

Abstract—A five stage pipelined architecture is proposed to

target real-time video resolution conversion in spatial domain.
This low complexity design is based on pre-computed memory
mapping which computes the geometric position of
interpolated pixels and their gray level values based on the
scaling factor. The memory map has been conceived using
nearest neighbor interpolation technique which simplifies the
implementation. The scaling ratio is provided as an input to the
hardware architecture before conversion. The design is capable
of converting any video frame size in real-time. The memory
requirement in this operation has been significantly reduced in
comparison with earlier hardware based schemes. The results
have been validated on a Xilinx Spartan FPGA running at 100
MHz Conversion times for different scaling ratios have been
reported

I. INTRODUCTION
Video size scaling is an important operation in the

paradigm of multimedia transcending and communications.
The advancements in biomedical imaging and presence of
heterogeneous devices have increased the demand of image
and video conversion and scaling. Nowadays, consumer
multimedia devices have diverse resolutions and often
communicate other devices in different scenarios. This
communication is subjected to real-time video scaling
operations.

Many scaling and resolution conversion techniques have
been proposed in the literature [2-9]. Most image resolution
conversion techniques reported are thus far are software
based [6] and meant for off-line processing. Software
schemes are generally not capable of meeting processing
requirements for real-time video scaling operations. Also,
software resolution conversion is encoder and platform
dependent and for fixed target size. Thus there is a need for
dedicated hardware architecture that can achieve real-time
performance for any given scaling factor. Recently some
hardware based image scaling designs have been proposed [2,
3, 10]. These schemes target only a fixed image size for
which the ratio of size conversion is a whole number. Two
important issues can be identified in the existing hardware
schemes. (i) The designs cater for fixed size scaling in
up-direction (zooming) [4] and (ii) Require excessive
memory and complex control making them difficult to meet
the stringent timing constraints in real-time. Some hardware
based solutions for video scaling have been compared in [10].

Manuscript received April 19, 2011; revised July 25, 2011.
Asmar A. Khan, School of Computing and Communications, Lancaster

University, LA1 4WA, UK (Email: a.khan3@lancaster.ac.uk)

A relatively large memory would be needed in these existing
schemes to support non-integer scaling ratios. An important
aspect of the work reported here is to provide a generic
architecture that is memory-efficient and meets real-time
image and video size scaling for arbitrary ratios. This work is
an extension to our earlier reduced-memory architecture for
fixed image sizes proposed in [11].

The rest of the paper is organized as follows: Section 2
describes the general image and video scaling background in
context of re-sampling. This section also explains the ‘up’
and ‘down’ sampling operations and their memory
requirements. The proposed memory-efficient architecture
that achieves generic size conversion is explained in section 3.
Results and analysis including FPGA implementation have
been discussed in section 4. This is followed by the
conclusion in section 5.

II. RE-SAMPLING AND INTERPOLATION
Video size scaling involves spatial scalability of the frames.

This scalability is achieved by re-sampling the original image
to the desired size. Decimation and interpolation are two key
operations in re-sampling. A non-integer scaling factor
results in a combination of decimation and interpolation
operations. The discrete signals are then smoothed out with a
low-pass filter in order to alleviate the aliasing effect. Nearest
neighbor, Bi-cubic, Quadratic and Spline are some of the
well known interpolation techniques which have been
compared in [1]. When re-sampled to an integer factor, the
signals require less memory as only an up-sampling or a
down-sampling operation will suffice. On the other hand,
when scaling factor is a non-integer value, the intermediate
memory demand increases tremendously, as illustrated in
figure 1.

Fig. 1. Re-sampling by factor [L/M]

Fig. 1 depicts a re-sampling operation where the data
points are up-sampled by a factor L and then down-sampled
by M. These up and down sampling operations require a large
amount of intermediate storage memory. A comparison of
this intermediate memory requirement for some well known
scaling conversions is shown in Fig. 2. The bars show the

Low Complexity Pipelined Architecture for Real-Time
Generic Video Scaling

Asmar A. Khan

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

557

intermediate memory needed for size conversion in
horizontal and vertical directions respectively.

