
 
 

 

  
Abstract—After the brief review of the basic principles and 

characteristics of Particle Swarm Optimization (PSO), a new 
particle swarm optimization, based on the simple evolutionary 
equations and the steep thermodynamical selection rule, are 
proposed to alleviate the premature convergence. The 
algorithm based on thermodynamical model, in which the 
selection rule simulates the competitive mechanism between 
energy and entropy in annealing to modify the exploitation and 
the exploration adaptively, can produce less off-particles in 
different free-energy scale not only to prevent the swarm from 
clustering and reduce the computational cost, but also to vary 
the diversity of the swarm and contribute to a global optimum 
output in the swarm. Relative experiments have been done; the 
results show the improved PSO performs very well on 
benchmark problems, and outperforms the other related PSO 
in search ability and stability. 
 

Index Terms—Thermodynamical model, particle swarm 
optimization,  entropy, swarm diversity 
 

I. INTRODUCTION 
The Particle Swarm Optimization (PSO) is an evolutionary 

computation technique developed by Kennedy and 
Eberhart[1]. The underlying motivation for the development 
of PSO algorithm was social behavior of animals such as bird 
flocking, fish schooling, and swarm theory. A population of 
random solutions initialized in the beginning of the algorithm, 
called particles. Each particle is treated as a point in a D 
dimensional search space. During a search process, each 
particle has a tendency to fly towards better search areas with 
a velocity, which is dynamically adjusted according to its 
own and its companion’s historical behavior. 

According to standard PSO model[2], the flying of a 
particle is described by its velocity and position, and the 
update equations is defined as the following: 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))id id id id gd idv t wv t c r p t x t c r p t x t+ = + − + − (1) 

( 1) ( ) ( 1)id id idx t x t v t+ = + +                   (2) 

Suppose that the particles fly through a D dimensional 
space, Xi and Vi represent the position vector and velocity 
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vector of the i-th individual respectively, while Pi and Pg 

represent the i-th individual’s best position ever found and 
the group’s best position; the inertia weight ω is a scaling 
factor controlling the influence of the old velocity; C1 and C2 

are positive constants known as “cognitive” and “social” 
coefficients which determine the weight of Pi and Pg 

respectively; r1 and r2 are two random numbers sampled from 
a uniform distribution in the range [0,1] separated. 

As a stochastic algorithm, PSO own some attractive 
features, but there are still some demerits puzzling 
researchers especially in some multidimensional complex 
space. In order to alleviate the premature phenomenon, a 
feasible idea is to enhance the whole performance of 
algorithms by means of maintaining an appropriate 
swarm-diversity during a search. Some techniques have been 
proposed following the idea. Particle swarm optimization 
with simulated annealing (SAPAO)[3] utilized the thought 
concerning annealing process operation to enhance the local 
search ability around the optimum[4].A dissipative particle 
swarm optimization (DPSO), which introduces negative 
entropy to construct an opening dissipative system, is 
developed according to the self-organization of dissipative 
structure to improve the swarm-diversity[5]. Self-organizing 
hierarchical particle swarm optimization (HPSO) introduced 
the concept of “mutation” to enhance the global search 
capability of the particles by providing additional diversity; 
only the “social” part and the “cognitive” part of the particle 
swarm strategy are considered to estimate the new velocity of 
each particle and particles are reinitialized whenever they are 
stagnated in the search space. Although these methods 
improve the algorithm performance to a certain extent, few 
can get over the problems about premature convergence and 
the computation cost truly. 

In this paper, a steep thermodynamical particle swarm 
optimization (STPSO) incorporating with a new selection 
rule and the simplified evolutionary equation in order to get 
rid of these defects is presented. The new selection rule, 
which is based on the minimal free energy principle of 
statistical mechanics, simulates the competitive mechanism 
between energy and entropy in annealing to control the 
swarm-diversity. The remaining of the paper is organized as 
follows. Section 2 provides some relative improvement on 
PSO. Section 3 describes the STPSO in details. Section 4 
presents the relative experimental results. Finally, Section 5 
concludes with some remarks. 
 

