

Abstract—One of the most crucial problem in data mining is
association rule mining. It requires large computation and I/O
traffic capacity. One approach to resolve this problem is the
use of distributed data mining algorithms in grid. It offers an
effective way to mine for large data sets. Therefore, we
implemented distributed data mining with Apriori algorithm
in grid environment. However, usage of grid environment
raises some issues about the optimization of the Apriori
algorithm, especially the cost of the node to node
communication and data distribution. In this paper, an
Optimized Distributed Association rule mining approach for
geographically distributed data is introduced in parallel and
distributed environment; therefore, it reduces communication
costs.

Keywords-Data Mining; Apriori Algorithm; Grid
Environment; Distributed Computing.

I. INTRODUCTION
Data mining is the process of extracting hidden patterns

from data [5]. As more data is gathered, with the amount of
data doubling every three years [1-2], data mining is
becoming an increasingly important tool to transform this
data into information. It is commonly used in a wide range
of profiling practices, such as marketing, surveillance, fraud
detection and scientific discovery [4].

While data mining can be used to uncover hidden patterns
in data samples that have been “mined”, it is important to be
aware that the use of a sample of the data may produce
results that are not indicative of the domain [3]. Data mining
will not uncover patterns that are present in the domain, but
not in the sample. There is a tendency for insufficiently
knowledgeable “consumers” of the results to treat the
technique as a sort of crystal ball and attribute “magical
thinking” to it [7]. Like any other tool, it only functions in
conjunction with the appropriate raw material: in this case,
indicative and representative data that the user must first
collect. Furthermore, the discovery of a particular pattern in
a particular set of data does not necessarily mean that
pattern is representative of the whole population from which
that data was drawn [6]. Hence, an important part of the
process is the verification and validation of patterns on other
samples of data.

Data mining identifies trends within data that go beyond

Manuscript received December 2, 2010; revised May 5, 2011.
M. A. Mottalib, M. M. Islam, Md. A. Rahman, and S. A. Abeer are with

Dept. of Computing and Information Technology, Islamic University of
Technology, Gazipur, Bangladesh

K. S. Arefin is with Dept. of Computer Science and Engineering,
University of Asia Pacific, Dhaka, Bangladesh

e-mail: mottalib@iut-dhaka.edu, {arefin, majhar999}@uap-bd.edu,
{arif.rah, sabbeer.iut}@gmail.com

simple data analysis [8]. Through the use of sophisticated
algorithms, non-statistician users have the opportunity to
identify key attributes of processes and target opportunities.
However, abdicating control and understanding of processes
from statisticians to poorly informed or uninformed users
can result in false-positives, no useful results, and worst of
all, results that are misleading and/or misinterpreted [9].

According to [11-13], data mining commonly involves
four classes of task:

• Classification - Arranges the data into predefined
groups. For example an email program might
attempt to classify an email as legitimate or spam.

• Clustering - Is like classification but the groups are
not predefined, so the algorithm will try to group
similar items together.

• Regression - Attempts to find a function which
models the data with the least error.
Association rule learning - Searches for relationships
between variables. For example a supermarket might
gather data of what each customer buys. Using
association rule learning, the supermarket can work
out what products are frequently bought together,
which is useful for marketing purposes. This is
sometimes referred to as “market basket analysis”.

In this paper, we described Apriori algorithm in section II
which has been used in grid. In chapter III and IV, we
explained the configuration of grid in Linux operating
system and described the proposed method accordingly.
Moreover, in chapter V and VI, we described the
implementation of data mining in grid and analyzed the
performance.