0 5 10 15 20 25 30

Q CIF to 4CIF

NTSC to PAL

PAL to 800x600

VGA to XVGA

16VGA to SXGA

KB

Horizontal Vertical

Fig. 2. Re-sampling intermediate memory requirement for different spatial

resolution conversions

A. Interpolation
Interpolation is a key operation in the process of

re-sampling that approximates the blank pixels that have
been introduced by up-sampling. Different interpolation
techniques use different number of pixels to reconstruct the
missing pixel value. The comparison in [1] shows that
Nearest Neighbor interpolation is the simplest in terms of
implementation cost whereas Gaussian scheme gives the best
quality. However, Gaussian technique is orders of magnitude
complex in terms of computational requirements [10].

B. Fixed Size Image Resizing
Although some hardware based up-scaling and

down-scaling techniques have been proposed recently [10,
12], yet all these techniques consider a fixed target image size
in their design. None of these schemes address a generic
scaling method that can convert an image or a video frame to
any given spatial resolution. Calculating the position of
missing indices in the operation remains a challenge both in
terms of computations as well as the hardware
implementation.

C. Memory Requirement for Re-sampling
The idea of incorporating a ‘reduced memory map’ for a

fixed-size conversion was introduced in [11] to map the input
image pixels to their corresponding output positions. This
reduces the intermediate memory requirement significantly
and also makes the design scalable. The memory map was
generated using a given scaling factor. A non-integer scaling
factor results in a large memory, whereas an integer scaling
factor requires either up or down sampling only and lesser
memory. This direct mapping can be achieved in one single
operation. In this work, architecture has been developed that
reduces the memory requirements for real-time video scaling
operation where the conversion ratios are generic and they
are specified at run-time. The details of proposed design are
given below. generate

III. PROPOSED METHODOLOGY
As the objective of this study is to achieve generic size

scaling, an algorithm has been developed to construct the
flexible memory map in hardware. The ‘map generator’

module takes original and desired resolution as input
parameters. The desired resolution is then divided by the
original resolution and the value of remainder is stored in a
register. This remainder is added to itself until the
remainder-sum becomes equal to input resolution parameter
specified. A small threshold value ‘ε’ is used to round-off the
remainder-sum. Counts ‘X’ and ‘Y’, respectively
representing the original and new mapping, are incremented
by one each time the remainder is added to itself. In this way,
an algorithm similar to greatest common divider (GCD) has
been developed. The output from this module provides the
‘X’ to ‘Y’ mapping of original and new pixels. Thus a
non-integer scaling size conversion can be performed by
consuming very less memory. The same process is repeated
for the other (horizontal or vertical) dimension. The
algorithm is summarized using the flow chart in Fig. 3.

Input
Output

ε≤− outputRε≤− inputR

Fig. 3. Flow chart for generic scaling hardware

The concept of direct mapping in a single dimension is
explained in Fig. 4. The up-sampling by a factor ‘L’ and
down-sampling by ‘M’ is performed using the map explained
earlier. The shaded samples are the ones reconstructed
through Nearest Neighbor interpolation technique. This
technique makes the mapping possible and reduces the cost
of the circuit remarkably in the design

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

558

Fig. 4. Non-Integer Re-sampling & Mapping

A. Controller State Machine
The state machine based controller module utilizes the

memory mapping of input ‘X’ samples to output ‘Y’ samples.
The controller decides by looking at the net result of the
conversion to determine whether the input samples require
low-pass filtering or not. If the net result is ‘not a
downscaling’ in horizontal or vertical direction then the
low-pass filtering is bypassed. Otherwise a 7-tap low-pass
filter for CCIR to SIF conversion [7] is applied. The
controller then allocates the memory space from the on-chip
ROM, based on the output of the ‘map generator’. The
interpolated samples at the output are then post-processed in
order to alleviate any artifacts caused by the interpolation
operation. A 7-tap linear symmetric filter proposed in [7] is
applied for the post-processing operation followed by the
mapping of vertical samples. Vertical mapping is achieved by
repeating the columns based on the output of ‘map generator’.
The vertical mapping is accomplished separately and
independently from the horizontal one.

The controller-based technique outperforms the earlier
block-level technique presented in [2] and reduces the
memory requirements to off-chip image storage only. The
controller using Nearest Neighbor interpolation does not use
any masking kernel for interpolation and hence does not
require any dependent pixels information. This reduces the
design complexity and makes it faster at the same time. The
state transition diagram of the controller is shown in Fig. 5.
The horizontal and vertical re-sampling is achieved
separately making it possible to have different mapping and
interpolation techniques for horizontal and vertical directions.
Other higher-order interpolation techniques can also be
embedded in this approach.