II. THE SIMPLIFICATION OF PARTICLE SWARM 
OPTIMIZATION  

Through carefully analyzing the PSO biological model, 
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and evolution iterative equation (1) (2), It is easily found that 
particle velocity concept is not a prerequisite for the 
evolution process. Literature[6] has proved that the PSO 
evolution procedure is independent of the particle velocity, 
consequently, it is appropriate to discard the particle velocity 
and the evolutionary process is only controlled by the 
variables of the particles position. the simplified optimal 
equation without the velocity is written as: 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))id id id id gd idx t wx t c r p t x t c r p t x t+ = + − + −   
(3) 

The right side of equation (3) consists of three parts: the 
first part is the “history” part, which represents influence of 
previous position on current one while the extent of influence 
is controlled by the inertia weight ω; the second part is the 
“cognition” part, which represents the private thinking of the 
particle itself; the third part is the “social” part, which 
represents the collaboration among the particles. 

 

III. STEEP THERMODYNAMICAL PARTICLE SWARM 
OPTIMIZATION 

Combined with the above simplified iteration equation (3), 
STPSO introduces a steep thermodynamical selection 
strategy which simulates the competitive mechanism 
between energy and entropy in annealing to modify the 
exploitation and the exploration adaptively. 

A. The Principle of Minimum Free Energy 
As we known, y is followed through all transition of the 

system at each temperature. It can be described as followed: 
For a closed system that exchange heat with ambience to 

preserve the temperature unchanged, the states always 
diversify spontaneously into a lower total free energy and the 
system achieves equilibrium when its free energy seeks a 
minimum. In thermodynamics, the free energy formula is 
defined as[7]: 

F E HT= −  
where E is the energy of the system, H is its entropy, and T is 
the temperature which determines the relative weights 
between energy and entropy in the competition. The concept 
about entropy is proposed to quantificationally measure the 
energy dispersal of particles in the system. 

B. Measurement of Swarm Diversity 
It is a crucial issue how to measure population diversity 

while introducing the tournament mechanism into STPSO. In 
STPSO, we give some definitions of how to calculate the free 
energy of each particle and propose a level-based entropy 
while the extension field is graded on the basis of energy. 

Suppose that S represents the search space and f(x) an 
objective function, we take N particles to compose the swarm 

population which remarks as 1 2{ , ,......, }t NP X X X= at 
iterative step t, and the number of sub-population size is M[8]. 

Definition 1. While each particle rX S∈ , the raw energy 
of individual is defined as 

( );   for the minimum problem
( )

( );   for the maximum problem
r

r
r

f X
SE X

f X
⎧

= ⎨−⎩  
Definition 2. At the iteration t, the extension 

field [ , ]t tWt l u=  is a sheer energy range of all particles 
which generate from the evolution beginning to the t-th 
iteration in the search process, and assumed ut and lt are 
respectively an upper bound and a lower bound of the particle 
energy. The extension field is divided into K grids, they can 

be marked as 1 2, ,......, Kβ β β , which satisfy,  

,i j
t tβ β = ∅∩                                             (4) 

, (0 1)i
t tW i Kβ = ≤ ≤ −∪                         (5) 

1

1 1

1 1( *( ) ,   *( ) ] [ , ]
1 1

i i
i
t t t t t t t t tK K

a au l l u l l l u
a a

β
−

− −

− −= − + − +
− −

∩
(6) 

herein 1,  ,  0 , 1,   2 a i j i j K K> ≠ ≤ ≤ − ≥ . 
In these formula, “a” denotes proportional factorial 

constant. For every particle satisfies that ( ) i
r tSE X β∈ , 

then we shall say that Xr is at level i of the iterative step t. 

Definition 3. For arbitrary r tX P∈ , then the relative 
energy of the particle is defined as 

 
1

1( ,  ) ,    while  ( )
1

i
i

t r r tK

aRE W X SE X
a

β−

−= ∈
− . 

Definition 4. Assume the number in  should be calculated 

as the particles which are at level i of the range tW . Therefore, 
the level-based entropy H is defined as:  

1

0
( ,   ) log

K
i i

t t k
i

n nH W P
N N

−

=

=∑
. 

