

Abstract—This paper proposes modified architecture of

21264, Out-Of-Order, six-way issue microprocessor. The
proposed modified architecture implements Tomasulo’s
algorithm using tournament branch prediction scheme to
improve the performance of processor. Tomasulo's Algorithm
controls the operation of the Common Data Bus (CDB) by
means of tag mechanism. A tag is a 4-bit number used to
identify separately each of eleven sources which can feed the
CDB. The proposed modified architecture will evaluate branch
outcome by taking both local and global history. The choice of
global-versus-local branch prediction is made dynamically on a
path-based predictor that decides which predictor to use, based
on the past correctness of choice.

Index Terms—common data bus (CDB), tomasulo’s
algorithm, tournament branch predictor.

I. INTRODUCTION
The IBM 360/91 floating point used a sophisticated

scheme to allow out of order execution. This scheme
invented by Robert Tomasulo’s, tracks when operands for
instructions are available, to minimize RAW hazards, and
introduces Register Renaming, to minimize WAW & WAR
hazards. IBM’s goal was to achieve high floating point
performance from an instruction set. Tomasulo’s algorithm is
designed to overcome long memory access and long floating
point delays. It also supports overlapped execution of
multiple iteration of a loop [2].

The 21264 is a superscalar microprocessor that can fetch
and execute up to four instructions per cycle. It also features
out-of-order execution. With this the instructions execute as
soon as possible and in parallel with other nondependent
work, which results in faster execution. The processor also
employs speculative execution to maximize performance.
The 21264 implements a sophisticated tournament branch
prediction scheme. The scheme dynamically chooses
between two types of branch predictors- one using local
history and one using global history-to predict the direction
of given branch [9].

A. Local Branch Predictor
The local branch predictor bases predictions on the past

behavior of the specific branch instruction being fetched. The

Manuscript received March 10, 2011; revised July 29, 2011.
Rubina Khanna is a post graduate student with DAVIET, Jalandhar,

Punjab, India (rukukapoor@gmail.com)
Vinay Chopra is Assistant Professor with DAVIET, Jalandhar, Punjab,

India (vinaychoprs22@yahoo.co.in)
Sweta Verma is Associate Professor with GCET, Greater Noida, Uttar

Pradesh, India. (sweta_verma@yahoo.com)

local branch predictor holds 10 bits of branch pattern history
for up to 1,024 branches. This 10–bit pattern picks from one
of 1,024 prediction counters. It maintains a PC-indexed
history table of branch patterns which, in turn, index a table
of prediction counters, which supply the prediction. The
history table records the last 10 taken/not-taken branch
decisions for 1K branches (indexed by 10 bits of the program
counter). As branch history is accumulated, a given history
table entry may, in succession, index a different prediction
counter. For example, a branch that is taken on every third
iteration will generate, in succession taken/not-taken patterns
of 0010010010, 0100100100 and 1001001001 (assume
“taken” is denoted as “1” and “not-taken” as “0”). When the
branch is issued, resolved and committed, the history table is
updated with the true branch direction and the referenced
counter is incremented or decremented in the direction which
reinforces the prediction [8].

B. Global Branch Predictor
The global branch predictor bases its prediction on the

behavior of branches that have been fetched prior to the
current branch. The global predictor is a 4,096-entry table of
2-bit saturating counters indexed by the path, or global
history of last 12 branches. Consider the following code
sequence:
loop :
 //modify a and b
 if (a == 100) {…} //1
 if (b % 10 == 0) {…….} //2
 if (a % b == 0) {…....} //3

Prediction based on program flow would conclude that if
the first two branches were taken then the third branch should
be predicted-taken.

C. Choice predictor
The choice of global-versus-local branch prediction is

made dynamically on a path-based predictor that decides
which predictor must be used based on the past correctness of
choice. The chooser is a table of prediction counters; indexed
by path history that dynamically selects either local or global
predictions for each branch invocation. It is trained to select
the global predictor when global prediction was correct and
local prediction was incorrect. The choice predictor or
chooser is also a 4,096-entry table of two-bit prediction
counters indexed by the path history.

II. PROPOSED MODIFIED ARCHITECTURE
In this proposed modified architecture, we are going to

Modified Architectural Support to Implement Tomasulo’s
Algorithm on Tournament Branch Predictor

Rubina Khanna, Vinay Chopra, and Sweta Verma

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

575

apply branch prediction on Tomasulo’s algorithm by using
Tournament branch prediction scheme, to improve the
performance of processor. The modified architecture is
shown in Fig.1 below:

A. Description of modified architecture
Tomasulo's Algorithm was designed to control the flow of

data between a set of programmable floating-point registers
and a group of parallel arithmetic units. Tomasulo's
Algorithm attempts to minimize delays between the
production of a result by one operation and the start of a
subsequent operation which requires that result as an input.
The algorithm also deals with the register renaming
mechanism by providing additional registers, known as
Reservation Stations, at the inputs to the arithmetic units and
a system of tags which direct result operands to where they
are next needed, rather than necessarily to where they would
have gone when the instructions which produced them were
issued. [1].

