
 
 

 

 

  
Abstract—This article is aimed on the data-driven scenario 

testing process. The first part of article starts with the general 
introduction into software testing. After that scenario testing is 
presented and also relations of scenario testing to functional 
requirements specifications are pointed out. Model-View-View 
Model architectural pattern is showed as an ideal candidate of 
testing friendly architecture of object oriented software system. 
Second part is devoted to proposal of data-driven scenario 
testing generation captured via UML notation. Finally, the 
proposal implementation is described in the context of real 
world object oriented system. The main goal of this article was 
to simplify task of testing complex functional user requirements 
by usage of scenarios in order to be agile enough, cut test 
preparation time and improve quality of the resulting software 
product.  
 

Index Terms—scenario testing, data-driven, UML  
 

I. INTRODUCTION 
Software testing is one of the most important tasks in the 

process of software development. Companies are using 
testing mainly for the purpose of quality improvement. It 
usually starts with unit testing in projects which are guided 
according to Test Driven Development paradigm and 
continue with more complex types of tests. Scenario testing 
differs from the others because it is not oriented only on 
verification of basic functionality or fulfillment of design 
requirements. Its main goal is to provide the answer, whether 
system is usable for end users by creating complex real world 
scenarios. 

A. Software Testing 
Success of company in the information technology field is 

based on its ability to truly understand customer needs and 
according to this deliver product which has high quality 
attributes and offer real add value to the end user. Software 
testing is one of the options which, if it is used correctly, can 
help to accomplish these goals. It is important to say that 
software testing is not only tool for quality improvement. 
Some of testing techniques could be used at the beginning of 
the software development cy

 Manuscript received February 4, 2011; revised July 28, 2011.  
Authors would like to thank to software company MMS Softec providing 

technological and software framework which was used throughout whole 
project development.  

P. Tanuska is with the Institute of Applied Informatics, Automation and 
Mathematic at the Slovak University of Technology, Trnava, Slovakia,    
(phone: +421 918 646 061; fax: +421 33 5511758; e-mail: 
pavol.tanuska@stuba.sk).  

T. Skripcak is with the Institute of Applied Informatics, Automation and 
Mathematic at the Slovak University of Technology, Trnava, Slovakia,    
(e-mail: tomas.skripcak@stuba.sk). 

understanding customer needs or at the end for the purpose of 
teaching users how is the system working. That is why, 
testing is described also as a learning process. 

Software testing can by defined be many definitions, but 
the essentials can be reduced to idea of error preventing and 
quality improvement. Below are some formal interpretations 
of software testing: 

• Software testing is an investigation conducted to 
provide stakeholders with information about the 
quality of the product or service under test [1]. 

• Software testing is the process of executing a program 
or system with the intent of finding errors [2]. 

• Software testing involves any activity aimed at 
evaluating an attribute or capability of a program or 
system and determining that it meets its required 
results [3]. 

According to [4] there are two types of professions with 
responsibility of test performing: testers and developers. 
Main difference is, that whether the test will be executed by, 
depends on the test type. 

In general, software testing is usually classified according 
to three main criterions: 

1) Techniques 
• White-Box (Structural) Testing is representation of 

technique that originates from knowledge of systems 
internal structure. Test data is driven by examining 
the logic of the program or system, without concern 
for the program or system requirements [11]. 
Concrete examples are for example code analysis and 
code coverage inspection. 

• Black-Box (Functional) Testing is representation of 
technique that originates only from knowledge 
observed from system functionality without any idea 
about inner working of developed product. The tester 
focuses on testing the program‘s functionality against 
the specification [11,13]. Specific case could be e.g. 
data driven testing. 

• Grey-Box (Functional and Structural) testing is 
representation of technique which combine both 
White-box testing and Black-box testing in order to 
take the best from them. The tester studies the 
requirements specifications and communicates with 
developer to understand the internal structure of the 
system [11]. Usage of this technique is beneficial e.g. 
in the matter of lower test cases number. 

2) Approaches 
• Manual Testing is approach for human driven testing 

strategy. Basically it means that manual tests are not 
coded in computer. This type of testing is expansive 
and consume large amount of time and resources. 

• Automated Testing is on the other hand implemented 
via some sort of testing framework. Software 
companies which applies Agile methodology likes 
this approach because it produce large number of 

Data-Driven Scenario Test Generation for Information 
Systems 

P. Tanuska, Member, IACSIT, IEEE, and T. Skripcak 

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

565



 
 

 

 

cheap and reusable test necessary for quality 
insurance of their products. Automate tests form 
bottom-up pyramid as shown in the Figure 1. 

