
 

 

 

   
Abstract—A five stage pipelined architecture is proposed to 

target real-time video resolution conversion in spatial domain. 
This low complexity design is based on pre-computed memory 
mapping which computes the geometric position  of 
interpolated pixels and their gray level values based on the 
scaling factor. The memory map has been conceived using 
nearest neighbor interpolation technique which simplifies the 
implementation. The scaling ratio is provided as an input to the 
hardware architecture before conversion. The design is capable 
of converting any video frame size in real-time. The memory 
requirement in this operation has been significantly reduced in 
comparison with earlier hardware based schemes. The results 
have been validated on a Xilinx Spartan FPGA running at 100 
MHz Conversion times for different scaling ratios have been 
reported  
 

I. INTRODUCTION 
Video size scaling is an important operation in the 

paradigm of multimedia transcending and communications. 
The advancements in biomedical imaging and presence of 
heterogeneous devices have increased the demand of image 
and video conversion and scaling. Nowadays, consumer 
multimedia devices have diverse resolutions and often 
communicate other devices in different scenarios.  This 
communication is subjected to real-time video scaling 
operations. 

Many scaling and resolution conversion techniques have 
been proposed in the literature [2-9]. Most image resolution 
conversion techniques reported are thus far are software 
based [6] and meant for off-line processing. Software 
schemes are generally not capable of meeting processing 
requirements for real-time video scaling operations. Also, 
software resolution conversion is encoder and platform 
dependent and for fixed target size. Thus there is a need for 
dedicated hardware architecture that can achieve real-time 
performance for any given scaling factor. Recently some 
hardware based image scaling designs have been proposed [2, 
3, 10]. These schemes target only a fixed image size for 
which the ratio of size conversion is a whole number. Two 
important issues can be identified in the existing hardware 
schemes. (i) The designs cater for fixed size scaling in 
up-direction (zooming) [4] and (ii) Require excessive 
memory and complex control making them difficult to meet 
the stringent timing constraints in real-time. Some hardware 
based solutions for video scaling have been compared in [10]. 
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A relatively large memory would be needed in these existing 
schemes to support non-integer scaling ratios. An important 
aspect of the work reported here is to provide a generic 
architecture that is memory-efficient and meets real-time 
image and video size scaling for arbitrary ratios. This work is 
an extension to our earlier reduced-memory architecture for 
fixed image sizes proposed in [11].  

The rest of the paper is organized as follows: Section 2 
describes the general image and video scaling background in 
context of re-sampling. This section also explains the ‘up’ 
and ‘down’ sampling operations and their memory 
requirements.  The proposed memory-efficient architecture 
that achieves generic size conversion is explained in section 3. 
Results and analysis including FPGA implementation have 
been discussed in section 4. This is followed by the 
conclusion in section 5.  

 

II. RE-SAMPLING AND INTERPOLATION  
Video size scaling involves spatial scalability of the frames. 

This scalability is achieved by re-sampling the original image 
to the desired size. Decimation and interpolation are two key 
operations in re-sampling. A non-integer scaling factor 
results in a combination of decimation and interpolation 
operations. The discrete signals are then smoothed out with a 
low-pass filter in order to alleviate the aliasing effect. Nearest 
neighbor, Bi-cubic, Quadratic and Spline are some of the 
well known interpolation techniques which have been 
compared in [1]. When re-sampled to an integer factor, the 
signals require less memory as only an up-sampling or a 
down-sampling operation will suffice. On the other hand, 
when scaling factor is a non-integer value, the intermediate 
memory demand increases tremendously, as illustrated in 
figure 1.  

  

Fig. 1. Re-sampling by factor [L/M] 

Fig. 1 depicts a re-sampling operation where the data 
points are up-sampled by a factor L and then down-sampled 
by M. These up and down sampling operations require a large 
amount of intermediate storage memory. A comparison of 
this intermediate memory requirement for some well known 
scaling conversions is shown in Fig. 2. The bars show the 
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intermediate memory needed for size conversion in 
horizontal and vertical directions respectively. 
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Fig. 2. Re-sampling intermediate memory requirement for different spatial 

resolution conversions  

A. Interpolation  
Interpolation is a key operation in the process of 

re-sampling that approximates the blank pixels that have 
been introduced by up-sampling. Different interpolation 
techniques use different number of pixels to reconstruct the 
missing pixel value. The comparison in [1] shows that 
Nearest Neighbor interpolation is the simplest in terms of 
implementation cost whereas Gaussian scheme gives the best 
quality. However, Gaussian technique is orders of magnitude 
complex in terms of computational requirements [10].  

