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Abstract—Image data consumes enormous bandwidth and 

storage space. Neural networks can be used for image 

compression. Neural network architectures have proven to be 

more reliable, robust, and programmable and offer better 

performance when compared with classical techniques. In this 

paper the main focus is development of new architectures for 

neural network based image compression optimizing area, 

power and speed as specific to ASIC implementation, and 

comparison with FPGA.  

The proposed architecture designs are realized on Spartan 

IIIE FPGA Using Xilinx ISE, and the ASIC implementation is 

carried out using Synopsys tools targeting 130nm TSMC 

Library. The ASIC implementation for  2 input and 16 input 

neuron with low power techniques adopted such as buffer 

insertion, clock gating etc, 

 
Index Terms—Image compression, neural networks, FPGA, 

ASIC, CSD  

 

I. INTRODUCTION 

The transport of images across communication paths is an 

expensive process. Image compression provides an option for 

reducing the number of bits in transmission. This in turn helps 

increase the volume of data transferred in a space of time, 

along with reducing the cost required. It has become 

increasingly important to most computer networks, as the 

volume of data traffic has begun to exceed their capacity for 

transmission. Traditional techniques that have already been 

identified for data compression include: Predictive Coding, 

Transform coding and Vector Quantization [1, 2]. In brief, 

predictive coding refers to the decor relation of similar 

neighboring pixels within an image to remove redundancy. 

Following the removal of redundant data, a more compressed 

image or signal may be transmitted [1]. Transform-based 

compression techniques have also been commonly employed. 

These techniques execute transformations on images to 

produce a set of coefficients. A subset of coefficients is 

chosen that allows good data representation (minimum 

distortion) while maintaining an adequate amount of 

compression for transmission. The results achieved with a 

transform based technique is highly dependent on the choice 

of transformation used (cosine, wavelet, Karhunen-Loeve 

etc.)[2]. Finally vector quantization techniques require the 

development of an appropriate codebook to compress data. 

Usages of codebooks do not guarantee convergence and 
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hence do not necessarily deliver infallible decoding accuracy. 

Also the process may be very slow for large codebooks as the 

process requires extensive searches through the entire 

codebook [1].  

Artificial Neural Networks (ANNs) have been applied to 

many problems [3], and have demonstrated their superiority 

over traditional methods when dealing with noisy or 

incomplete data. One such application is for image 

compression. Neural Networks seem to be well suited to this 

particular function, as they have the ability to preprocess input 

patterns to produce simpler patterns with fewer components 

[1]. This compressed information (stored in a hidden layer) 

preserves the full information obtained from the external 

environment. Not only can ANN based techniques provide 

sufficient compression rates of the data in question, but 

security is easily maintained. This occurs because the 

compressed data that is sent along a communication line is 

encoded and does not resemble its original form.  
The basic architecture for image compression using neural 

network is shown in figure1.  

 

 

II. FPGA IMPLEMENTATION OF 16 & 64 INPUT NEURAL 

NETWORK ARCHITECTURE 

The neural network architecture proposed in this paper is 

consisting of 64 and 16 input neuron, are modeled using HDL. 

The network supporting numbers in the range 0 to 1 is taken 

care by introducing BCSD multipliers for weight 

multiplication [6]. The HDL code for the proposed network is 

verified for its functionality using test bench, the design is 

synthesized on FPGA to estimate the hardware complexity for 

efficient ASIC implementation. The design is mapped on 

Spartan III device from Xilinx. The synthesis results are 

shown in table 1. 

 
TABLE 1: SYNTHESIS RESULTS 

Implementation details 16 64 

Maximum operating frequency 220 MHZ 242.97MHz 

Maximum power at 25 degree 

Centigrade 

81mW 81.37mW 

Resource utilization 

Number of Slices out of 4656 25 126 

Number of 4 input LUTs out of 9312 39 226 

Number of global clock 1 1 

ASIC Implementation of Neural Network Based Image 

Compression  

K.Venkata Ramanaiah and Cyril Prasanna Raj  

Fig. 1. The basic architecture for image compression 

using NN. 
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As the design is mapped on FPGA, it supports 

Reconfigurability. Reconfigurability can be achieved by 

changing the weight matrix and the input layer for better 

compression [8].  