 

Fig. 1. Bottom-Up model for automating tests [4] 

3) Types 
• Unit testing is software testing technique that focuses 

on exercising the features of individual functions or 
modules in isolation [12]. Unit tests are usually 
written according to “Create Test First” paradigm, 
where phase of functionality which does not exists yet 
is tested to gain failure first in order to start with the 
refactoring processes which will results to test pass. 

• Integration Testing is performed in order to test 
whether two or more units or modules coordinate 
properly. The are build on top of unit tests. There are 
several strategies for integration testing and usage of 
correct one depends on integration strategy of entire 
system [4]. 

• Functional Testing tests whether a system meets 
functional requirements. It does not cover internal 
coding of the system. Functional testing is pointed on 
verification whether the system behaves according to 
user requirements [4]. 

• System Testing is based on overall requirements 
specifications and that is why it covers all combined 
parts of the system [11]. It also verifies 
non-functional requirements like security or 
performance. 

• Acceptance Testing is the final stage in the process of 
system development. Usually performed as a last step 
before delivery of product as an assurance that all 
customer needs are satisfied. 

It is neither recommended nor possible to cover everything 
with tests. Software systems are too complex and 100% 
coverage would have inappropriate effect on overall price of 
resulting product. Finding moderate test coverage is always 
difficult task and it also depends on attributes of software 
system. 

B. Scenario Testing 
Scenario testing is quite specific and differs from other 

types of tests. The basis of scenario test is simulation of 
complex task lifetime in the developed system, from the end 
user point of view. 

There is a lot of similarity between scenario and 
integration testing. They are related methodologies that test 
multiple units of a product to evaluate how well they work 
together. The purpose of integration tests is to verify 
interfaces of multiple modules, while scenario tests cover 
end-to-end scenarios the user cares about. Both are examples 
of real-world use of the product [4]. Fundamental 

explanations of scenario and scenario testing are as follows: 
• A scenario is a hypothetical story, used to help a 

person think through a complex problem or system 
[5]. 

• Scenario tests are realistic, credible and motivating to 
stakeholders, challenging for the program and easy to 
evaluate for the tester. They provide meaningful 
combinations of functions and variables rather than 
the more artificial combinations you get with domain 
testing or combinatorial test design [6]. 

According to [9] good scenario test should be designed to 
meet these four important characteristics: 

• The story is motivating. A stakeholder with influence 
would push to fix a program that failed this test. 

• The story is credible. It not only could happen in the 
real world. Stakeholders would believe that 
something like it probably will happen. 

• The story involves a complex use of the program or a 
complex environment or a complex set of data. 

• The test results are easy to evaluate. This is valuable 
for all tests, but is especially important for scenarios 
because they are complex. 

Useful feature of scenario testing is that in the real world 
they can morph into other types of testing. The list below 
shows few options of scenario test usage: 

• Some people create a pool of scenario tests as 
regression tests [4, 8, 14].  

• Test for the purpose of learning advance product 
usage [4, 5, 8, and 10]. 

• Stress testing with data that are not used in normal 
situations (this tests are called “Killer soaps”) [4, 8]. 

• Verification that key user requirements are satisfied 
[4]. 

• Surfacing design-related issues and possibly raising 
new design issues [4] 

C. Scenarios and Functional Requirements 
Software required specification (SRS) usually contains all 

needs of stakeholders and end users, which were discovered 
through the customer needs analysis process. This 
specification is used as part of agreement between company 
developing product and customer. SRS contains also 
functional requirements of users modeled by notation of 
Unified Modeling Language (UML) as Use Cases. Within 
the Rational Unified Process (RUP), a scenario is an 
instantiation of a use case - take a specific path through the 
model, assigning specific values to each variable. Scenarios 
specify actors, roles, business processes, and the goal of the 
actor, and events that can occur in the course of attempting to 
achieve the goal. More complex tests are built up by 
designing a test runs through a series of use case [7, 8]. 

D. Model-View-ViewModel (MVVM) 
When testing gained enough importance and 

Test-Driven-Development (TDD – focused on tests) together 
with Behavior-Driven-Development (BDD – focused on 
functional requirements) stared to be used in mainstream, 
there occurred a need of change in the software development 
industry. Old paradigms where tight coupled modules were 
standard and code behind approach was used for developing 
event driven User Interfaces become obsolete. Testing 
required new requirements on system components and 
system at all. Terms like loosely coupled modules, weak 

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

566



 
 

 

 

references, dependency injection and composite applications 
are characterization of nowadays trend in software 
development industry. 

