

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

494

Abstract—Image data consumes enormous bandwidth and

storage space. Neural networks can be used for image

compression. Neural network architectures have proven to be

more reliable, robust, and programmable and offer better

performance when compared with classical techniques. In this

paper the main focus is development of new architectures for

neural network based image compression optimizing area,

power and speed as specific to ASIC implementation, and

comparison with FPGA.

The proposed architecture designs are realized on Spartan

IIIE FPGA Using Xilinx ISE, and the ASIC implementation is

carried out using Synopsys tools targeting 130nm TSMC

Library. The ASIC implementation for 2 input and 16 input

neuron with low power techniques adopted such as buffer

insertion, clock gating etc,

Index Terms—Image compression, neural networks, FPGA,

ASIC, CSD

I. INTRODUCTION

The transport of images across communication paths is an

expensive process. Image compression provides an option for

reducing the number of bits in transmission. This in turn helps

increase the volume of data transferred in a space of time,

along with reducing the cost required. It has become

increasingly important to most computer networks, as the

volume of data traffic has begun to exceed their capacity for

transmission. Traditional techniques that have already been

identified for data compression include: Predictive Coding,

Transform coding and Vector Quantization [1, 2]. In brief,

predictive coding refers to the decor relation of similar

neighboring pixels within an image to remove redundancy.

Following the removal of redundant data, a more compressed

image or signal may be transmitted [1]. Transform-based

compression techniques have also been commonly employed.

These techniques execute transformations on images to

produce a set of coefficients. A subset of coefficients is

chosen that allows good data representation (minimum

distortion) while maintaining an adequate amount of

compression for transmission. The results achieved with a

transform based technique is highly dependent on the choice

of transformation used (cosine, wavelet, Karhunen-Loeve

etc.)[2]. Finally vector quantization techniques require the

development of an appropriate codebook to compress data.

Usages of codebooks do not guarantee convergence and

Manuscript received June 16, 2010; revised June 20, 2011.

K.Venkata Ramanaiah, Principal, Narayana Engineering College Gudur,

Andhra Pradesh, India (ramanaiahkota@gmail.com).

C. P. Raj, Course Manger M.S. Ramaiah School of Advanced Studies

Bangalore, Karnataka, India

hence do not necessarily deliver infallible decoding accuracy.

Also the process may be very slow for large codebooks as the

process requires extensive searches through the entire

codebook [1].

Artificial Neural Networks (ANNs) have been applied to

many problems [3], and have demonstrated their superiority

over traditional methods when dealing with noisy or

incomplete data. One such application is for image

compression. Neural Networks seem to be well suited to this

particular function, as they have the ability to preprocess input

patterns to produce simpler patterns with fewer components

[1]. This compressed information (stored in a hidden layer)

preserves the full information obtained from the external

environment. Not only can ANN based techniques provide

sufficient compression rates of the data in question, but

security is easily maintained. This occurs because the

compressed data that is sent along a communication line is

encoded and does not resemble its original form.
The basic architecture for image compression using neural

network is shown in figure1.

II. FPGA IMPLEMENTATION OF 16 & 64 INPUT NEURAL

NETWORK ARCHITECTURE

The neural network architecture proposed in this paper is

consisting of 64 and 16 input neuron, are modeled using HDL.

The network supporting numbers in the range 0 to 1 is taken

care by introducing BCSD multipliers for weight

multiplication [6]. The HDL code for the proposed network is

verified for its functionality using test bench, the design is

synthesized on FPGA to estimate the hardware complexity for

efficient ASIC implementation. The design is mapped on

Spartan III device from Xilinx. The synthesis results are

shown in table 1.

TABLE 1: SYNTHESIS RESULTS

Implementation details 16 64

Maximum operating frequency 220 MHZ 242.97MHz

Maximum power at 25 degree

Centigrade

81mW 81.37mW

Resource utilization

Number of Slices out of 4656 25 126

Number of 4 input LUTs out of 9312 39 226

Number of global clock 1 1

ASIC Implementation of Neural Network Based Image

Compression

K.Venkata Ramanaiah and Cyril Prasanna Raj

Fig. 1. The basic architecture for image compression

using NN.

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

495

As the design is mapped on FPGA, it supports

Reconfigurability. Reconfigurability can be achieved by

changing the weight matrix and the input layer for better

compression [8].