 The design proposed consists of matrix multiplication of 

two matrices, one is the input image samples, and the second 

is the weight matrix obtained after training. This multiplied 

output is passed through the nonlinear transfer function to 

obtain the compressed output that gets transmitted or stored in 

compressed format. On the decompression side, the 

compressed data in matrix form is multiplied with the weight 

matrix to get back the original image. The image quality of the 

decompressed image depends on the weight matrix. The 

image data of size 16x16 is multiplied by the weight matrix of 

4x16 to get a compressed output of 4x16. On the decompress 

or side 4x16 input matrix (compressed image) is multiplied 

with the weight matrix of size 16x4 reproduces the original 

image. In order to achieve better compression nonlinear 

functions are used both at the transmitter and receiver section. 

The HDL code modeled for FPGA implementation is 

modified for ASIC implementation. The general coding styles 

are adopted for building optimized RTL code for ASIC 

implementation. The results obtained from ASIC synthesis to 

physical implementation are compared with 

FPGA implementation. The architecture synthesized is 

optimized for power area and speed.  

 The design is synthesized using TSMC 130 nanometer 

technology and library files. The design is synthesized using 

Synopsys DC, the timing analysis is carried out using Prime 

Time. The proposed neural network architecture is 

implemented on FPGA as well as ASIC. The HDL model 

developed for the entire network supporting 64-4-64 and 

16-4-16 is verified for its functionality, the input image pixels 

of size 64 x 1 represented in integer form is stored in the RAM 

and is fed into the network for processing. Simulation results 

for 16 inputs Neuron is shown in Fig. 2 and 3. Matrix [A] 

represents the pixel values of the image subset considered. 

Matrix [B] represents the weight matrix obtained after 

training. Matrix [C] represents the compressed image. 

MATLAB results for 16 input neuron. 

 Image Matrix A = 
[  102    102   105     94   103      99    101   111    98    100    93   106    102   102    87    97; 

     90     104     93    106    96      87   108    110   106   102    94   100   101   111     87   123; 

     98     103     96     95   102      98   115      89   114  100    91    91    104   109     99      92; 

    102    106     89    106    93     98      98    109     97     94    99   90    101     95      96      91; 

    101    106    118   145   149   130   103   106    96    104    97    96    102    89      99      92; 

    157    164    172   168   168   173   170   156   125   114   102   101   101    97   109    102; 

    171    170    168   168   174   171   172   178   179   165   124   108   101   114    92    112; 

    179    172    171   167   169   176   174   174   180   186   189   164   115   125    94    106; 

    186    182    173   177   173   174   180   180   182   188   193   195   185   139    98    103; 

    172    176    182   176   175   178   174   176   184   191   195   196   194   190   164   113; 

    180    179    176   179   180   179   181   183   181   185   193   196   194   194   190   180; 

    145    178    180   178   178   183   185   187   190   189   190   193   195   195   193   187; 

    103    115    164   181   179   178   183   188   192   192   195   195   192   191   191   187; 

    103    100    109   128   167   183   184   183   187   194   194   196   195   189   184    182; 

    101      96    109    105   111   130   170   186   183   187   190   196   196   195   189    173; 

    101    104    102   101   101    99    102   135   173   183   184   189   193   192   188    186;] 

Weight Matrix B = 

Columns 1 through 8  
    0.6670   0.4805   0.1365   -0.1067    0.4565     0.3721     0.2078    0.1189     

    0.4004   0.2488  -0.0576   -0.3003   -0.0237   -0.0930   - 0.1882   -0.2195    

    0.9998   0.9998    0.6091    0.2117    0.6836    0.6758      0.5840    0.5327    

    0.0247   0.0989    0.1956    0.2620    0.0022    0.0105      0.0342    0.0547 

Columns 9 through 16  
    0.1294    0.1965     0.3000    0.3682   -0.1443    0.0642     0.3870     0.6064 

   -0.5791   -0.5000   -0.2754    0.1350   -1.0000   -0.8149   -0.3364    -0.0198 

   -0.1431    0.1287     0.5894    0.8423   -0.8484   -0.2983    0.5886     0.9998 
   -0.0144   -0.0779   -0.0779   -0.1995   -0.0537   -0.1704   -0.3269    -0.4285 

C = output matrix from the neuron. 