B. Fixed Size Image Resizing 
Although some hardware based up-scaling and 

down-scaling techniques have been proposed recently [10, 
12], yet all these techniques consider a fixed target image size 
in their design. None of these schemes address a generic 
scaling method that can convert an image or a video frame to 
any given spatial resolution. Calculating the position of 
missing indices in the operation remains a challenge both in 
terms of computations as well as the hardware 
implementation.  

C. Memory Requirement for Re-sampling 
The idea of incorporating a ‘reduced memory map’ for a 

fixed-size conversion was introduced in [11] to map the input 
image pixels to their corresponding output positions. This 
reduces the intermediate memory requirement significantly 
and also makes the design scalable. The memory map was 
generated using a given scaling factor. A non-integer scaling 
factor results in a large memory, whereas an integer scaling 
factor requires either up or down sampling only and lesser 
memory. This direct mapping can be achieved in one single 
operation.  In this work, architecture has been developed that 
reduces the memory requirements for real-time video scaling 
operation where the conversion ratios are generic and they 
are specified at run-time. The details of proposed design are 
given below. generate 

 

III. PROPOSED METHODOLOGY  
As the objective of this study is to achieve generic size 

scaling, an algorithm has been developed to construct the 
flexible memory map in hardware. The ‘map generator’ 

module takes original and desired resolution as input 
parameters. The desired resolution is then divided by the 
original resolution and the value of remainder is stored in a 
register. This remainder is added to itself until the 
remainder-sum becomes equal to input resolution parameter 
specified. A small threshold value ‘ε’ is used to round-off the 
remainder-sum. Counts ‘X’ and ‘Y’, respectively 
representing the original and new mapping, are incremented 
by one each time the remainder is added to itself. In this way, 
an algorithm similar to greatest common divider (GCD) has 
been developed. The output from this module provides the 
‘X’ to ‘Y’ mapping of original and new pixels. Thus a 
non-integer scaling size conversion can be performed by 
consuming very less memory. The same process is repeated 
for the other (horizontal or vertical) dimension. The 
algorithm is summarized using the flow chart in Fig. 3. 

Input
Output

ε≤− outputRε≤− inputR

 
Fig. 3. Flow chart for generic scaling hardware 

The concept of direct mapping in a single dimension is 
explained in Fig. 4. The up-sampling by a factor ‘L’ and 
down-sampling by ‘M’ is performed using the map explained 
earlier. The shaded samples are the ones reconstructed 
through Nearest Neighbor interpolation technique. This 
technique makes the mapping possible and reduces the cost 
of the circuit remarkably in the design 
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Fig. 4. Non-Integer Re-sampling & Mapping 

A. Controller State Machine 
The state machine based controller module utilizes the 

memory mapping of input ‘X’ samples to output ‘Y’ samples. 
The controller decides by looking at the net result of the 
conversion to determine whether the input samples require 
low-pass filtering or not. If the net result is ‘not a 
downscaling’ in horizontal or vertical direction then the 
low-pass filtering is bypassed. Otherwise a 7-tap low-pass 
filter for CCIR to SIF conversion [7] is applied. The 
controller then allocates the memory space from the on-chip 
ROM, based on the output of the ‘map generator’. The 
interpolated samples at the output are then post-processed in 
order to alleviate any artifacts caused by the interpolation 
operation. A 7-tap linear symmetric filter proposed in [7] is 
applied for the post-processing operation followed by the 
mapping of vertical samples. Vertical mapping is achieved by 
repeating the columns based on the output of ‘map generator’. 
The vertical mapping is accomplished separately and 
independently from the horizontal one.  

The controller-based technique outperforms the earlier 
block-level technique presented in [2] and reduces the 
memory requirements to off-chip image storage only. The 
controller using Nearest Neighbor interpolation does not use 
any masking kernel for interpolation and hence does not 
require any dependent pixels information. This reduces the 
design complexity and makes it faster at the same time. The 
state transition diagram of the controller is shown in Fig. 5. 
The horizontal and vertical re-sampling is achieved 
separately making it possible to have different mapping and 
interpolation techniques for horizontal and vertical directions. 
Other higher-order interpolation techniques can also be 
embedded in this approach. 

  

Fig. 5. State Transition Diagram for Controller 

B. Pipelined Architecture 
A five stage pipelined architecture has been developed to 

afford higher clock speed and data throughput, hence coping 
with the real-time processing issues. The block diagram of 

complete architecture is shown in Fig. 6. The image is read 
row-wise and fed into the serial data path comprising of 
different pipelined stages. ‘Read’ stage module works 
independently of any other module and reads ‘X’ amount of 
pixels from the input image, where ‘X’ is the number which 
was calculated by the ‘map generating’ hardware. When the 
next ‘X’ samples are read, the earlier ones are in pipeline at 
‘pre-processing’ stage. The pipelined registers change their 
states at every clock edge provided by the controller state 
machine described in section 3.1.  This design is fully 
pipelined and serial, hence reducing the memory required to a 
minimal level yet meeting the real-time processing.  

