
 

  
Abstract—One of the most crucial problem in data mining is 
association rule mining. It requires large computation and I/O 
traffic capacity. One approach to resolve this problem is the 
use of distributed data mining algorithms in grid. It offers an 
effective way to mine for large data sets. Therefore, we 
implemented distributed data mining with Apriori algorithm 
in grid environment. However, usage of grid environment 
raises some issues about the optimization of the Apriori 
algorithm, especially the cost of the node to node 
communication and data distribution. In this paper, an 
Optimized Distributed Association rule mining approach for 
geographically distributed data is introduced in parallel and 
distributed environment; therefore, it reduces communication 
costs. 

Keywords-Data Mining; Apriori Algorithm; Grid 
Environment; Distributed Computing. 

I.  INTRODUCTION 
Data mining is the process of extracting hidden patterns 

from data [5]. As more data is gathered, with the amount of 
data doubling every three years [1-2], data mining is 
becoming an increasingly important tool to transform this 
data into information. It is commonly used in a wide range 
of profiling practices, such as marketing, surveillance, fraud 
detection and scientific discovery [4]. 

While data mining can be used to uncover hidden patterns 
in data samples that have been “mined”, it is important to be 
aware that the use of a sample of the data may produce 
results that are not indicative of the domain [3]. Data mining 
will not uncover patterns that are present in the domain, but 
not in the sample. There is a tendency for insufficiently 
knowledgeable “consumers” of the results to treat the 
technique as a sort of crystal ball and attribute “magical 
thinking” to it [7]. Like any other tool, it only functions in 
conjunction with the appropriate raw material: in this case, 
indicative and representative data that the user must first 
collect. Furthermore, the discovery of a particular pattern in 
a particular set of data does not necessarily mean that 
pattern is representative of the whole population from which 
that data was drawn [6]. Hence, an important part of the 
process is the verification and validation of patterns on other 
samples of data. 

Data mining identifies trends within data that go beyond 
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simple data analysis [8]. Through the use of sophisticated 
algorithms, non-statistician users have the opportunity to 
identify key attributes of processes and target opportunities. 
However, abdicating control and understanding of processes 
from statisticians to poorly informed or uninformed users 
can result in false-positives, no useful results, and worst of 
all, results that are misleading and/or misinterpreted [9]. 

According to [11-13], data mining commonly involves 
four classes of task: 

• Classification - Arranges the data into predefined 
groups. For example an email program might 
attempt to classify an email as legitimate or spam. 

• Clustering - Is like classification but the groups are 
not predefined, so the algorithm will try to group 
similar items together. 

• Regression - Attempts to find a function which 
models the data with the least error. 
Association rule learning - Searches for relationships 
between variables. For example a supermarket might 
gather data of what each customer buys. Using 
association rule learning, the supermarket can work 
out what products are frequently bought together, 
which is useful for marketing purposes. This is 
sometimes referred to as “market basket analysis”. 

In this paper, we described Apriori algorithm in section II 
which has been used in grid. In chapter III and IV, we 
explained the configuration of grid in Linux operating 
system and described the proposed method accordingly. 
Moreover, in chapter V and VI, we described the 
implementation of data mining in grid and analyzed the 
performance.  

 

II. APRIORI ALGORITHM 

A. Pseudo code: Apriori Algorithm  
• Join Step: Ck is generated by joining Lk-1with 

itself 
• Prune Step:  Any (k-1)-itemset that is not frequent 

cannot be a subset of a frequent k-itemset 
• Pseudo-code: 
 Ck: Candidate itemset of size k 
 Lk : frequent itemset of size k 
 L1 = {frequent items}; 
 for (k = 1; Lk !=�; k++) do begin 
     Ck+1 = candidates generated from Lk; 
     for each transaction t in database do 
     increment the count of all candidates in Ck+1 
     that are contained in t 
     Lk+1 = candidates in Ck+1 with min support 
     end 
 return ∪  k Lk; 
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B. Examples:  

TABLE I.  LIST OF ITEMS 

TID List of Items 
T100 I1, I2,I5 
T200 I2,I4 
T300 I2,I3 
T400 I1,I2,I4 
T500 I1,I3 
T600 I2,I3 
T700 I1,I3 
T800 I1,I2,I3,I5 
T900 I1,I2,I3 

 
• Consider a database, D, consisting of 9 

transactions. 
• Suppose min. support count required is 2 (i.e. 

min_sup = 2/9 =22 % ) 
• Let minimum confidence required is 70%. 
• We have to first find out the frequent itemset 

using Apriori algorithm. 
• Then, Association rules will be generated using 

min. support & min. confidence. 

Step 1: Generating 1-itemset Frequent Pattern 

 
Fig. 1. Itemset Frequent Pattern. 

• The set of frequent 1-itemsets, L1, consists of the 
candidate 1-itemsets satisfying minimum support. 

• In the first iteration of the algorithm, each item is a 
member of the set of candidate. 

Step 2: Generating 2-itemset Frequent Pattern 
 

 
Fig. 2. Itemset Frequent Pattern. 