One of most significant change is usage new architectonic 
patterns for system design.  Model-View-View Model 
pattern, showed in the Figure 2, is one of them.  

 

Fig. 2. Model-View-View Model architectonic pattern 

Structure of this pattern consists from three main 
components: 

1) View 
View is the object representation of User Interface (UI). It 

usually contains only definition of user interface components 
with no or only necessary code-behind. This restriction has 
one useful side effect, that UI can be changed without any 
complication, because all the code and data are separated in 
View Model, which has bidirectional association with View. 
So when it comes to testing process, it is possible to create 
mock object for view and let it simulate its base functionality. 

2) ViewModel 
View Model is a special object which is used for 

encapsulation purpose of Model data. It is used for shaping 
data from their row form in order to present them (in 
literature is View Model sometimes referred as Presentation 
Model) to the View. Another View Model function is 
handling events which were propagated from View (in a 
loosely coupled way) and execute data driven operations in 
asynchronous manner. View model is usually tested without 
association to real View (only to mock of View object).   

3) Model 
Model is represented by domain structure of developed 

system. We know the term domain objects. In 
Domain-Driven-Design (DDD) it stand for pure model of 
system domain and encapsulate most of business behavior 
and functions of system. It should be copy of real world 
domain implemented by the notation of object oriented 
design. Model is usually tested via implementation of various 
unit tests. 
 

II. THE PROPOSAL OF DATA DRIVEN SCENARIO TESTS 
GENERATION 

As it was mentioned above scenario testing belongs to one 
of very important technique used in software development 
process. MDA (Model Driven Architecture) teach us that 
having a model for every aspect of developing system. 

However, if we want to stay agile and be able to react on 
changes in the project, there is necessary to connect these 
models together and reuse that parts which can be reused.  

A. Prerequirements 
Scenario testing is directly connected to functional 

requirements modeled in SRS, which are modeled as a group 
of Use Cases in UML notation. Right designed Use Case can 
serve as ideal starting point for the scenario, because it 
contains detailed description on how the function will be 
used by customer. Good candidate for scenario tests is Use 
Case that describes complex behavior, where communication 
with other Use Cases is also possible. 

B. Overview of Data-Driven Test Generation Process 
When we are talking about automated testing, there is an 

open question about how will the tests gain the data, which is 
needed for initialization and comparison. State of 
object-oriented system is represented by data attributes. And 
each test, in order to verify functionality follows from user 
requirements have to prepare data objects presented in it. 
This can be done by code, but it is the difficult way. There are 
several reasons why it is not very usable for the case of 
scenario testing: 

• Data is hardcoded into the tests 
• Initialization process for complex scenario can be 

really long 
• It makes scenario less expressive 
• There is a problem when we want to reuse the initial 

data in other scenario 
• Test cannot be easily executed with different portion 

of starting data 

 

Fig. 3. Detailed Activity diagram for Scenario Test Generation step 

We proposed initialization of scenario tests from the 
structures called Data Snapshots, as the second step of 
activity diagram in the Figure 3 is showing. 

Snapshoot stands for image, which contains clone of 
application state saved in specific format, so that it can be 
used later. 

Snapshots are used also for storing valid information of 
scenario results. These data specifies how should state of our 
object-oriented system look like when the scenario will 
successfully end.  

The last step in the process of Data-Driven scenario testing 

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

567



 
 

 

 

is comparison of the system state after the test ends, with 
referential values stored in valid Data Snapshoot. 

C. Detailed view on Scenario Test Generation 

 

Fig. 4. Detailed Activity diagram for Scenario Test Generation step 

We continue our proposal explanation by detailed look at 
scenario test generation process described in the Figure 4. 
Scenario test generation starts after initialization of system 
state from snapshoot. Now system is ready to perform chosen 
complex scenario, but first it is necessary to determine which 
module of developed system actually implements peace of 
functionality required by Use Case. When the module is 
successfully found, extraction of View Model component is 
done, because in systems based on MVVM architecture View 
Model is the right place which encapsulated all functionality, 
which is provided to the end user with help of View 
component. Diagram continues by enumerating over all steps 
of the Use Case, where each step will result into one of these 
actions: 

• If the step is Use Case representation of <<include>> 
or <<extend>> behavior, than action for selection of 
complex Use Case is recursively performed in order 
to generated sub scenario of our complex case. 

• Else, the step belongs to this Use Case and that why 
View Model is responsible for executing relevant 
action. 

According to proposed model it is possible to pass over the 
complex Use Case with its entire sub Use Cases and generate 
complex scenario. 

 III.