Columns 1 through 8 
    532.4542    553.3630     556.0333    559.4684    571.0199    565.9154   584.1573   611.6194 

   -508.1305   -508.0672   -561.8866 -599.0243   -625.3295   -650.9471 -665.8167 -674.5208  

    909.6719     950.4613    909.8816    903.7885     906.2319    893.3486   929.2258   965.3972 

     -83.5810     -87.0468   -101.9572     -98.7255   -109.6476   -119.0124   -28.8570 -150.7306       

Columns 9 through 16 
     614.4376    620.6669     600.1038    613.4345    608.5498    603.1723     563.5169    565.3058 

                                                    -688.1480   -699.9430   -708.3724   -696.1829   -678.3096   -643.3851   -601.7479   -556.8632    

                                                     970.8134    964.5284     915.4445    920.5861     910.2671     930.4870    863.6388    887.2100   

                                                    -166.9798   -178.6281   -184.1987   -192.9532   -191.7607   -187.6392   -186.5236   -171.6240 

 

Results obtained from the Modelsim simulation for the 1
st
 

row of the neuron it is shown in Fig. 2, these results exactly 

matches with the first column in C matrix obtained from 

MATLAB. 

 

Fig. 2. Simulation results for 16 input neuron. 

 
Fig. 3 highlights the remaining rows after compression. 

These results are matching with Mat lab results. As the 

complexity in the RTL code increases the area should 

increase. However, due to the efficient coding style adopted 

Fig. 3. Simulation results for 16 input 

neuron. 
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optimizes the total hardware required. In the RTL model, 

weight matrix obtained is optimized where ever required by 

finding redundancy. This drastically reduces the hardware 

complexities. It is observed that by setting proper constraints, 

the macros available on FPGAs are forcibly used to exploit 

the architecture resources. This saves the hardware 

utilization. 

 

III. ASICS IMPLEMENTATION RESULTS FOR 16-INPUT 

NEURON 

The design supporting higher order multiplication modeled 

using HDL, developed to an RTL model using efficient 

coding styles for ASIC Synthesis using Synopsys Design 
Compiler Version 2007.03. The timing analysis is carried out 

using Synopsys Prime Time. The optimization techniques are: 

1) Resource Sharing 

2) If Statements Replaced Using Case Statements 

3) Clock Gating and power gating 

4) Setting Maximum Transition 

5) Setting Max Capacitance 

6) Setting Hold Time And Setup Time 

7) Setting Minimum Path Delay 

8) Gate Sizing 

9) Inserting Clock buffers and super buffers 

10) Weight Optimization 

The above techniques are set using the tool options and 

changing the coding styles. Optimization 1 refers to the 

results obtained with initial settings; these results reflect the 

performance of the design without any optimization 

techniques incorporated. Optimization 2 refers to use of 

inbuilt constraints available on the tool Design Compiler 

(DC). This involves setting up of constraints on clock, area, 

power, time arrivals, load capacitance, gate sizing, clock 

buffers and insertion buffers. Optimization 3 refers to 

modifying coding styles by insertion of clock gating, power 

gating, resource sharing and memory sharing techniques. A 

graph shown in Fig. 5 to 8 discusses the variation in 

performance from the initial design to the final design based 

on optimization techniques mentioned. Optimization 4, 5, 6, 

refers to the techniques adopted by the tool based on 

constrains set during the flow. Fig. 4 shows the synthesized 

RTL net list obtained using Synopsys design compiler. The 

green cells represents the logic gates from TSMC 130nm 

technology library, blue lines represents interconnects and the 

red line represents the interconnect that takes the maximum 

delay (critical path).  