Fig. 5. State Transition Diagram for Controller

B. Pipelined Architecture
A five stage pipelined architecture has been developed to

afford higher clock speed and data throughput, hence coping
with the real-time processing issues. The block diagram of

complete architecture is shown in Fig. 6. The image is read
row-wise and fed into the serial data path comprising of
different pipelined stages. ‘Read’ stage module works
independently of any other module and reads ‘X’ amount of
pixels from the input image, where ‘X’ is the number which
was calculated by the ‘map generating’ hardware. When the
next ‘X’ samples are read, the earlier ones are in pipeline at
‘pre-processing’ stage. The pipelined registers change their
states at every clock edge provided by the controller state
machine described in section 3.1. This design is fully
pipelined and serial, hence reducing the memory required to a
minimal level yet meeting the real-time processing.

At any clock cycle, the five stages of the systems have
different ‘X’ samples for processing. The ‘controller’ works
like the Central Processing Unit and provides each
sub-module with the information and the clock signal it
requires in order to perform the respective operation at
appropriate time slot. The design proposed here is an
enhancement over our prior work in [11] in that the design is
pipelined and many delays due to distributed memory
latencies are avoided.

Fig. 6. Pipelined Architecture for Generic Scaler

IV. RESULTS AND ANALYSIS
The design has been implemented on Xilinx Spartan

FPGA running at 100 MHz clock. The pipelined registers
have been implemented as on-chip ROM using lookup tables
(LUT). The design was captured in Virology and verified on
ModelSim simulator to check the timing delays in real-time
scenarios. The FPGA clock at 100 MHz was chosen for the
design and this made the scaling at frame rate of 30 fps
possible. The memory count in our design is almost 10 times
less than what was required in [2]. Although the design is
based on the Nearest Neighbor technique, yet it performs
well while preserving the edges [9]. Memory reduction has
been achieved here because of a combination of an efficient
controller and a memory map which reduces the intermediate
memory during re-sampling operation.

A. Memory Requirement
The conversion performance (memory and fps) mentioned

in [10] target only a fixed size scaling in different schemes.
The memory consumption of proposed methodology has
been compared with the previous designs in Table 1. It can be
seen that a significant reduction of on-chip memory (up to
around 80%) has been achieved in the proposed design.
Nearest neighbor interpolation has reduced the design

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

559

complexity and improved efficiency at the same time. The
proposed design can cater for every scaling factor with much
reduced memory consumption making it ideal for hand-held,
portable and mobile devices.

TABLE 1. MEMORY REQUIREMENT COMPARISON

Scaling Conversion

Memory
Requirement as

per [10]
(10 x Bytes)

Proposed
Memory

Requirement
(Bytes)

QCIF to 4CIF 158.4 32

NTSC to PAL - 48

PAL to 800x600 432 80

VGA to XVGA 256 80

16VGA to SXGA 1024 150

B. Hardware Resources
The gate count of the design comes out to be around 12K

gates and 3500 LUTs including the pipelined registers. The
gate count can be further reduced by using on-chip Block
RAM in FPGA resources to replace the ROM in the design.

C. Delay and Throughput
The proposed design has been implemented on Xilinx

Spartan FPGA running at 100 MHz clock speed. The
five-stage pipelined design outputs different number of
samples every clock cycle depending upon the scaling factor.
The ‘Y ÷ X’ scaling factor causes the read cycle to read ‘X’
pixels from input image and write ‘Y’ pixels to the output
memory in each write cycle. A QCIF image when converted
to VGA takes 11 samples in a row and maps them to 40
samples hence mapping every 3 samples in a column to 10.
The complete image is processed in (25344/11 =) 2304
cycles. Thus each frame is processed in 0.02304 sec. This
corresponds to a frame rate of around 44 in real-time video
processing. The computation here has been made only for a
luminance component of the image. Similar procedure could
be applied to the chrominance components as well.