 The design proposed consists of matrix multiplication of

two matrices, one is the input image samples, and the second

is the weight matrix obtained after training. This multiplied

output is passed through the nonlinear transfer function to

obtain the compressed output that gets transmitted or stored in

compressed format. On the decompression side, the

compressed data in matrix form is multiplied with the weight

matrix to get back the original image. The image quality of the

decompressed image depends on the weight matrix. The

image data of size 16x16 is multiplied by the weight matrix of

4x16 to get a compressed output of 4x16. On the decompress

or side 4x16 input matrix (compressed image) is multiplied

with the weight matrix of size 16x4 reproduces the original

image. In order to achieve better compression nonlinear

functions are used both at the transmitter and receiver section.

The HDL code modeled for FPGA implementation is

modified for ASIC implementation. The general coding styles

are adopted for building optimized RTL code for ASIC

implementation. The results obtained from ASIC synthesis to

physical implementation are compared with

FPGA implementation. The architecture synthesized is

optimized for power area and speed.

 The design is synthesized using TSMC 130 nanometer

technology and library files. The design is synthesized using

Synopsys DC, the timing analysis is carried out using Prime

Time. The proposed neural network architecture is

implemented on FPGA as well as ASIC. The HDL model

developed for the entire network supporting 64-4-64 and

16-4-16 is verified for its functionality, the input image pixels

of size 64 x 1 represented in integer form is stored in the RAM

and is fed into the network for processing. Simulation results

for 16 inputs Neuron is shown in Fig. 2 and 3. Matrix [A]

represents the pixel values of the image subset considered.

Matrix [B] represents the weight matrix obtained after

training. Matrix [C] represents the compressed image.

MATLAB results for 16 input neuron.

 Image Matrix A =
[102 102 105 94 103 99 101 111 98 100 93 106 102 102 87 97;

 90 104 93 106 96 87 108 110 106 102 94 100 101 111 87 123;

 98 103 96 95 102 98 115 89 114 100 91 91 104 109 99 92;

 102 106 89 106 93 98 98 109 97 94 99 90 101 95 96 91;

 101 106 118 145 149 130 103 106 96 104 97 96 102 89 99 92;

 157 164 172 168 168 173 170 156 125 114 102 101 101 97 109 102;

 171 170 168 168 174 171 172 178 179 165 124 108 101 114 92 112;

 179 172 171 167 169 176 174 174 180 186 189 164 115 125 94 106;

 186 182 173 177 173 174 180 180 182 188 193 195 185 139 98 103;

 172 176 182 176 175 178 174 176 184 191 195 196 194 190 164 113;

 180 179 176 179 180 179 181 183 181 185 193 196 194 194 190 180;

 145 178 180 178 178 183 185 187 190 189 190 193 195 195 193 187;

 103 115 164 181 179 178 183 188 192 192 195 195 192 191 191 187;

 103 100 109 128 167 183 184 183 187 194 194 196 195 189 184 182;

 101 96 109 105 111 130 170 186 183 187 190 196 196 195 189 173;

 101 104 102 101 101 99 102 135 173 183 184 189 193 192 188 186;]

Weight Matrix B =

Columns 1 through 8
 0.6670 0.4805 0.1365 -0.1067 0.4565 0.3721 0.2078 0.1189

 0.4004 0.2488 -0.0576 -0.3003 -0.0237 -0.0930 - 0.1882 -0.2195

 0.9998 0.9998 0.6091 0.2117 0.6836 0.6758 0.5840 0.5327

 0.0247 0.0989 0.1956 0.2620 0.0022 0.0105 0.0342 0.0547

Columns 9 through 16
 0.1294 0.1965 0.3000 0.3682 -0.1443 0.0642 0.3870 0.6064

 -0.5791 -0.5000 -0.2754 0.1350 -1.0000 -0.8149 -0.3364 -0.0198

 -0.1431 0.1287 0.5894 0.8423 -0.8484 -0.2983 0.5886 0.9998
 -0.0144 -0.0779 -0.0779 -0.1995 -0.0537 -0.1704 -0.3269 -0.4285

C = output matrix from the neuron.