Instructions are prepared from the Instruction Unit
pipeline and entered in sequence, at a maximum rate of one
per clock cycle, into the Floating-point Operation Stack
(FLOS). Instructions are taken from the FLOS in the same
sequence, decoded, and routed to the appropriate execution
unit. The Instruction Unit maps both storage-to-register and
register-to-register instructions into a pseudo
register-to-register format, in which the equivalent of the R1
field always refers to one of the four Floating-point Registers
(FLR), while R2 can be a Floating-point

Register, a Floating-point Buffer (into which operands are
received from store), or a Store Data Buffer (from which
operands are written to store). In the first two cases R2
defines the source of an operand; in the last case it defines a
sink. The most significant features of this floating-point

system are the Common Data Bus (CDB), the Reservation
Stations at the inputs to the arithmetic units and the Tag
mechanism used by Tomasulo's Algorithm to control the
interactions between the units attached to the CDB. The CDB
allows data produced as the result of an operation to be
forwarded directly to the next execution unit or back to the
store without first going through a floating-point register,
thus reducing the effective pipeline length for read after
write dependencies, as found.

Tomasulo's Algorithm controls the operation of the
Common Data Bus (CDB) by means of a tag mechanism. A
tag is a 4-bit number used to identify separately each of the
eleven sources which can feed the CDB. These are the six
floating-point buffers, the three Reservation Stations
associated with the add unit and the two Reservation Stations
associated with the multiply/divider unit. Tag registers are
associated with each of the four Floating-Point Registers,
with the Source and Sink registers of each of the five
Reservation Stations, and with each of the three Store Data
Buffers. There is also a busy bit associated with each of the
Floating-Point Registers. This bit is set whenever the FLOS
issues an instruction designating that register as a sink and
re-set when a result is returned to the register.

Before the decoder issues an instruction possibilities of
branch instruction is tested and if the branch instruction has
occurred then the branch predictions are used to resolve the
branch occurrence (taken/not-taken). Branch prediction is the
most important requirement for maintaining the high
performance of modern processors. The highly pipelined
nature of most modern processors mean that is control
dependencies such as conditional branches, return
instructions, etc, has the potential to introduce pipeline stalls.
To avoid this, two actions have to be carried out:

Fig. 1. Proposed Modified Architecture of 21264 Processor

Firstly, prediction on the direction of the branch must be
made, which will allow speculative execution on the
predicted path until the branch is resolved.

Secondly, Branch target address must be quickly

determined, so that the pipeline may be continued to be filled
with a minimum number of pipeline bubbles introduced.

The paper proposes modified architecture implementing
Tomasulo’s algorithm in tournament branch prediction

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

576

scheme, which will evaluate the branch outcome by taking
both local and global history. The choice of
global-versus-local branch prediction is made dynamically
on a path-based predictor that decides which predictor must
be used based on the past correctness of choice. The
tournament predictor consists of 4K 2-bit counters to choose
from among a global predictor and a local predictor. The
global predictor also has 4K entries and indexed by history of
last 12 branches; each entry in the global predictor is a
standard 2-bit predictor i.e. the global predictor consist of 12
bit pattern in which ith bit 0 => ith prior branch not taken and
ith bit 1 => ith prior branch taken.

The local predictor consist of a 2-level predictor which
maintains the local history table of 1024 10-bit entries, in
which each 10-bit entry corresponds to most recent 10 branch
outcomes for the entry.

So, after receiving instructions from the Floating-Point
Operand Stack the decoder firstly use choice predictor for
resolving the branch instructions to be taken or not-taken by
identifying their local and global history. The choice
predictor will choose the type of history used for a particular
branch by first checking the threshold value. If the threshold
value is greater than or equal to 2, then global predictor bit is
set and global history is updated else local predictor is set and
the result appears on the CDB, which will broadcast to all
destinations. As the local predictor holds its history in local
history buffer, the busy bit is set when it overflows and resets
to zero when the previous instructions are completed.

Before the Decoder issues an instruction, it checks the
busy bit of each of the specified floating-point registers. If the
busy bit is zero, the contents of the register are sent to the
selected Reservation Station; if the busy bit is set to one, the
current value of the corresponding tag register is sent instead.
The busy bit of the designated Sink register is then set to 1,
and the tag number of the selected Reservation Station is
entered into its tag register. Thus the tag register of a busy
floating-point register identifies the last unit (in proper
program sequence) which will produce a result for it.

Whenever a result appears on the CDB, the tag
corresponding to its Reservation Station is broadcast to all
destinations. Each active Reservation Station (selected but
awaiting a register operand) compares its Sink and Source
tags with the CDB tag. If a match occurs, the Reservation
Station takes the data from the CDB. In a similar manner, the
CDB tag is compared with the contents of the tag registers
associated with the Floating-Point Registers and the Store
Data Buffers. All busy registers with tags matching that on
the CDB are set to the value on the CDB and their busy bits
re-set.