Step 3: Generating 3-itemset Frequent Pattern 
• The generation of the set of candidate 3-itemsets, 

C3, involves use of the Apriori Property. 
• In order to find C3, we compute L2 Join L2. 
• C3 = L2 Join L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, 

I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}. 
• Now, Join step is complete and Prune step will be 

used to reduce the size of C3. Prune step helps to 
avoid heavy computation due to large Ck. 

• Based on the Apriori property that all subsets of a 
frequent itemset must also be frequent, we can 
determine that four latter candidates cannot 
possibly be frequent. For example, let us take {I1, 

I2, I3}. The 2-item subsets of it are {I1, I2}, {I1, I3} 
& {I2, I3}. Since all 2-item subsets of {I1, I2, I3} 
are members of L2, We will keep {I1, I2, I3} in C3. 

• Let us take another example of {I2, I3, I5} which 
shows how the pruning is performed. The 2-item 
subsets are {I2, I3}, {I2, I5} & {I3, I5}.  

• However, {I3, I5} is not a member of L2 and hence 
it is not frequent violating Apriori Property. Thus 
we will have to remove {I2, I3, I5} from C3. 

• Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after 
checking for all members of result of Join 
operation for Pruning. 

• Now, the transactions in D are scanned in order to 
determine L3, consisting of those candidates 3-
itemsets in C3 having minimum support. 

Step 4: Generating 4-itemset Frequent Pattern 
• The algorithm uses L3 Join L3 to generate a 

candidate set of 4-itemsets, C4. Although the join 
results in {{I1, I2, I3, I5}}, this itemset is pruned 
since its subset {{I2, I3, I5}} is not frequent.  

• Thus, C4 = φ, and algorithm terminates, having 
found all of the frequent items. This completes our 
Apriori Algorithm. 

These frequent itemsets will be used to generate strong 
association rules (where strong association rules satisfy both 
minimum support & minimum confidence). 

Step 5: Generating Association Rules from Frequent 
itemsets 

• For each frequent itemset “l”, generate all 
nonempty subsets of l. 

• For every nonempty subset s of l, output the rule “s 
Æ (l-s)” if support_count(l) /support_count(s) >= 
min_conf where min_conf is minimum confidence 
threshold. 

• Back to Example: 
We had L = {{I1}, {I2}, {I3}, {I4}, {I5}, {I1,I2}, 
{I1,I3}, {I1,I5}, {I2,I3}, {I2,I4}, {I2,I5}, 
{I1,I2,I3}, {I1,I2,I5}}. 

 – Let’s take l = {I1, I2, I5}.  
 – Its all nonempty subsets are {I1,I2}, {I1,I5}, 
{I2,I5}, {I1}, {I2}, {I5}. 

• Let minimum confidence threshold is, say 70% 
• The resulting association rules are shown below 

each listed with its confidence. 
– R1: I1 ^ I2 -> I5 

• Confidence = sc {I1, I2, I5}/sc {I1, I2} = 2/4 = 50% 
• R1 is Rejected. 

– R2: I1 ^ I5-> I2  
• Confidence = sc {I1, I2, I5}/sc {I1, I5} = 2/2 = 100% 
• R2 is Selected. 

– R3: I2 ^ I5-> I1 
• Confidence = sc {I1, I2, I5}/sc {I2, I5} = 2/2 = 100% 
• R3 is Selected. 

– R4: I1 -> I2 ^ I5 
• Confidence = sc {I1, I2, I5}/sc {I1} = 2/6 = 33% 
• R4 is Rejected. 

–R5: I2 -> I1 ^ I5 
• Confidence = sc {I1, I2, I5}/ {I2} = 2/7 = 29% 
• R5 is Rejected. 

– R6: I5 -> I1 ^ I2 
• Confidence = sc {I1, I2, I5}/ {I5} = 2/2 = 100% 
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• R6 is Selected. 
In this way, we found three strong association rules. 

C. Methods to Improve Apriori’s Efficiency 
• Hash-based itemset counting: A k-itemset whose 

corresponding hashing bucket count is below the 
threshold cannot be frequent. 

• Transaction reduction: a transaction that does not 
contain any frequent k-itemset is useless in 
subsequent scans. 

• Partitioning: any itemset that is potentially 
frequent in DB must be frequent in at least one of 
the partitions of DB. 

• Sampling: mining on a subset of given data, lower 
support threshold + a method to determine the 
completeness. 

• Dynamic itemset counting: add new candidate 
itemsets only when all of their subsets are 
estimated to be frequent. 

III. IMPLEMENTATION OF GRID 

A. Proposed Grid Infrastructure  
We set up our grid then it appeared like a grid client 

(nodeA) connecting to a grid that appears as a “cluster” of 
Torque (PBS) job managed machines represented by nodeB 
and a “cluster” of Sun Grid Engine (SGE) job managed 
machines represented by nodeC. The Globus toolkit needs to 
configure to use either of these “clusters” to offload process 
intensive jobs to expedite completion of a task and show a 
direct benefit of a compute grid. 

 

 
Fig. 3. Grid Experiment-Architecture for 3 (three) Nodes. 