Columns 1 through 8
 532.4542 553.3630 556.0333 559.4684 571.0199 565.9154 584.1573 611.6194

 -508.1305 -508.0672 -561.8866 -599.0243 -625.3295 -650.9471 -665.8167 -674.5208

 909.6719 950.4613 909.8816 903.7885 906.2319 893.3486 929.2258 965.3972

 -83.5810 -87.0468 -101.9572 -98.7255 -109.6476 -119.0124 -28.8570 -150.7306

Columns 9 through 16
 614.4376 620.6669 600.1038 613.4345 608.5498 603.1723 563.5169 565.3058

 -688.1480 -699.9430 -708.3724 -696.1829 -678.3096 -643.3851 -601.7479 -556.8632

 970.8134 964.5284 915.4445 920.5861 910.2671 930.4870 863.6388 887.2100

 -166.9798 -178.6281 -184.1987 -192.9532 -191.7607 -187.6392 -186.5236 -171.6240

Results obtained from the Modelsim simulation for the 1
st

row of the neuron it is shown in Fig. 2, these results exactly

matches with the first column in C matrix obtained from

MATLAB.

Fig. 2. Simulation results for 16 input neuron.

Fig. 3 highlights the remaining rows after compression.

These results are matching with Mat lab results. As the

complexity in the RTL code increases the area should

increase. However, due to the efficient coding style adopted

Fig. 3. Simulation results for 16 input

neuron.

-508 -508 -561 -599 -625 -650 -665 -674 -688 -699

-708 -696

-83 -87 -101 -98 -109 -119 -128 150 -166 -178 -184

-192 -191

909.6719 950.4613 909 950 909 903 906 893 929 965 970 964 915 920 910 930 863 887

 532 553 556 559 571 565 584 611 614 620 600 613

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

496

optimizes the total hardware required. In the RTL model,

weight matrix obtained is optimized where ever required by

finding redundancy. This drastically reduces the hardware

complexities. It is observed that by setting proper constraints,

the macros available on FPGAs are forcibly used to exploit

the architecture resources. This saves the hardware

utilization.

III. ASICS IMPLEMENTATION RESULTS FOR 16-INPUT

NEURON

The design supporting higher order multiplication modeled

using HDL, developed to an RTL model using efficient

coding styles for ASIC Synthesis using Synopsys Design
Compiler Version 2007.03. The timing analysis is carried out

using Synopsys Prime Time. The optimization techniques are:

1) Resource Sharing

2) If Statements Replaced Using Case Statements

3) Clock Gating and power gating

4) Setting Maximum Transition

5) Setting Max Capacitance

6) Setting Hold Time And Setup Time

7) Setting Minimum Path Delay

8) Gate Sizing

9) Inserting Clock buffers and super buffers

10) Weight Optimization

The above techniques are set using the tool options and

changing the coding styles. Optimization 1 refers to the

results obtained with initial settings; these results reflect the

performance of the design without any optimization

techniques incorporated. Optimization 2 refers to use of

inbuilt constraints available on the tool Design Compiler

(DC). This involves setting up of constraints on clock, area,

power, time arrivals, load capacitance, gate sizing, clock

buffers and insertion buffers. Optimization 3 refers to

modifying coding styles by insertion of clock gating, power

gating, resource sharing and memory sharing techniques. A

graph shown in Fig. 5 to 8 discusses the variation in

performance from the initial design to the final design based

on optimization techniques mentioned. Optimization 4, 5, 6,

refers to the techniques adopted by the tool based on

constrains set during the flow. Fig. 4 shows the synthesized

RTL net list obtained using Synopsys design compiler. The

green cells represents the logic gates from TSMC 130nm

technology library, blue lines represents interconnects and the

red line represents the interconnect that takes the maximum

delay (critical path).

Fig. 4. synthesized net list highlighting the critical path

Fig. 5 represents the timing report for the sixteen input

neuron. Timing report is generated using prime time from

Synopsys for different optimization techniques. The

parameters are expressed in terms of slack.

Fig. 5 Slack variations for 16 input neuron.

Slack represents whether the data is available at the right

time to be latched on to next stage. Slack should always be

positive. Positive slack implies that the design meets the

timing requirements. Without optimization the design is

verified for the slack. From Fig. 5 it is found that the slack that

was negative has been converted to positive slack of 0.18. At

slack 0.0 the design is just ideal, with optimization techniques,

by setting constraints on clock the slack is made positive. The

results are obtained using Design Compiler, a signoff tool

from Synopsys. It is recommended that a slack of 0.08 is

optimum.