At any clock cycle, the five stages of the systems have 
different ‘X’ samples for processing. The ‘controller’ works 
like the Central Processing Unit and provides each 
sub-module with the information and the clock signal it 
requires in order to perform the respective operation at 
appropriate time slot. The design proposed here is an 
enhancement over our prior work in [11] in that the design is 
pipelined and many delays due to distributed memory 
latencies are avoided. 

 

Fig. 6. Pipelined Architecture for Generic Scaler 
 

IV. RESULTS AND ANALYSIS 
The design has been implemented on Xilinx Spartan 

FPGA running at 100 MHz clock. The pipelined registers 
have been implemented as on-chip ROM using lookup tables 
(LUT). The design was captured in Virology and verified on 
ModelSim simulator to check the timing delays in real-time 
scenarios. The FPGA clock at 100 MHz was chosen for the 
design and this made the scaling at frame rate of 30 fps 
possible. The memory count in our design is almost 10 times 
less than what was required in [2]. Although the design is 
based on the Nearest Neighbor technique, yet it performs 
well while preserving the edges [9]. Memory reduction has 
been achieved here because of a combination of an efficient 
controller and a memory map which reduces the intermediate 
memory during re-sampling operation.  

A. Memory Requirement 
The conversion performance (memory and fps) mentioned 

in [10] target only a fixed size scaling in different schemes. 
The memory consumption of proposed methodology has 
been compared with the previous designs in Table 1. It can be 
seen that a significant reduction of on-chip memory (up to 
around 80%) has been achieved in the proposed design. 
Nearest neighbor interpolation has reduced the design 
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complexity and improved efficiency at the same time. The 
proposed design can cater for every scaling factor with much 
reduced memory consumption making it ideal for hand-held, 
portable and mobile devices. 

TABLE 1. MEMORY REQUIREMENT COMPARISON 

Scaling Conversion 

Memory 
Requirement as 

per [10]  
(10 x Bytes) 

Proposed 
Memory 

Requirement 
(Bytes) 

QCIF to 4CIF 158.4 32 

NTSC to PAL - 48 

PAL to 800x600 432 80 

VGA to XVGA 256 80 

16VGA to SXGA 1024 150 

B. Hardware Resources 
The gate count of the design comes out to be around 12K 

gates and 3500 LUTs including the pipelined registers. The 
gate count can be further reduced by using on-chip Block 
RAM in FPGA resources to replace the ROM in the design.  

C. Delay and Throughput 
The proposed design has been implemented on Xilinx 

Spartan FPGA running at 100 MHz clock speed. The 
five-stage pipelined design outputs different number of 
samples every clock cycle depending upon the scaling factor. 
The ‘Y ÷ X’ scaling factor causes the read cycle to read ‘X’ 
pixels from input image and write ‘Y’ pixels to the output 
memory in each write cycle.  A QCIF image when converted 
to VGA takes 11 samples in a row and maps them to 40 
samples hence mapping every 3 samples in a column to 10. 
The complete image is processed in (25344/11 =) 2304 
cycles. Thus each frame is processed in 0.02304 sec. This 
corresponds to a frame rate of around 44 in real-time video 
processing. The computation here has been made only for a 
luminance component of the image. Similar procedure could 
be applied to the chrominance components as well. 

TABLE 2. CLOCK SPEED AND FRAMES PER SECOND COMPARISON 

Scaling 
Conversion 

Clock as 
per [10]  
(MHz) 

Clock 
Proposed 

(MHz) 

fps 
as per 
[10] 

fps for 
Proposed

PAL to 
800x600 46 100 25 44 

VGA to 
XVGA 65 100 - 33 

16VGA to 
SXGA 105 100 50 30 

 
Table 2 above presents a comparison of clock speed and 

frames per second with the earlier presented techniques for 
some well-known size conversions. Our proposed design is 
capable of maintaining an acceptable rate of 30 fps at 100 
MHz clock for the highest scaling factor.  The frame rate in 
our scheme is limited only by the size of input video 
resolution. A higher speed FPGA or ASIC could be used to 
scale the performance even further. 

V. CONCLUSIONS 
The work presented in this paper presents a low 

complexity real-time video scaling technique for generic 
scaling factor. The hardware proposed is serial in nature and 
meets the real-time conversion requirements. The 
architecture is fully pipelined and requires reduced hardware 
and memory resources. The pipelined architecture has been 
verified on a Xilinx Spartan FPGA whereas this can be 
improved to a very high clock speed as available in Virtex-4. 
The circuit operates on decoded data and no encoder 
compatibility is required. Future improvements to the design 
can be made by implementing higher order interpolation 
techniques like bilinear or cubic spline.  
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