II. APRIORI ALGORITHM

A. Pseudo code: Apriori Algorithm
• Join Step: Ck is generated by joining Lk-1with

itself
• Prune Step: Any (k-1)-itemset that is not frequent

cannot be a subset of a frequent k-itemset
• Pseudo-code:
 Ck: Candidate itemset of size k
 Lk : frequent itemset of size k
 L1 = {frequent items};
 for (k = 1; Lk !=�; k++) do begin
 Ck+1 = candidates generated from Lk;
 for each transaction t in database do
 increment the count of all candidates in Ck+1
 that are contained in t
 Lk+1 = candidates in Ck+1 with min support
 end
 return ∪ k Lk;

Performance Analysis of Distributed Association Rule
Mining with Apriori Algorithm

M. A. Mottalib, Kazi Shamsul Arefin, Mohammad Majharul Islam, Md. Arif Rahman, and Sabbeer
Ahmed Abeer

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

484

B. Examples:

TABLE I. LIST OF ITEMS

TID List of Items
T100 I1, I2,I5
T200 I2,I4
T300 I2,I3
T400 I1,I2,I4
T500 I1,I3
T600 I2,I3
T700 I1,I3
T800 I1,I2,I3,I5
T900 I1,I2,I3

• Consider a database, D, consisting of 9

transactions.
• Suppose min. support count required is 2 (i.e.

min_sup = 2/9 =22 %)
• Let minimum confidence required is 70%.
• We have to first find out the frequent itemset

using Apriori algorithm.
• Then, Association rules will be generated using

min. support & min. confidence.

Step 1: Generating 1-itemset Frequent Pattern

Fig. 1. Itemset Frequent Pattern.

• The set of frequent 1-itemsets, L1, consists of the
candidate 1-itemsets satisfying minimum support.

• In the first iteration of the algorithm, each item is a
member of the set of candidate.

Step 2: Generating 2-itemset Frequent Pattern

Fig. 2. Itemset Frequent Pattern.

Step 3: Generating 3-itemset Frequent Pattern
• The generation of the set of candidate 3-itemsets,

C3, involves use of the Apriori Property.
• In order to find C3, we compute L2 Join L2.
• C3 = L2 Join L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3,

I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}.
• Now, Join step is complete and Prune step will be

used to reduce the size of C3. Prune step helps to
avoid heavy computation due to large Ck.

• Based on the Apriori property that all subsets of a
frequent itemset must also be frequent, we can
determine that four latter candidates cannot
possibly be frequent. For example, let us take {I1,

I2, I3}. The 2-item subsets of it are {I1, I2}, {I1, I3}
& {I2, I3}. Since all 2-item subsets of {I1, I2, I3}
are members of L2, We will keep {I1, I2, I3} in C3.

• Let us take another example of {I2, I3, I5} which
shows how the pruning is performed. The 2-item
subsets are {I2, I3}, {I2, I5} & {I3, I5}.

• However, {I3, I5} is not a member of L2 and hence
it is not frequent violating Apriori Property. Thus
we will have to remove {I2, I3, I5} from C3.

• Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after
checking for all members of result of Join
operation for Pruning.

• Now, the transactions in D are scanned in order to
determine L3, consisting of those candidates 3-
itemsets in C3 having minimum support.

Step 4: Generating 4-itemset Frequent Pattern
• The algorithm uses L3 Join L3 to generate a

candidate set of 4-itemsets, C4. Although the join
results in {{I1, I2, I3, I5}}, this itemset is pruned
since its subset {{I2, I3, I5}} is not frequent.

• Thus, C4 = φ, and algorithm terminates, having
found all of the frequent items. This completes our
Apriori Algorithm.

These frequent itemsets will be used to generate strong
association rules (where strong association rules satisfy both
minimum support & minimum confidence).

Step 5: Generating Association Rules from Frequent
itemsets

• For each frequent itemset “l”, generate all
nonempty subsets of l.

• For every nonempty subset s of l, output the rule “s
Æ (l-s)” if support_count(l) /support_count(s) >=
min_conf where min_conf is minimum confidence
threshold.

• Back to Example:
We had L = {{I1}, {I2}, {I3}, {I4}, {I5}, {I1,I2},
{I1,I3}, {I1,I5}, {I2,I3}, {I2,I4}, {I2,I5},
{I1,I2,I3}, {I1,I2,I5}}.