 

PARTIAL IMPLEMENTATION OF DATA DRIVEN SCENARIO 
TESTS GENERATION

 
Proposed model was implemented at PromanNG system 

developed by MMS Softec Company. It is an object oriented 
system for project management activities with composite 
architecture based on slightly altered version of MVVM 
design pattern. Software is programmed on top of .NET 
framework with C# as a default language and profit from 
modern approaches in software development industry. 
Design of system is highly impacted by MDA paradigm, but 
also trying to be agile enough, it means that every model is 
directly connected to code (auto generated) or peace of 
functionality, which is delivered to the end user.  

A.
 

Application of MVVM 
1)

 
View 

View is implemented in notation of extensible Application 
Markup Language (XAML) language, with its code behind, 
which usually do not contain anything more than association 
to View Model stored as Data Context of UI View. This 
enables data binding and loosely coupled events (also called 
commands) between View and its View Model. 

2)
 

View Model 
View Model class have access to all data and actions which 

user can perform through UI. It transforms the data in for the 
purpose of displaying them to the UI. View Model also 
implements necessary interfaces, which enables automatic 
tracking of changes on data objects for UI. Important is that 
View Model can be tested without initialization of real UI 
View, so it is ideal candidate for scenario testing. 

3) Model 
Model in the meaning of domain objects is accessible form 

Service class. This class publishes methods for manipulating 
with model and it is also extended via partial Business Rules 
class for the purpose of domain object validation and 
business rules checks. 

B. Object relational mapping (ORM) 
Domain objects in PromanNG uses object relational 

mapping techniques, for simplifying data access strategy of 
the system.  ORM is because of several reasons: 

• Objects are persisted to the relational (or other) data 
stores without any impendency problems. 

• Database schema could be automatically created 
according to UML Class Model. So there is no need 
to keep two types of logical models up to date. 

• It simplifies manipulation with the data and enables 
us to work in domain boundaries. All the queries are 
automatically generated. 

There is one more usage of ORM technology, which really 
useful and time saving. Concept of Data Snapshots can be 
implemented in term of ORM. It is possible to take domain 
objects of developed system, fill them with initial values and 
use ORM persisting mechanism to create copy of system 
state. Resulting snapshoot could be used for initialization of 
system state before scenario test and also we can load 
persisted valid state in order to compare it with the one from 
scenario testing results. This concept can be used for creation 
of inputs and results which are reusable across the scenario 

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

568



 
 

 

 

testing.  

C. Convention over Configuration 
Our proposal is counting on assembly searching in order to 

identify correct application Module and its View Model. 
Good solution is to abide convention over configuration 
approach. Simple convections were established in order to 
simplify the task of determination right piece of software: 

• Every application starts with name of functionality 
followed by key word Module 

• Every View Model starts with name of Module 
followed by the key word View Model 

• The same is applicable for View and Model classes 
but for now there are not needed in the process of 
scenario test generation 

D. Example of complex Scenario generation 
Data-Driven Scenario generation methodology was tested 

on object oriented system PromanNG. Figure 5 demonstrates 
example of complex functional requirement described by Use 
Case notation of UML.  

 

 

Fig. 5. Complex Use Case example for setting up an Personal 

User requirement is implemented in one application 
module but it also uses functions from other module. For 
testing this specific feature, there was a scenario generated 
according to our proposal. UML Sequential diagram in the 
Figure 6 captures how the scenario is executed in the scenario 
testing process. 

 

IV. FUTURE WORK 
Scenario testing proposal is mainly aimed on functions 

verification, which is done be data comparison. In the future 
we would like to implement other features which could 
provide more information about tested system. It will be 
useful to capture data about system performance, memory 

compunction and statistically interpret them in order to move 
a step further and gain even better improvement of software 
product quality. 

 

V. CONCLUSION 
The aim of this article is to propose a method for 

data-driven scenario testing generation out of complex user 
requirement specification captured in Use Case notation.  
Method proposal is defined in UML Activity Diagram. For 
the purpose of loading initialization scenario data and also 
comparison of test results the structure called Snapshoot, 
which stores copy of system state, is used. Proposal is 
implemented and used for generate data-driven scenario tests 
in real world object oriented system. 

REFERENCES 
[1] C. Kaner, “Exploratory Testing,” Florida Institute of Technology, 

Quality Assurance Institute Worldwide Annual Software Testing 
Conference, Orlando, FL, November 2006. 

[2] G. Myers, “The art of software testing, 2nd Edition” Wiley, 2004, New 
York, pp. 19,  ISBN: 978-0-471-46912-4. 