Issuing an instruction in this system only requires that a
Reservation Station be available for whichever execution
unit is required. If a source register is awaiting the result of a
previously issued, but as yet uncompleted instruction, or if a
floating-point buffer register is awaiting an operand from
store, the tag associated with that register is transmitted
instead to the Reservation Station, which then waits for that
tag to appear at its input. Thus it is the Reservation Stations
which do the waiting for operands, rather than the execution
circuitry, which is free to be engaged by whichever
Reservation Station fills first. Execution of an instruction

starts when a Reservation Station has received both operands.

Algorithm for modified architecture:

if (threshold value >= 2)
{
selected = Global;
global selected++;
gp = global_addrs;
}
else
{
selected = local;
local_selected++;
lp = local_addrs;
}
Where lp – Local predictor
gp- Global predictor
Threshold value has been calculated via the expression:
Threshold = pow (2, SaturatingCounterSize) / 2;
Hence, the threshold value is taken as greater than equal to

2 after calculation.

III. CONCLUSION
This paper works for a modified architecture to implement

Tomasulo’s algorithm on tournament branch predictor.
Instructions are prepared from the instruction Unit pipeline
and entered in sequence, at a maximum rate of one per clock
cycle, into the Floating-point Operation Stack (FLOS).
Instructions are taken from the FLOS in the same sequence,
decoded, and routed to the appropriate execution unit. The
Instruction Unit maps both storage-to-register and
register-to-register instructions into a pseudo
register-to-register format. Before the decoder issues an
instruction, possibility of branch instruction occurrence is
tested and branch prediction can be done using local and
global history as selected by the choice predictor by checking
threshold value against the histories, to resolve the branch
occurrence to be taken / not-taken.

 REFERENCES
[1] Rubina Khanna, Sweta Verma, Vinay Chopra, Ranjit Biswas,

“ Implementation of load in Tomasulo’s algorithm-out-of-order
execution in Superscalar processor” in proceeding of ICDM 2010,
11-12 March 2010,IMT, Ghaziabad.

[2] K.L McMillan Verification of an implementation of tomasulo’s
algorithm by compositional model checking. CAV’98:110-121, 1998.

[3] Grunwald, D., Klauser, A., Manne, S. and pleszkun, A. (1998)’
Confidence estimation for speculation control’, Proceedings of the 25th
annual International Symposium on Computer Architecture, Barcelona,
Spain, pp.122-131.

[4] T.-Y. Yeh and Y.N. Patt, “A Comparison of Dynamic Branch
Predictors that Use Two Levels of Branch History”, Proc. 20th Annual
ACM/IEEE Intl. Symposium on Computer Architecture, 1993.

[5] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. Patt, “Branch Classification: a
New Mechanism for Improving Branch Predictor Performance”, Proc.
27th Annual Intl. Symp. On Microarchitecture, 1994.

[6] Hennessy J., Patterson D., “Computer Architecture, aQuantitative
Approach”, Morgan Kaufmann, 2003.

[7] Jurij Silc, Theo Ungerer, Borut Robic,(2007) ‘Introduced dynamic
branch prediction techniques for Superscalar processors’ Int. J. High
Performance Systems Architecture, Vol. 1, No. 1, pp.2–13.

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

577

[8] M.-C. Chang and Y.-W. Chou, (2002) ‘Branch prediction using both
global and local branch history information’ Proceedings of IEEE on
Computer Digit technology, Vol 149, No. 2, March (2002).

[9] R. E. Kessler, E. J. McLellan, ‘The Alpha 21264 Microprocessor
architecture’ in the proceedings of the International conference on
computer design, Vol. 19, March 1999.

Mrs. Rubina Khanna is a Post Graduate student
with Computer Science & Engineering Department,
DAVIET, Jalandhar, Punjab, India. She has
completed her undergraduate course in Information
Technology from Lovely Institute of Engineering
and technology, Jalandhar in year 2006.Presently
she is doing her post graduate course in Computer
Science from DAVIET, Jalandhar, Punjab, India.
Her areas of interest are Computer Architecture.
She has 1 research papers in International Journal, 2

in international paper and 3 in national conference.

Vinay Chopra is working as Assistant Professor with
Computer Science & Engineering Department,
DAVIET, Jalandhar, Punjab, India. His areas of
Interest are software Engineering, Automata &
computer Graphics. He has 12 research publications in
national, international journals and conferences.

Mrs. Sweta Verma is Associate Professor with
GCET, Greater Noida, Uttar Pradesh, India. She has
completed her undergraduate course in CSE and post
graduate course in IT. Presently pursuing her PhD in
CS&E/IT. Her areas of interest are computer
architecture. She is the author of five books and has 10
publications in International journal and international
conferences each.

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

578