Later on we created a fully functional Grid environment 
consists with:  

• A “cluster” of Torque (PBS) job managed 
machines represented by nodeF & nodeG. 

• A “cluster” of Sun Grid Engine (SGE) job managed 
machines represented by Node C & node H. 

• A certificate authority represented by nodeB. 
• A client represented by nodeA. 

 

IV. PROPOSED METHOD 
Our plan is to improve the efficiency of data mining in 

case of huge amount of data. For this reason, we proposed 
the distributed mining in grid environment. Our goal is to 
distribute data among the nodes and use the Apriori 
algorithm to find the frequent item sets. We described these 
processes by following steps: 

Step 1: Getting Request and Allocating Resource.   

 
Fig. 4.  Architecture of Distributed Mining. 

Step 2: Distributing transaction id into different nodes. 
Huge amount of data are distributed into different nodes. 

 
Fig. 5. Distributing Data to different nodes. 

Step 3: Generating the list of Item set and distribute the list 
among nodes. 

Suppose I1, I2, I3, I4, I5 are the five items for which we 
have to find out the frequent item set are distributed among 
three nodes n1, n2 and n3. 

Step 4: Finding the number of Occurrences of item set in 
each node 

 I1 I2        I3           I4          I5 
N1 2 2 1 2 4 

N2 3 2 3 2 2 
N3 1 0 2 3 3 

Step 5: Sending an array consist of number of occurrence of 
itemset to resource broker (The arrays showed in previous 
step are sent to the resource broker). 

Step 6: Calculating the total occurrences of each itemset 
and checking whether it is frequent or not by applying 
threshold value. 

TABLE II.  FOR THRESHOLD VALUE 5 

 N1 N2 N3 Total Checking 

I1 2 3 1 5 =5 

I2 2 2 0 4 <5 
I3 1 3 2 6 >5 

I4 2 2 3 7 >5 

I5 4 2 3 9 >5 
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Step 7: Resource broker send a array consist of 0’s and 1’s 
showing which item sets are frequent to all the nodes. 

Here, 0 means the corresponding item is not frequent and 
1 means the item is frequent. Therefore, the array which will 
be sent to all the nodes is: 

 
1 0 1 1 1 

 
 That means, except I2 all are frequent with respect to the 

threshold value. 

Step 8: Nodes are generating (k+1)-item set by a common 
sequence. 

Now all the nodes will generate the same item sets like: 
{I1,I3},{I1,I4},{I1,I5},{I3,I4},{I3,I5},{I4,I5} 

 
Fig. 6.  Flowchart for Proposed Model. 

Step 9: Repeat 4 to 8 until it gets the ending criteria.  
Ending Criteria. When no Ki-item set is frequent, then (Ki-
1)-item set is the frequent item sets.  

V. APRIORI ALGORITHM IN GRID ENVIRONMENT 
We used a grid environment to run the program for better 

performance. Therefore, we used 4 (four) computers in the 
grid. Besides, we created an execution file and transferred 
into all nodes with inputs using RSL file. Though for 
transactions it had some overheads, however, as a whole 
with larger inputs, the performance has been improved (see 
figure 7 and 8). 

TABLE III.  SAMPLE INPUTS AND OUTPUTS 

Input 
(Transactions) 

Single 
Machine 

(in Minutes) 

Grid 
Environment 
(in Minutes) 

Performance
Improvement 

(%) 
1 Million 3.11 1.47 47% 
2 Million 8.12 3.91 48% 
3 Million 22.78 12.65 56% 
4 Million 31.52 16.29 52% 
5 Million 43.24 23.56 54% 

 

Fig. 7.  Performance Measurement in Single and Grid Environment. 

 

Fig. 8. Percentage of Performance Improvement in Grid Environment. 
 

VI. PERFORMANCE ANALYSIS 
According to step 6 of proposed method, we are getting 

lists of frequent sets from following figure 9. 

 
Fig. 9. Merging the output files and Generation of new Input file. 

 
According to step 7 of proposed method, we used binary 

bit patterns to find frequent itemsets. Where 0 means the 
item is not frequent and 1 is opposite. After generating the 
bit stream of 1s and 0s, another input file will be created 
with same itemsets and then Apriori algorithm will be 
applied on that input on a single node. 

It can be observed that for more frequent itemsets, we are 
getting better performance in case of checking frequent 
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itemsets (see figure 10), however, binary list is showing 
better performance in case of less frequent itemsets (see 
figure 11).  Therefore, based on frequent itemsets, step 6 or 
7 will be chosen and will secure the best performance 
transferring fewer bits.  

 
Fig. 10. Performance Measurement from Fequent Lists . 

 

 
Fig. 11. Performance Measurement from Binary List. 

 

VII. CONCLUSIONS 
Current data mining tasks can be accomplished 

successfully only in a distributed setting. The field of 
distributed data mining has therefore gained increasing 
importance in the last few decades. In this paper, an 
optimized distributed version of Apriori algorithm is used 
for the mining process in a parallel and distributed 
environment.  The response time with the communication 
and computation factors are considered to achieve an 
improved response time. The performance analysis is done 
by increasing the number of processors in a distributed 
environment. 
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