The concept of level-based entropy, independent of the 
particle coding mode, is introduced to measure dispersal of 
the particles fitness at lower computational cost. We can 
prove that the entropy is calculated as 0 when all particles of 
swarm are located at the same level, or as the big number 1 
when the particle number of each level is the same, 

namely, 1 2 1... Kn n n −= = = . 
Definition 5.  At the given iteration t, it is known that the 

swarm tP and the extension field tW , the population energy 
E and the free energy F at temperature T are defined as:  

1( ,   ) ( ,   )
r t

t t t r
X P

E W P RE W X
N ∈

= ∑
( ,  ,  ) ( ,  ) ( ,  )t t t t t tF W T P E W P TH W P= − . 

Definition 6. For every r tX P∈ at level i(
i
t tWβ ⊂ ),ni is 

the number of particles located in the scale
i
tβ , then the free 

energy component at temperature T is defined as:  
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( ,  ,  ) ( ,  ) log ( )i

c t t t t K
nF W T P RE W P T
N

= +
 

The free energy component cF for each particle obtains the 
minimum; as a result, the minimization of the swarm free 
energy F descends most deeply. Consequently, in the 
selection rule, the free energy component is used to evaluate 
particles not according to the fitness value. 

C. Outline of STPSO 
Based on the analysis above, the pseudo code of SOPSO 

can be described as follows. In the procedure, the flying 
times of particles is controlled by the parameter 
(Temperature_changeCritical) at each temperature. 

Procedure  STPSO 
(1) Initialize a particle swarm system, t = 0: 

(a) Configure some parameters such as proportional 
factorial, the level total number, and the initial 
temperature etc; 

(b) Randomly generate an initial 

population 0 1 2{ , ,......, }NP X X X= and evaluate 
them; 

(c) Save each particle’s best extremun and the group’s 

best extremun in the swarm 0P ;  

(d) Determine the energy bounds 0u  and 0l  for the 
initial extension field; 

(2) Execute iteration 
 Repeat 

(a) parameter_k = 0 
      Repeat  

(b) Configure 0kL = ; 
(c) Randomly choose parent particles from the current 

swarm to generate M offsprings by the simplified 
iteration equations and evaluate them; 

(d) Produce new extension field 1tW +  for the iteration 
t+1; 

(e) Calculate the free energy component cF for each 

particles including tP and tO . If the offspring free 
energy component is less than its parent particle 
one, then the offspring replaces the parent particle 

to form the next generation 1tP+ ; 
(f) Update each particle’s best extremun and the 

group’s best extremun of the current swarm 1tP+ ; 

(g) t = t+1, 1k kL L= + ; 

       until{ kL  < Temperature_changeCritical } 
(a) parameter_k = parameter_k+1; 
(b) T = T/(1+k); 

until{ Termination_test ( tP ) = = False} 
 

IV. EXPERIMENTAL STUDIES 

A. The Benchmark Functions 
In this section, we apply the standard particle swarm 

optimization (PSO)[9], the hybrid algorithm based on PSO 
and simulated annealing (SAPSO) and STPSO to solve some 
typical numerical function minimization problems in Table 
1.The following benchmark functions have been used to 
verify the performances of the three kinds of algorithms 
adopting different selection strategies in the comparative 
experiments. They are multimodal functions with many local 
optima and the basic information in experiments is listed in 
Table.1. 

TABLE 1 THE BENCHMARK FUNCTIONS 

Name Formula Dim 
n 

Range 
[Xmin, Xmax] 

Optimal 

 
Griewank 2

1
1 1

1( ) ( ) cos( ) 1
4000

nn
i

i
i i

xf x x
i= =

= − +∑ ∏  
 

30 
30[ 100,100]−   

0 

 
Rastrigin 

1
2

2
1

( ) ( 10cos(2 ) 10)
n

i i
i

f x x xπ
−

=

= − +∑  
 

30 
30[ 600,600]−   

0 

 
Shaffer 

2 2 2

3 2 2 2

(sin ) 0.5
( ) 0.5

(1.0 0.001( ))
x y

f x
x y

+ −
= +

+ +
 

 
2 

30[ 100,100]−   
0 

 