 
Fig. 4.  synthesized net list highlighting the critical path 

Fig. 5 represents the timing report for the sixteen input 

neuron. Timing report is generated using prime time from 

Synopsys for different optimization techniques. The 

parameters are expressed in terms of slack.  

 
Fig. 5 Slack variations for 16 input neuron. 

Slack represents whether the data is available at the right 

time to be latched on to next stage. Slack should always be 

positive. Positive slack implies that the design meets the 

timing requirements. Without optimization the design is 

verified for the slack. From Fig. 5 it is found that the slack that 

was negative has been converted to positive slack of 0.18. At 

slack 0.0 the design is just ideal, with optimization techniques, 

by setting constraints on clock the slack is made positive. The 

results are obtained using Design Compiler, a signoff tool 

from Synopsys. It is recommended that a slack of 0.08 is 

optimum.  

In order to achieve positive slack, the buffers get 

introduced on the critical path; even the gate sizes are 

increased to achieve higher currents to drive the load.    This 

drastically increases the cell area. However with change in 

coding style the percentage increase in cell area is minimized 

by adopting coding guidelines. The number of nets also 

increases as the layers are increased to more than three. Fig. 6 

shows that in order to achieve positive slack, the cell count is 

increased to 486 from 353. It is also observed that the number 

of nets has been increased to 581 from 440. The cell count and 

nets reaches saturation after certain limits. This demonstrates 

the idealities of the synthesis tool.  

 
Fig. 6. Area report for16 input neuron. 

In the Fig. 7 it is observed that the total cell area has 

increased to 8662 Sq µm from 6319 Sq µm, this is done in 

order to achieve low power and higher speeds. 

 
Fig. 7. Core area report for 16 input neuron 

The Fig. 8 demonstrates the variation of power with 

different optimization techniques considered in this work and 

Critical 
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labeled as 1, 2, 3, 4, 5 and 6. The dynamic power varies from 

449µW to 815µW. It is found frequency variation affects 

power. Increase in power is brought into control by 

constraining the design during synthesis by adopting suitable 

power saving techniques. Hence, we find that during the 

optimization the gradual increase in power is limited to 

713µW which is better than the previous results as shown in 

Figure. 8. This is achieved by using the power saving 

techniques. However we find that the leakage power has 

increased from 18µW to 28µW, this is due to the fact that the 

power saving techniques incorporated such as clock gating, 

power gating concepts adopted introduces additional cells 

that enables the required logic only when required, this keeps 

most of the logic in standby mode by disabling them from the 

clock network and power network being connected. Hence 

there is increase in leakage power. In order to reduce the 

leakage power the High Vt Library cells can be used. This has 

not been experimented in this work. 

Fig. 8. Power saving report for16 input neuron

IV. THE PHYSICAL DESIGN FLOW

Fig. 9. Schematic gate level net list.

The synthesized net list is taken through the VLSI Physical 

Design Flow to generate the GDSII. In this flow the design is 

taken through Physical design flow steps such as floor 

planning, placement, clock tree synthesis, routing, physical 

verification, parasitic extraction and finally timing 

verification to sign off the design. This ensures the pre-silicon 

verification is carried out using industry standard sign off 

tools and the design is taped off for fabrication, with 

generation of GDSII format. In this design Synopsys flow is 

used for physical design and verification, which is one of the 

standard signoff tools. The Figure. 9 shows the synthesis 

results of 16 input neuron RTL code synthesized using 

Synopsys DC, targeting TSMC130nm library.

This design has to be taken through the Physical design 

flow. Fig. 9 shows the gate level net list, but does not give 

details of the cell placement, power network, clock network 

and pin details. 

The design which models 16 input neuron developed in this 

work is considered as major macro for image compression 

using neural network, this module is followed by quantization, 

data encoding and storage modules. Hence the design is 

converted into a macro that can be interfaced with other 

building blocks. The pin configuration and the sizing of this 

macro decide the cost function and its performance. 

