obtain 

the formula (12).                    
Theorem 2 motivates us to use a ‘loose’ parameterε  as 

above. Because ε  never exceedsα , indeed if the outputted 
parameter is smallest then ε  is still in acceptable range. This 
range is found at [12] when the authors pointed out the 
relationship between specific parameters α  and their 
equivalent range of parametersε . 

The idea of this greedy algorithm is to select k  
representative polygons having maximal areas and insert 
them into k  blocks, one by one. Then, for the remainders, 
each polygon is put into a block that makes its total area be 
smallest among all possible coupling of other blocks (best fit). 
Therefore, the parameter α  will be smallest if possible. 

Summarization of the greedy algorithm is described as 
follows.  

R-SESA ( )kN ,  

1. Select k  polygons, which have maximal area, from 
[]Polygon which is a set of N  polygons. 

2. Insert these k  maximal polygons into the partition 

iP  and mark these polygons. 
 

{ }][ ii jPolygonP = ; ki ,1=   

 
3. Repeat the following steps from 3a to 3e until all 

polygons are marked. 
 

a. Select an unmarked polygon ][ jPolygon  
 

b. Calculate each parameter sα , ks ,1=  for each 
partition by the formula (13) when inserting 
that polygon into it. 

 
c. Find the partition which has minimal parameter

sα  among alls. Assume that it is lP . 

d. Insert ][ jPolygon  into lP  
 

lP  = lP  + { }][ jPolygon . 
 

e. Mark ][ jPolygon . 
  

Example: With 5=N , 2=k  and the area of each 
polygon is 
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1001 =SP ; 3002 =SP ; 1503 =SP ; 

504 =SP ; 2505 =SP ; 1000=DEMS  
The following steps illustrate our algorithm. 
Step 1: Two maximal polygons are ]2[Polygon  and 

]5[Polygon . 

Step 2:  Make the first partition and mark ]2[Polygon  

and ]5[Polygon . 

 
Fig. 3.The first partition 

Step 3:  Select an unmarked polygon ]1[Polygon  and 
find the suitable partition to put it into.  

 

⎭
⎬
⎫
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⎨
⎧

⎭
⎬
⎫

⎩
⎨
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⎨
⎧ +

=
DEMDEMDEMDEM S

SPSP
S
SP

S
SP

S
SPSP 152512 ;max;;maxminα

035.015 =
+

=⇒
DEMS

SPSPα  

Step 4: Make the second partition and mark the polygon 
]1[Polygon . 

 
 

Fig.  4. The second partition 

Step 5:  Repeat Step 3 and Step 4 for the unmarked 
polygon ]3[Polygon  and receive the third partition 

 
 

Fig.  5. The third partition 

Step 6: The last partition is 

 
 

Fig.  6. The last partition 

Step 7: All polygons are marked. The algorithm is stopped 
with α  = 4% and ε  = 0.2%. 

A quick evaluation of time complexity of this algorithm 
can be seen as follows. The total running time is equal to the 
sum of time to find k  representatives and to select a best 
block. The first task requires )*( kNO  and the second one 

consumes )*)(( kkNO − time complexity. Because the 

number of processors k  is often much smaller than the 

number of elements N , indeed the total time complexity is 
approximate )(NO . This time complexity is equal to the one 
in SESA algorithm [12] in best cases. Therefore, this 
algorithm can be used for initial estimation before running 
SESA algorithm. 
 

IV. EXPERIMENTS 
In this section, we have implemented the proposed 

algorithms SA-TSA and R-SESA in C programming 
language and executed them on a Linux Cluster 1350 with 
eight computing nodes of 51.2GFlops. Each node contains 
two Intel Xeon dual core 3.2GHz, 2GB RAM. These 
algorithms were run against a large DEM terrain whose 
resolution is 25m and it contains more than 24 million 
elevation points. The 2PVD and DEM data are originated 
from Bolzano-Bolzen province, Italy in 2005 [11]. 

 
 

Fig.  7. GIS data of Bolzano-Bolzen province [11] 

 
Fig. 8.Towns Polygon Shape 

 
Fig. 9. Lakes Polygon Shape 

First, we find the relationship between two parameters α  
(Alpha) and ε  (Epsilon) when running the R-SESA 
algorithm with three polygon shapes in 2PVD: Towns, Lakes 
and Gemeinden following by the number of processors (Fig 8, 
Fig 9, and Fig 10). Obviously, for each terrain, the values of 
α  are inversely proportional to the number of processors. 
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This means when the number of processors increases, the 
value of α  reduces. Moreover, the parameter ε  varies 
depending on types of terrain. 

 
Fig. 10. Gemeinden Polygon Shape 

For sparse terrains having many polygons, for instance 
Towns (821 polygons - Fig 8), maximal valueε  is 2.87%. 
But with dense terrains having small number of polygons- 
Lakes (347 polygons - Fig 9) and Gemeinden (116 polygons- 
Fig 10), the maximal valueε  increases to 5.97%. However, 
these values are still better than the ones in SESA algorithm 
when running with similar polygons and number of 
processors. To obtain the trade-off between these two 
parameters, we should set the number of processors about 64. 

Second, we compare the running time, α  and ε  (Fig 11) 
of R-SESA and SESA algorithms [12] when the number of 
polygons increases and the number of processors is eight. 

