
 
 

 

  
Abstract—A novel approach for performing the reverse time 

of flight (RTOF) analysis of the diffraction spectra through the 
use of time-delayed neural network (TDNN) is introduced.  The 
new design applies a data acquisition system, a special interface 
card and software program installed in a PC computer, to 
perform the cross-correlation functions between signals 
received from the chopper-decoder and detector devices.  This 
paper focuses on theoretical analysis of the neural network 
architecture to be embedded in the data acquisition system.  
The implementation of the suggested TDNN along with the 
experimental measurements will be deferred to a subsequent 
paper. 
 

Index Terms—Reverse time of flight, data acquisition, 
time-delayed neural networks, cross-correlation.  
 

I. INTRODUCTION 
The neutron time-of-flight (TOF) diffractometers have 

been used widely for studying the properties of condensed 
matter. The conventional design TOF diffractometer does not 
provide a sufficient level of intensity and resolution at low 
power steady state reactors, using only on the order of 0.1 to 
0.5% of the available neutrons [1]. Correlation TOF methods, 
using Fourier or pseudo-random beam modulation, have been 
developed for using the available neutron flux in a way more 
economic than the usual Fermi chopper system.  In the 
pseudo-random method the beam intensity is modulated with 
a periodic binary pseudo-random signal (Fig.1A) and the 
time of flight spectrum is calculated as the cross-correlation 
of the modulation signal and the detector output [2].  The 
Fourier diffractometer involves modulation of the neutron 
beam by a fast Fourier chopper [3-7] (Fig.1B) which is a 
rotating disk (rotor) with a pattern of alternating neutron 
absorbing and neutron transparent slits; and a fixed system of 
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identical slits (stator). The method consists of measuring the 
Fourier transform of the TOF spectrum at several discrete 
frequencies and forming the spectrum itself by Fourier 
synthesis from the measured frequency components.  The 
Fourier approach allows a duty factor up to 50% of the 
available neutrons. The Fourier method has been improved 
by the reverse time-of-flight (RTOF) concept [8-10], which is 
based on triggering of the TOF analyzer by the detected 
neutrons instead of the rotor’s position. It should be 
emphasized that in contrast to the pseudo random and Fourier 
methods the RTOF is an on-line method. The basic idea of 
the RTOF method is an on-line check, for each detected 
neutron, of whether the registration probability is high or low. 
The check is realized by reverse analysis of neutron source 
and Fourier chopper states at the time the neutron passed 
through the corresponding points of the flight path.  By 
carrying out neutron detection with the chopper speed 
continuously changing according to a particular law 
(frequency window), and recording only those neutrons with 
high probability of registration in the analyzer’s memory, one 
can get the TOF distribution of elastically scattered neutrons, 
i.e., the conventional TOF diffraction pattern.  

The layout of the RTOF diffractometer is schematically 
given in Fig.(2); where The incoming neutron beam is 
modulated by the chopper according to some function x(t), 
whose values are always in the range 0 ≤ x(t) ≤ 1.  This 
function must naturally be a periodic function its frequency is 
varied in an appropriate manner during the experiment and is 
independent of neutron velocity.  The transmitted neutrons 
are scattered by the sample into the detector, the output is 
used to start the multichannel analyzer (see Fig.2)
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Applying the convolution theorem, it is seen that these 

start pulses form a nonhomogeneous Poisson process, with 
the intensity [4]: 
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where, S0(τ)dτ represents the counting rate of neutrons of 
flight times between the chopper and the detector are in the 
interval (τ, τ+dτ), and b0 is a constant background.  The 
quantity to be measured is the TOF distribution S0(τ), which 
includes the incoming neutron intensity and may be assumed 
to be non-zero only in a finite range 0 < τ < Ts.  The phase of 
the chopper is observed by a pick-up device, its output signal 
must accurately follow the modulation function x(t) applied 
to the neutron beam up to the highest frequencies used.  This 
signal (y(t)) is then delayed in the shift register and fed 
through the sampling gate into the analyzer.  The shifting and 
sampling pulses as well as the channel advance signal for the 
analyzer are taken from the same clock-pulse generator.  
Thus, if the clock period is ∆, and the shift register has Ld 
stages, the analyzer input is essentially y(t-Td), where the 
delay is Td =( Ld – 1) ∆.  We note that the signal y(t) would be 
a square wave with only two possible values (0 and 1) 
indicating whether x(t) is below or above preset value. To 
explain the operation of the system as a whole we consider a 
measurement started at time t=0, by dividing the time axis 
into intervals (n-1) ∆ < t < n∆, where n = 1,2,….,Lm , 
corresponding to a total measuring time equal to Tm = Lm ∆.  
Assuming that the analyzer has La channels of width ∆ and 
we label them by j=1,…..,La.  Now if a detector pulse triggers 
the measuring cycle of the analyzer during interval “n”, the 
system will function in such a way that the contents of the jth 
analyzer channel are increased by: y[n∆ + (j-1) ∆ - Td].  In 
other words, if Ŷj(n) denotes the contribution to be added into 
channel j due to the possible occurrence of a detector pulse in 
interval n, it follows that we have for all j: 
 ఫܻ෡ሺ݊ሻ ൌ൜ݕሾሺ݊ െ ௗܮ ൅ ݆ሻ∆ሿ, ,0,݊ ݃݊݅ݎݑ݀ ݀݁ݐݎܽݐݏ ݏ݅ ݎ݁ݖݕ݈ܽ݊ܽ ݄݁ݐ ݂݅ ݁ݏ݅ݓݎ݄݁ݐ݋       (2) 