 – Let’s take l = {I1, I2, I5}.
 – Its all nonempty subsets are {I1,I2}, {I1,I5},
{I2,I5}, {I1}, {I2}, {I5}.

• Let minimum confidence threshold is, say 70%
• The resulting association rules are shown below

each listed with its confidence.
– R1: I1 ^ I2 -> I5

• Confidence = sc {I1, I2, I5}/sc {I1, I2} = 2/4 = 50%
• R1 is Rejected.

– R2: I1 ^ I5-> I2
• Confidence = sc {I1, I2, I5}/sc {I1, I5} = 2/2 = 100%
• R2 is Selected.

– R3: I2 ^ I5-> I1
• Confidence = sc {I1, I2, I5}/sc {I2, I5} = 2/2 = 100%
• R3 is Selected.

– R4: I1 -> I2 ^ I5
• Confidence = sc {I1, I2, I5}/sc {I1} = 2/6 = 33%
• R4 is Rejected.

–R5: I2 -> I1 ^ I5
• Confidence = sc {I1, I2, I5}/ {I2} = 2/7 = 29%
• R5 is Rejected.

– R6: I5 -> I1 ^ I2
• Confidence = sc {I1, I2, I5}/ {I5} = 2/2 = 100%

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

485

• R6 is Selected.
In this way, we found three strong association rules.

C. Methods to Improve Apriori’s Efficiency
• Hash-based itemset counting: A k-itemset whose

corresponding hashing bucket count is below the
threshold cannot be frequent.

• Transaction reduction: a transaction that does not
contain any frequent k-itemset is useless in
subsequent scans.

• Partitioning: any itemset that is potentially
frequent in DB must be frequent in at least one of
the partitions of DB.

• Sampling: mining on a subset of given data, lower
support threshold + a method to determine the
completeness.

• Dynamic itemset counting: add new candidate
itemsets only when all of their subsets are
estimated to be frequent.

III. IMPLEMENTATION OF GRID

A. Proposed Grid Infrastructure
We set up our grid then it appeared like a grid client

(nodeA) connecting to a grid that appears as a “cluster” of
Torque (PBS) job managed machines represented by nodeB
and a “cluster” of Sun Grid Engine (SGE) job managed
machines represented by nodeC. The Globus toolkit needs to
configure to use either of these “clusters” to offload process
intensive jobs to expedite completion of a task and show a
direct benefit of a compute grid.

Fig. 3. Grid Experiment-Architecture for 3 (three) Nodes.

Later on we created a fully functional Grid environment
consists with:

• A “cluster” of Torque (PBS) job managed
machines represented by nodeF & nodeG.

• A “cluster” of Sun Grid Engine (SGE) job managed
machines represented by Node C & node H.

• A certificate authority represented by nodeB.
• A client represented by nodeA.

IV. PROPOSED METHOD
Our plan is to improve the efficiency of data mining in

case of huge amount of data. For this reason, we proposed
the distributed mining in grid environment. Our goal is to
distribute data among the nodes and use the Apriori
algorithm to find the frequent item sets. We described these
processes by following steps:

Step 1: Getting Request and Allocating Resource.

Fig. 4. Architecture of Distributed Mining.

Step 2: Distributing transaction id into different nodes.
Huge amount of data are distributed into different nodes.

Fig. 5. Distributing Data to different nodes.

Step 3: Generating the list of Item set and distribute the list
among nodes.

Suppose I1, I2, I3, I4, I5 are the five items for which we
have to find out the frequent item set are distributed among
three nodes n1, n2 and n3.

Step 4: Finding the number of Occurrences of item set in
each node

 I1 I2 I3 I4 I5
N1 2 2 1 2 4

N2 3 2 3 2 2
N3 1 0 2 3 3

Step 5: Sending an array consist of number of occurrence of
itemset to resource broker (The arrays showed in previous
step are sent to the resource broker).

Step 6: Calculating the total occurrences of each itemset
and checking whether it is frequent or not by applying
threshold value.