In order to achieve positive slack, the buffers get

introduced on the critical path; even the gate sizes are

increased to achieve higher currents to drive the load. This

drastically increases the cell area. However with change in

coding style the percentage increase in cell area is minimized

by adopting coding guidelines. The number of nets also

increases as the layers are increased to more than three. Fig. 6

shows that in order to achieve positive slack, the cell count is

increased to 486 from 353. It is also observed that the number

of nets has been increased to 581 from 440. The cell count and

nets reaches saturation after certain limits. This demonstrates

the idealities of the synthesis tool.

Fig. 6. Area report for16 input neuron.

In the Fig. 7 it is observed that the total cell area has

increased to 8662 Sq µm from 6319 Sq µm, this is done in

order to achieve low power and higher speeds.

Fig. 7. Core area report for 16 input neuron

The Fig. 8 demonstrates the variation of power with

different optimization techniques considered in this work and

Critical

Path

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

497

labeled as 1, 2, 3, 4, 5 and 6. The dynamic power varies from

449µW to 815µW. It is found frequency variation affects

power. Increase in power is brought into control by

constraining the design during synthesis by adopting suitable

power saving techniques. Hence, we find that during the

optimization the gradual increase in power is limited to

713µW which is better than the previous results as shown in

Figure. 8. This is achieved by using the power saving

techniques. However we find that the leakage power has

increased from 18µW to 28µW, this is due to the fact that the

power saving techniques incorporated such as clock gating,

power gating concepts adopted introduces additional cells

that enables the required logic only when required, this keeps

most of the logic in standby mode by disabling them from the

clock network and power network being connected. Hence

there is increase in leakage power. In order to reduce the

leakage power the High Vt Library cells can be used. This has

not been experimented in this work.

Fig. 8. Power saving report for16 input neuron

IV. THE PHYSICAL DESIGN FLOW

Fig. 9. Schematic gate level net list.

The synthesized net list is taken through the VLSI Physical

Design Flow to generate the GDSII. In this flow the design is

taken through Physical design flow steps such as floor

planning, placement, clock tree synthesis, routing, physical

verification, parasitic extraction and finally timing

verification to sign off the design. This ensures the pre-silicon

verification is carried out using industry standard sign off

tools and the design is taped off for fabrication, with

generation of GDSII format. In this design Synopsys flow is

used for physical design and verification, which is one of the

standard signoff tools. The Figure. 9 shows the synthesis

results of 16 input neuron RTL code synthesized using

Synopsys DC, targeting TSMC130nm library.

This design has to be taken through the Physical design

flow. Fig. 9 shows the gate level net list, but does not give

details of the cell placement, power network, clock network

and pin details.

The design which models 16 input neuron developed in this

work is considered as major macro for image compression

using neural network, this module is followed by quantization,

data encoding and storage modules. Hence the design is

converted into a macro that can be interfaced with other

building blocks. The pin configuration and the sizing of this

macro decide the cost function and its performance.

Fig. 10. Floor planned and Clock Tree Structure.

The design is taken through the floor planning, placement

and clock tree synthesis stage, in this stage the cell area, I/O

area, number of I/O, I/O properties, power network, hot spots,

congestion due to interconnects, placement of standard cells,

clock tree routing for the cells and total cell area gets

identified. This is carried out using floor planning

methodology supported by ASTRO tool from Synopsys, the

results of which are shown in Fig. 10. The thick dark lines on

the perimeter running horizontally and vertically show the

power network VDD and VSS, the yellow blocks shows the

core area with placed standard cells, the green lines shows the

clock distribution required for the design.

The design consumes 500 cells, 2903 pins, 539 clock nets,

30 I/O pins with core area of 9945.07Sq µm (119.82 µm x

99.63 µm). The total chip size with I/O pins is 14334.07 Sq

µm (119.82 µm x 119.63 µm). The cell/corn ratio is

constrained to 74.5861% and cell/chip ratio is constrained to

51.7483%.

The design is taken through routing phase and the Fig. 11

shows the placed and routed design. As the design has 539

nets to be routed, metal 1 to metal 8 layers are used in order to

route the design, with metal layer 6 consisting maximum

number of wire length of 6209.5µm. The total wire length is

12592.2µm. The design is constrained to minimize

congestion. The routed design is shown in Fig. 11 the vertical

and horizontal pink line shows the wires connecting the

standard cells within the core area. Both local and global

routing is performed; the final routing directions are what are

highlighted in Fig. 11 which are pink in color.