 
 

 

 

 

 

Fig. 11. Compare R-SESA vs. SESA by number of polygons 

From Fig 11, we recognize that the running time of 
R-SESA is much faster than the SESA. More polygons are 
added, more difference between two lines is shown. Similarly, 
the parameters α and ε  of R-SESA is better than SESA. 
For example, the parameter α  of R-SESA is about 10.54% 
to 29.28% of SESA’s parameter. When the number of 
polygons is greater than 800, the difference between two 
lines seems to be stable, about 30%. Therefore, we may say 
that the R-SESA can reduce more memory space in each 
processor than SESA does. Besides, the parameter ε  of 
R-SESA is also better than SESA’s. When the number of 
polygons is 200, the difference between two lines is shortest 
among all. However, when this number is larger, two lines 
are far away from each other. In stable state, the parameter ε  
of R-SESA is about 1.26% of the one in SESA algorithm. 

 

 

 

 

 

 
Fig. 12. Compare R-SESA vs. SESA by number of processors 

Again, we compare the running time, α  and ε  (Fig 12) 
of R-SESA and SESA algorithms with Towns polygon shape 
when the number of processors increases. 

 
Fig. 13. Relationship of ),( kα  in Towns Polygon Shape 

Obviously, more processors lead to more partitions. Indeed, 
the running time of SESA algorithm increases as a result. 
Meanwhile, R-SESA seems not change too much. It always 
keeps the running time about several milliseconds. 
Furthermore, the α  line of R-SESA tends to go down and 
reduce its value while the line of SESA seems unchanged. 
This shows the saving memory percent in R-SESA is better 
than SESA’s while the parameter ε of R-SESA is many 
times smaller than SESA’s. 

 
Fig. 14.Relationship of ),( kα  in Lakes Polygon Shape 

 
Fig. 15.Relationship of ),( kα  in Gemeinden Polygon Shape 

Fourth, we look for the pair of parameters ),( kα  when 
running the SA-TSA algorithm with three polygon shapes in 
2PVD: Towns, Lakes and Gemeinden following by the 
parameter ε  - Epsilon (Fig 13, Fig 14, and Fig 15). The 
algorithm is run in the same configurations described in 
Section 2. 

From Fig 13, we can easily recognize that when ε  is 
smaller than 1.5%, the number of processors tends to go 
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down. Meanwhile, the parameter α  increases. However, 
these two bars are totally reversed when %5.1>ε . This can 
be explained by the requisition of less partition to more 
processor for the adaptation of parameterε . Moreover, the 
parameter α  is getting smaller when ε  increases. 

Similarly, in Fig 14, the variation of these two bars is the 
same with the ones in Fig 13. However, only a minor change 
can be seen that the changing point increases to 4.8% instead 
of 1.5% as above. 

In Fig 13 and Fig 14, we check the algorithm with sparse 
polygons (Towns and Lakes). However, the results seem to 
be different with dense polygons (Gemeinden- Fig 15). 
Indeed, these two bars are directly proportional to each other. 
However, when %8.4>ε , the parameter α  does not 
reduce as usual. Instead, it increases by one percent when 
moving to the next step. Therefore, the parameter 

%8.4=ε  is the perfect threshold in this case. 
Throughout three figures above, the best value of SA-TSA 

%59.1=α  is recorded when %5.1=ε  of Lakes 
polygons (Fig 14). Comparing with R-SESA when the best 
result of α  is from 1.24% to 4.58% at 64 processors, we 
may choose ε  as the prior parameter than the number of 
processors. 

 
Fig. 16.Running times of SA-TSA by number of polygons 

 
Fig. 17.Running times of SA-TSA by ε  

Finally, we study the running time of SA-TSA algorithm 
following by the number of polygons (Fig 16) and parameter 
ε  (Fig 17). From these results, we recognize that when the 
number of polygons increases, the running time is longer as a 
result. However, the increasing ratio is not equal for different 
number of polygons. For example, when this number changes 
from 100 to 200, the running time is 8 times longer. But if 
changing from 200 to 400, there is only 1.8 times. The 
decrement of increasing ratio shows the fact that when a 
solution is found in a specific number of polygons, the 
running time in that point is approximate to other later ones. 
Therefore, we can easily predict the running time of SA-TSA 

algorithm when 800>N . 
Fig 17 shows other correlation of ε  and the running time. 

This dependency is not direct proportional to the increment of
ε . Normally, the range of this parameter is ( )5,0 . Below the 
value of three, the higher the parameter ε  is, more time is 
required to process. The average increment of processing 
time in this range is approximately 18 percents. For the range 
( )4.5,3 , the time tends to go down with average reduced 
ratio is about 10 percents. In fact, the longest time is located 
at 3=ε . Thus, for the benefits of time-saving and good 
saving threshold, we should choose the middle point of each 
range as the suitable value of ε . 

The experimental results above have shown some 
properties of parameters of our algorithms. 

 

V. CONCLUSION 
In this paper, we have investigated some extensions of the 

TSM problem following by the number of processors k  and 
the parameterε . Throughout a brief introduction, we have 
shown how importance these extensions are for the original 
TSM problem. Then, two novel algorithms dealing with them 
are presented. The first one is based on Simulated Annealing 
and designed for the optimization of the pair ),( kα . The 
remainder based on Greedy algorithms is used to find the pair 

),( εα  in )(NO time complexity. Both these algorithms 
are carefully tested through a lot of experiments and 
successfully proved the suitability for the TSM problem. 
Besides, they can be the references for further studies. 

In the future, we will study an effective synthesis of these 
extensions for the original problem. Moreover, some further 
researches on the terrain parameters are also our task. 
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APPENDIX 
The source code and test dataset can be found at this 

address: http://chpc.vnu.vn/gis/e-tsm.rar   
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