TABLE II. FOR THRESHOLD VALUE 5

 N1 N2 N3 Total Checking

I1 2 3 1 5 =5

I2 2 2 0 4 <5
I3 1 3 2 6 >5

I4 2 2 3 7 >5

I5 4 2 3 9 >5

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

486

Step 7: Resource broker send a array consist of 0’s and 1’s
showing which item sets are frequent to all the nodes.

Here, 0 means the corresponding item is not frequent and
1 means the item is frequent. Therefore, the array which will
be sent to all the nodes is:

1 0 1 1 1

 That means, except I2 all are frequent with respect to the

threshold value.

Step 8: Nodes are generating (k+1)-item set by a common
sequence.

Now all the nodes will generate the same item sets like:
{I1,I3},{I1,I4},{I1,I5},{I3,I4},{I3,I5},{I4,I5}

Fig. 6. Flowchart for Proposed Model.

Step 9: Repeat 4 to 8 until it gets the ending criteria.
Ending Criteria. When no Ki-item set is frequent, then (Ki-
1)-item set is the frequent item sets.

V. APRIORI ALGORITHM IN GRID ENVIRONMENT
We used a grid environment to run the program for better

performance. Therefore, we used 4 (four) computers in the
grid. Besides, we created an execution file and transferred
into all nodes with inputs using RSL file. Though for
transactions it had some overheads, however, as a whole
with larger inputs, the performance has been improved (see
figure 7 and 8).

TABLE III. SAMPLE INPUTS AND OUTPUTS

Input
(Transactions)

Single
Machine

(in Minutes)

Grid
Environment
(in Minutes)

Performance
Improvement

(%)
1 Million 3.11 1.47 47%
2 Million 8.12 3.91 48%
3 Million 22.78 12.65 56%
4 Million 31.52 16.29 52%
5 Million 43.24 23.56 54%

Fig. 7. Performance Measurement in Single and Grid Environment.

Fig. 8. Percentage of Performance Improvement in Grid Environment.

VI. PERFORMANCE ANALYSIS
According to step 6 of proposed method, we are getting

lists of frequent sets from following figure 9.

Fig. 9. Merging the output files and Generation of new Input file.

According to step 7 of proposed method, we used binary

bit patterns to find frequent itemsets. Where 0 means the
item is not frequent and 1 is opposite. After generating the
bit stream of 1s and 0s, another input file will be created
with same itemsets and then Apriori algorithm will be
applied on that input on a single node.

It can be observed that for more frequent itemsets, we are
getting better performance in case of checking frequent

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

487

itemsets (see figure 10), however, binary list is showing
better performance in case of less frequent itemsets (see
figure 11). Therefore, based on frequent itemsets, step 6 or
7 will be chosen and will secure the best performance
transferring fewer bits.

Fig. 10. Performance Measurement from Fequent Lists .

Fig. 11. Performance Measurement from Binary List.

VII. CONCLUSIONS
Current data mining tasks can be accomplished

successfully only in a distributed setting. The field of
distributed data mining has therefore gained increasing
importance in the last few decades. In this paper, an
optimized distributed version of Apriori algorithm is used
for the mining process in a parallel and distributed
environment. The response time with the communication
and computation factors are considered to achieve an
improved response time. The performance analysis is done
by increasing the number of processors in a distributed
environment.

REFERENCES
[1] Lon-Mu Liu et al., “Data Mining on Time Series: an Illustration

Using Fast-Food Resturant Franchise Data,” Computational Statistics
& Data Analysis, vol. 37, issue 04, pp. 455-476, (January 2001).

[2] I. Aydin et al., “The Prediction Algorithm Based on Fuzzy Logic
Using Time Series Data Mining Method,” World Academy of Science,
Engineering and Technology 51 (2009).

[3] Dennis Wegener et al., “On Integrating Data Mining into Business
Processes,” 13th International Conference on Business Information
Systems (BIS 2010), Berlin, Germany, (2010).