TABLE 2. CLOCK SPEED AND FRAMES PER SECOND COMPARISON

Scaling
Conversion

Clock as
per [10]
(MHz)

Clock
Proposed

(MHz)

fps
as per
[10]

fps for
Proposed

PAL to
800x600 46 100 25 44

VGA to
XVGA 65 100 - 33

16VGA to
SXGA 105 100 50 30

Table 2 above presents a comparison of clock speed and

frames per second with the earlier presented techniques for
some well-known size conversions. Our proposed design is
capable of maintaining an acceptable rate of 30 fps at 100
MHz clock for the highest scaling factor. The frame rate in
our scheme is limited only by the size of input video
resolution. A higher speed FPGA or ASIC could be used to
scale the performance even further.

V. CONCLUSIONS
The work presented in this paper presents a low

complexity real-time video scaling technique for generic
scaling factor. The hardware proposed is serial in nature and
meets the real-time conversion requirements. The
architecture is fully pipelined and requires reduced hardware
and memory resources. The pipelined architecture has been
verified on a Xilinx Spartan FPGA whereas this can be
improved to a very high clock speed as available in Virtex-4.
The circuit operates on decoded data and no encoder
compatibility is required. Future improvements to the design
can be made by implementing higher order interpolation
techniques like bilinear or cubic spline.

ACKNOWLEDGEMENT
Support provided by Higher Education Commission of

Pakistan and Lahore University of Management Sciences is
gratefully acknowledged.

REFERENCES
[1] T.M. Lehmann, “Survey: Interpolation Methods in Medical Image

Processing”, IEEE Transactions on Medical Imaging, VOL 18, No. 11,
November (1999)

[2] E. Aho, J. Vanne, T.D. Hämäläinen, K. Kuusilinna, “Block-Level
Parallel Processing for Scaling Evenly Divisible Images”, IEEE
Transactions on Circuits and Systems VOL. 52, No. 12, December
(2005)

[3] S. Ramachanran, “Design and FPGA Implementation of An MPEG
Based Video Scalar with Reduced On-chip Memory Utilization”,
Journal of Systems Architecture, VOL 51, pp 435-450, September
(2005)

[4] M. Aurelio, M.O. Arias, “Real Time FPGA–Based Architecture for
Bi-cubic Interpolation: An Application for Digital Image Scaling”,
International Conference on Reconfigurable Computing and FPGAs
(2005)

[5] T.C. Lin, T.K. Truong, “DCT-Based Image Codec Embedded Cubic
Spline Interpolation with Optimal Quantization”, IEEE International
Symposium on Multimedia pp 2746-9, September (2006)

[6] L. Wang, Q. Wang, “A Fast Intra Mode Decision Algorithm for
MPEG-2 to H.264 Video Transcoding”, IEEE 10th International
Symposium on Consumer Electronic pp 1-5, December (2006)

[7] MPEG-1, “Coding of Moving Pictures and Associated Audio for
Digital Storage Media at up to 1.5 Mbps”, ISO/IEC 11172-2,
November (1991)

[8] L. Wanrong, D. Bushmitch: “Design and Implementation of a High
Quality DV50-MPEG2 Software Transcoder”, International
Conference on Consumer Electronics, ICCE, pp 142-143, June (2002)

[9] C.H. Kim, S.M. Seong, J.A. Lee, L.S. Kim, “Winscale: An
Image-scaling Algorithm Using an Area Pixel Model”, IEEE
Transactions on Circuits and Systems for Video Technology, VOL. 13
No. 6, pp 549–553, (2003)

[10] E. Aho, J. Vanne, T.D. Hämäläinen, K. Kuusilinna, “Configurable
Implementation of Parallel Memory based Real-time Video
Downscaler”, Microprocessors & Microsystems,VOL. 31 No. 5, pp
283-292, August (2007)

[11] A. A. Khan, S. Masud, “Memory Efficient VLSI Architecture for QCIF
to VGA Resolution Conversion”, Proceedings of Pacific-Rim
Symposium on Image and Video Technology, Japan, LNCS 5414, pp
829-838, (2009)

[12] C. Lin, M. Sheu, H. Chiang, “The Efficient VLSI Design of BI-CUBIC
Convolution Interpolation for Digital Image Processing”, IEEE
International Symposium on Circuits and Systems, ISCAS, VOL. 18,
No. 21, May (2008)

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

560