Fig. 10. Floor planned and Clock Tree Structure.

The design is taken through the floor planning, placement 

and clock tree synthesis stage, in this stage the cell area, I/O 

area, number of I/O, I/O properties, power network, hot spots, 

congestion due to interconnects, placement of standard cells, 

clock tree routing for the cells and total cell area gets 

identified. This is carried out using floor planning 

methodology supported by ASTRO tool from Synopsys, the 

results of which are shown in Fig. 10. The thick dark lines on 

the perimeter running horizontally and vertically  show the 

power network VDD and VSS, the yellow blocks shows the 

core area with placed standard cells, the green lines shows the 

clock distribution required for the design. 

The design consumes 500 cells, 2903 pins, 539 clock nets, 

30 I/O pins with core area of 9945.07Sq µm (119.82 µm x 

99.63 µm). The total chip size with I/O pins is 14334.07 Sq 

µm (119.82 µm x 119.63 µm). The cell/corn ratio is 

constrained to 74.5861% and cell/chip ratio is constrained to 

51.7483%. 

The design is taken through routing phase and the Fig. 11

shows the placed and routed design. As the design has 539 

nets to be routed, metal 1 to metal 8 layers are used in order to 

route the design, with metal layer 6 consisting maximum 

number of wire length of 6209.5µm. The total wire length is 

12592.2µm. The design is constrained to minimize 

congestion. The routed design is shown in Fig. 11 the vertical 

and horizontal pink line shows the wires connecting the 

standard cells within the core area. Both local and global 

routing is performed; the final routing directions are what are 

highlighted in Fig. 11 which are pink in color. 

Fig. 11. Place and Route Design.

Fig. 12 shows the placed and routed design with IR analysis. 
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The color combination highlighted in Fig. 12 shows the IR 

drop distribution within the die. Red color is the violated and 

more power consuming region. Green color is the region 

where there is nominal power consumption. As we see that 

there are very few areas with high IR drop, this is taken as 

warning and is neglected. The cell power when compared 

with the power report obtained during synthesis phase has 

97% improvement. This shows that the physical design 

improves the power performance, as this considers the actual 

cell placement and pin placement with clock and nets routed.  

The routed design is taken through IR drop analysis to find 

out the impact of power dissipation due to parasitic extracted 

from the nets, and the cells. The parasitic report suggests that 

the design has 803 internal nodes, 8 boundary nodes, 881 

resistors and 500 current sources. This data enables to find the 

power dissipation. It is found that the total power is 

0.0202574mW and the I/O net switching power is 

0.000152925mw.  

 
Fig. 12. IR drop analyses for 16 input neuron. 

The Fig. 13 shows the comparison of the hardware 

implementation details focusing the major parameters like 

area and power. 

The result clearly shows the performance metrics of each 

implementation. FPGA occupying more space and power, the 

only advantage is Reconfigurability and time to market. ASIC 

results are found to be better than the FPGA results in terms of 

area and power. They consume less power and space, hence 

suitable for low cost and reliable Hardware implementation.    

ASIC FPGA

P
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28 µw

81mw

 
Fig. 13  Comparison of ASIC with FPGA in terms of Area &Power. 

 

V. CONCLUSION 

ASIC implementation of neural network architecture for  

image compression has been successfully implemented 

implemented using 130nm technology. Input image is 

compressed and decompressed using the two layered neural 

network architecture. The network trained using 

backpropagation algorithm is realized using multipliers and 

adders. The trainied weights are stored in memory and is used 

to compress and decompress image. Low power tehcniques 

have been used to reduce power dissipation of the complex 

architecture. Power reduction can be further achieved by 

replacing multipliers and adders using low power arithmetic 

units.  

The techniques proposed in this work are modeled, 

designed and validated as per the Hardware requirements for 

ASIC and FPGA implementation. Suitable techniques have 

been incorporated to optimize area, power and speed. 
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