B. Experiments and Results 
In the following experiments, all optimization algorithms 

utilized the uniform termination condition for reasonable 
comparison with diverse selection strategies of algorithms. 
The common parameters are set as follows: population size 

N=80, C1=C2=2, and maxν =20, the inertia weight ω is a 
random number separated in the uniform distribution [0, 1], 
the termination criterion is satisfied when the executions run 
up to the maximal iterative steps 10000. Some additional 
parameters are fine tuned in each test algorithm: the initial 

temperature T = 100 and annealing rate 0.9α = for the 
SAPSO; the offspring population for STPSO has the size M = 

4, and level number k = 10, chain length kL =2000. The 

chaotic factors vc and lc  are set as 0.002 for one parameter 
and as 0 for another parameter to test different status, 
respectively. 

Under these settings, we executed the programs 50 times 
consecutively. The statistic results are showed in the 
follows.Table3 provides the statistic results of 50 trials for 
each algorithm. The results of Table 1 demonstrate clearly 
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the stability of STPSO. Its successful convergence rate is 
much high than that of the other two algorithms. Moreover, 
the quality of its solutions is averagely superior to that of the 
others due to its stability and it even can be seen that the 

worst fitness value for STPSO outperforms the others by 
several magnitudes on all benchmark functions – it is clearly 
capable of escaping local optima. 

 
TABLE 2 STATISTIC RESULTS ON THE BENCHMARK FUNCTIONS FOR THREE ALGORITHMS 

 

 
Fig. 1. Average fitness evolutionary curves of f1 

 
Fig. 2. Average fitness evolutionary curves of f2 

 
Fig. 3. Average fitness evolutionary curves at early stage of f1 

 
Fig. 4. Average fitness evolutionary curves at early stage of f2 

 
Fig. 5. Average fitness evolutionary curves of f3 

Figure 1, 2 show their average convergence curves in 50 
trials of the best individual of each generation, and Figure 3,4 
show the best fitness average convergence curves of each 
generation at the initial evolutionary stages. The STPSO kept 
on optimizing towards a better fitness, whereas the other 
algorithms stagnated and flattened out with no further 
improvement. Some analysis can be made on the basis of the 
experiments: Regarding the Griewank function (figure 3), the 
convergence speeds of STPSO are slower than DPSO at the 
early 200 iterations. One of the main reason is that the 
number of generated new particles is much less in the STPSO 
evolutionary process, namely, the new particles number of 
the other algorithms are twenty times much more than the one 
of STPSO at each generation. However, observing on figure 
1, after 1800 Iterations the PSO and DPSO optimizations 
obtained no further improvements, whereas the STPSO was 
still improving notably and converged to a significantly 
better end-result. The analogous situation can be observed 
from the figure 2,4 concerning Rastrigin test function. The 
average convergence curve (figure 5) of STPSO regarding 
the Ackley function has lower running timesteps. The 
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simplified evolutionary equation and the steep 
thermodynamical selection strategy are the basilica reasons. 
The former economized the computational time and the 
selection rules insure the swarm diversity against getting 
trapped at the local optima and against the premature 
convergence. 

V. CONCLUSION 
This paper has developed a new particle swarm 

optimization based on thermodynamical model, which is 
based on the simplified updating formula and the steep 
thermodynamical selection strategy, and evaluated its 
performance on a number of benchmark problems. The 
selection strategy simulates the competitive mechanism 
between energy and entropy in annealing to modify the 
exploitation and exploration adaptively. The relative 
experimental results show that the improved algorithm 
outperforms PSO and DPSO for the complex optimization 
problems, especially for the multimodal functions in a high 
dimension space. Through the new selection rules, it is not 
only susceptible to escape from the local optima and 
convenge to the global optimum at the very little cost of the 
early stage, but also improves the stability and the 
computational efficiency greatly.  
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and applying this to 
complex real-world applications. 