Fig. 11. Place and Route Design.

Fig. 12 shows the placed and routed design with IR analysis.

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

498

The color combination highlighted in Fig. 12 shows the IR

drop distribution within the die. Red color is the violated and

more power consuming region. Green color is the region

where there is nominal power consumption. As we see that

there are very few areas with high IR drop, this is taken as

warning and is neglected. The cell power when compared

with the power report obtained during synthesis phase has

97% improvement. This shows that the physical design

improves the power performance, as this considers the actual

cell placement and pin placement with clock and nets routed.

The routed design is taken through IR drop analysis to find

out the impact of power dissipation due to parasitic extracted

from the nets, and the cells. The parasitic report suggests that

the design has 803 internal nodes, 8 boundary nodes, 881

resistors and 500 current sources. This data enables to find the

power dissipation. It is found that the total power is

0.0202574mW and the I/O net switching power is

0.000152925mw.

Fig. 12. IR drop analyses for 16 input neuron.

The Fig. 13 shows the comparison of the hardware

implementation details focusing the major parameters like

area and power.

The result clearly shows the performance metrics of each

implementation. FPGA occupying more space and power, the

only advantage is Reconfigurability and time to market. ASIC

results are found to be better than the FPGA results in terms of

area and power. They consume less power and space, hence

suitable for low cost and reliable Hardware implementation.

ASIC FPGA

P
o
w

e
r

28 µw

81mw

Fig. 13 Comparison of ASIC with FPGA in terms of Area &Power.

V. CONCLUSION

ASIC implementation of neural network architecture for

image compression has been successfully implemented

implemented using 130nm technology. Input image is

compressed and decompressed using the two layered neural

network architecture. The network trained using

backpropagation algorithm is realized using multipliers and

adders. The trainied weights are stored in memory and is used

to compress and decompress image. Low power tehcniques

have been used to reduce power dissipation of the complex

architecture. Power reduction can be further achieved by

replacing multipliers and adders using low power arithmetic

units.

The techniques proposed in this work are modeled,

designed and validated as per the Hardware requirements for

ASIC and FPGA implementation. Suitable techniques have

been incorporated to optimize area, power and speed.

REFERENCES

[1] Dony, R.D., and Haykin, S., Neural Network Approaches to Image

Compression, Proceedings of the IEEE, (1995), Vol.23, No.2, pp

289–303.

[2] Namphol, A. et al., Image Compression with a Hierarchical Neural

Network, IEEE Transactions on Aerospace and Electronic

Systems,(1996), Vol.32, No.1, pp.327–337.

[3] Blumenstein, M., The Recognition of Printed and Handwritten Postal

Address using Artificial Neural Networks, (1996), Dissertation,

Griffith University, Australia.

[4] Jiang, J., A Neural Network Design for Image Compression and

Indexing. International Conference on Artificial Intelligent Expert

Systems and Neural Networks, (1996), Hawaii, USA, pp 296–299.

[5] J.Robinson and V. Kecman, "Combining Support Vector Machine

Learning With the Discrete Cosine Transform in Image Compression,"

IEEE Transactions on Neural Networks, Vol. 14, No. 4,IEEE, July

2003, pp.950-958.

[6] Daniele Lo Iacono and Marco Ronchi.,Binary “Canonic Signed Digit

Multiplier for High-speed Digital Signal Processing.” The 47th IEEE

International Midwest Symposium on Circuits and Systems.

0-7803-8346-X/04/$20.00 02004 IEEE I1 -205 to I1 -208.

[7] Ivan Vilvovic, “An experience in Image compression using neural

networks’, 48th International Symposium ELMAR-2006, June 2006,

Zadar, Croatia.

[8] K.Venkata Ramanaiah, Dr K.Lal Kishore, and Dr P.Gopal Reddy

“Power Efficient Multilayer Neural Network for Image Compression”

Information Technology journal 6(8): 1252–1257 ISSN1812-5638.@

2007 Asian Network for Scientific Information

[9] K.Venkata Ramanaiah, Dr K.Lal Kishore, and Dr P.Gopal Reddy

“New Architecture for NN based Image Compression for optimized

Power, Area and Speed”. i-managere’s Journal on Electrical

Engineering. Vol. 1. No. 3. ISSN-0973-8835. Jan-March -2008.