[3] W. Hetzel., “The Complete Guide to Software Testing, 2nd edition,” 
Wiley, 1993, New York,  pp.6, ISBN: 0471565679 

[4] A. Gao, I. Manolov, L. Lobo, N. Anderson, M. Hunter, R. Jaganathan, 
“WPF Application Quality Guide,” [Online] 2009, [cit. 2010-11-24]. 
Available on the Internet <: 
http://windowsclient.net/wpf/whitepapers/wpf-app-quality-guide.asp. 

[5] C. Kaner, “The power of ‘What If…’ and nine ways to fuel your 
imagination: Cem Kaner on scenario testing,” Software Testing and 
Quality Engineering Magazine, Vol. 5, Issue 5 (Sep/Oct), p. 16-22, 
2003. 

[6] C. Kaner, J. Bach,  „Scenario Testing“ [Online 2005], [cit. 2010-11-29]. 
Available on the Internet 
<:http://www.testingeducation.org/BBST/ScenarioTesting.html.>. 

[7] R. Colard, “Test Design: Developing test cases from use cases,”  STQE 
Vol. 1, Issue 4 (Jul/Aug), 1999.  

[8] C. Kaner, „What is a good test case?,“ Software Testing Analysis & 
Review conference (STAR) East, Orlando, FL, 2003, Available on the  

[9] Internet<:http://testingeducation.org/articles/what_is_a_good_test_cas
e_star_2003_paper.pdf.>.  

[10] C. Kaner, “Examples of Scenario Testing“, [Online 2004], [cit. 
2010-12-01], Available on the Internet 
<:http://www.testingeducation.org/k04/ScenarioExamples.htm.>.  

[11] S. Konachady, “What to expect form user scenario testing,“ [Online 
2007], [cit. 2010-12-03], Available on the Internet 
<:http://blogs.sun.com/skonchady/entry/what_to_expect_from_user.> 

[12] W. Lewis, G. Veerapillai, “Software Testing and Continuous Quality 
Improvement, 2nd edition,” Auerbach publications, 2005, pp. 29-39, 
ISBN: 0-8493-2524-2 

[13] Microsoft, “Unit Testing Terms Glossary”, [Online 2010], [cit. 
2010-11-25], Available on the Internet 
<:http://msdn.microsoft.com/en-us/library/ee413946.aspx.> 

[14] A. Trnka, “Six Sigma Methodology with Fraud Detection. “ In: 9th 
WSEAS Interanational Conference on Data Networks, 
Communications, Computers (DNCOCO`10) : University of Algarve, 
Faro, Portugal, November 3-5, 2010. - ISSN 1792-6157. : WSEAS 
Press, 2010. pp. 162-165, ISBN 978-960-474-245-5.  

[15] P. Vazan, O. Moravcik, “The Proposal of Procedure of Lot Size 
Determination in Production System. “ 

[16] In: DAAAM International Scientific Book. - ISSN 1726-9687. - 2008. 
Vol. 7. - Vienna : DAAAM International Vienna, 2008. - pp. 919-926,  
ISBN 978-3-901509-66-7.  

 

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

569



 
 

 

 

 
Fig. 6. Sequence diagram of generated scenario test 

Pavol Tanuska (M ’09 IACSIT, M ’10 IEEE, M ’10 
IAENG) received his PhD degree (2000) in area of 
Applied informatics and automation from Slovak 
University of Technology (STU), Faculty of Material 
Science and Technology Trnava, Slovakia. Since 
2004 he is an Associate Professor in Institute of 
Applied Informatics, Automation and Mathematics at 
the Slovak University of Technology, Trnava, 
Slovakia. His research and development activities 

include the field of Information systems development, especially problems of 
verification and validation and Database systems. He has published over 120 
scientific and technical papers in national and international conference 
proceedings and journals. Email: pavol.tanuska@stuba.sk 
 

Tomas Skripcak received his Master degree, in the 
field of applied informatics and automation in industry, 
from Slovak University of Technology in Bratislava in 
2010. During studies (2005-2011), he worked as a 
software developer in MMS Softec Ltd. 
(Trnava-Slovakia), where he was responsible for 
design, development, documentation and testing of 
information systems based on .NET technology. In 
certain time, he is a PhD student at Slovak University 

of Technology in the field of process automation and informatization. Since 
February 2011, he is situated in Germany at Helmholtz-Zentrum 
Dresden-Rossendorf. He has published 2 papers in international conferences. 
His research area of interest includes software systems design and testing, 
natural user interface design, novel way of human-computer interaction. 

 

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

570