[4] D. Neef et al., “Making the case for knowledge management: the
bigger picture,” Management Decision 37(1):72-78 (1999).

[5] C. Bhatt et al., “Knowledge management in organisations: examining
the Interaction between technologies, techniques, and people,”
Journal of Knowledge Management 5, (1): 68-75 (2001).

[6] G. Costello et al., “Knowledge Management in Strategic al-liances:
The Role of Information Technology,” Templeton Col-lege. Oxford,
University of Oxford (1996).

[7] S. Raub and C. C. Ruling: “The knowledge management tussle –
speech communities and rhetorical strategies in the development of
knowledge management,” Journal of Information Technology 16(2):
113-130 (2001).

[8] T. Nguyen Manh et al., “Data warehouse design 2: sense & response
service architecture (SARESA): an approach towards a real-time
business intelligence solution and its use for a fraud detection
application,” Proceedings of the 8th ACM International Workshop on
Data Warehousing and OLAP (DWOLAP), ACM Press, New York
(2005).

[9] Valerie Fiolet et al., “Bernard Toursel Optimal Grid Exploitation
algorithms for Data Mining,” Proceedings of the 5th International
Symposium on Parallel and Distributed Computing (ISPDC) (2006).

[10] V. Fiolet et al., “Optimizing Distributed Data Mining Applications
Based on Object Clustering Methods,” Proceedings of the
International Symposium on Parallel Computing in Electrical
Engineering (IOCM) (2006).

[11] Shu-Tzu et al., “Decision Tree Construction for Data Mining on Grid
Computing,” Proceedings of the 2004 IEEE International Conference
on e-Technology, e-Commerce and e-Service (2004).

[12] Wu-Shan Jiang et al., “Distributed Data Mining on the Grid,”
Proceedings of the 4th International Conference on Machine Learning
and Cybernetics, Guangzhou (August 2005).

[13] A. Tjoa et al., “GridMiner: An Infrastructure for Data Mining on
Computational Grids,” Proceedings of the Australian Partnership for
Advanced Computing (APAC), Australia (2003).

[14] Domenico Talia et al., “How Distributed Data Mining Tasks can
Thrive as Services on Grids,” Proceedings of the Communications of
the ACM , Volume 53, Issue 7, Università della Calabria, Italy
(2010).

[15] Huaiguo Fu et al., “A new Distributed Data Mining system on Grid,”
The School of Computer Science and Informatics, University College
Dublin, eleld, Dublin 4, Ireland (2005).

[16] Nhien-An Le-Khac et al., “Admire Framework: Distributed Data
Mining on Data Grid Platforms,” School of Computer Science &
Informatics, University College Dublin Belfield, Dublin 4, Ireland
(2005).

Prof. Dr. M. A. Mottalib is with the Department of Computing and
Information Technology, Islamic University of Technology (www.iut-
dhaka.edu), Board Bazaar, Gaspar -1704, Bangladesh. E-mail:
mottalib@iut-dhaka.edu.

Kazi Shamsul Arefin is with the Department of Computer Science and
Engineering, University of Asia Pacific (www.uap-bd.edu), Hammond,
Dhaka-1209, Bangladesh. E-mail: arefin@uap-bd.edu.

Mohammad Majharul Islam is with the Department of Computing and
Information Technology, Islamic University of Technology (www.iut-
dhaka.edu), Board Bazaar, Gaspar -1704, Bangladesh. E-mail:
majhar999@uap-bd.edu.

Md. Arif Rahman is with the Department of Computing and Information
Technology, Islamic University of Technology (www.iut-dhaka.edu),
Board Bazaar, Gaspar -1704, Bangladesh. E-mail: arif.rah@iut-dhaka.edu.

Sabbeer Ahmed Abeer is with the Department of Computing and
Information Technology, Islamic University of Technology (www.iut-
dhaka.edu), Board Bazaar, Gaspar -1704, Bangladesh. E-mail:
sabbeer.iut@iut-dhaka.edu.

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

488