The total spectrum that will be accumulated into the 

analyzer memory during the measurement time Tm is then 
given by the channel contents: 
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The quantities Ŷj(n) are random variables, but they are not 
independent with respect to n, since, even at moderate 
neutron intensities, some detector pulses would occur during 
the recording cycles of the analyzer, thus giving no 
contribution to the spectrum Ŷj.  It is therefore assumed here 
that the mean counting rate at the detector is so low that 
practically every pulse is likely to start the analyzer, i.e. we 
require that z « 1/ Ta ,  where Ta = La ∆ is the dead time of the 
analyzer.  We may treat the measured spectrum values Ŷj as 
sums of Lm independent, binomially distributed random 
variables, having the two possible outcomes defined in Eq.2.  
In particular, the probability for Ŷj (n) = y[(n – Ld + J) ∆] Will 
now be equal to the probability that a detector pulse occurs in 
interval n.  Since ∆ is normally very small, this probability 
can be approximated as: 
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so that 1  - πn is the probability for  Ŷj (n) = 0.   So, the 
expectation value of Ŷj , which equals to the contents of 
channel j after measurement time Tm = N∆, is  
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                   (mean value)  (5)  
 
The sum of the integrals over clock periods can be merged 

into one integral over the measurement time Tm:   
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Fig. 2 : Schematic of the RTOF diffractometer operation principle
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So, in the RTOF analyzer, the content of channel j is the 
cross-correlation function of the detector intensity z(t) and 
the clocked pickup signal.   

There were many attempts to develop the current RTOF 
analyzer by replacing it with PC-based data acquisition 
systems [11,12].   

This paper discusses the ability to perform the 
cross-correlation functions between the acquired pick-up and 
the neutron intensity signals coming out from the interface 
card of the PC-based RTOF data acquisition system by 
utilizing a time-delayed neural network (TDNN).    

Neural networks are networks of interconnecting neurons 
that compute specific functions when given a set of input 
signals [13].  When specific appropriate learning-rules are 
used in these networks, they can compute adaptive complex 
functions transforming the input into output that may not be 
solved by traditional analytical techniques, such as 
self-learning. The ability to perform these unique functions 
by these neural networks lies in (1) the neural network 
architecture (nonlinear multi-layered network), (2) the 
learning-rules, and (3) adaptive connection weights. These 
neural networks have been used in recent years to perform 
parallelizable computing functions that are capable of 
learning using the adaptive learning-rules to update their 
connection-weights. The significance of the computation 
performed by these networks depends very much on the 
network architecture and learning-rules [14,15]. 

 

II.   PROPOSED APPROACH 
The present work introduces new time-delayed neural 

network (TDNN) architecture to process time-varying signals. 
The new approach applies a previously designed and tested 
data acquisition system, a special interface card and software 

program installed in a PC computer. The interface card 
receives the pick-up and the neutron intensity signals from 
the chopper and detector respectively.  The function of the 
interface card then is to adapt the data collected from these 
input signals in order to be ready in the binary form at the 
time the program makes access to the interface card.  The 
data acquisition system together with the neural network will 
act as substitute for the RTOF analyzer of the Fourier 
diffractometer (Fig.3).  This neural network takes the adapted 
pick-up and neutron intensity signals as its inputs for 

processing in order to compute the cross-correlation function 
automatically.  This time-delayed network is similar but 
different from the hybrid network introduced earlier by Tam 
[16,17].  The pick-up signal, as input, is delayed successively 
by a time-delay element in each input stage of the network 
(see Fig. 4).  Thus, the time-delay produces the modified 
Hebbian learning-rule such that the connection-weight will 
change only if the time-delayed input and current output are 
activated rather than if the current input and current output 
are activated simultaneously.  In other words, the output is 
associated with the previous input rather than the current 
input.   Let y(t) denotes the input pick-up signal at time t and 
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y(t-τ) denotes the signal delayed by the lag time τ and 
according to the time-delayed Hebbian learning-rule: ∆ݓ௞ሺݐ, ሻݐ∆݇ ൌ ݐሺݕ െ  ሻ          (7)ݐ௞ሺݔሻݐ∆݇

where k is an integer constant and ∆wk (t, k∆t) is the change in 
the kth connection-weight between the time-delayed input, 
y(t- k∆t), and the kth output, xk 

The discrete lag-times (τ= k∆t) in integral, k, multiples of 
∆t to delay the input signal by multiple delay-tap lines is used 
in the previous equation.  A single time-series signal is used 
as the input to the network. This time-delayed input is 
cascaded into multiple branches as inputs to successive 
neurons to provide the inputs for the modified Hebbian 
learning-rule (Eq. 7) to update the corresponding 
connection-weights. The network would produce as many 
outputs as there are discrete time-delays. The k -th output of 
the network in Fig.4 is given by: ݔ௞ሺݐሻ ൌ ,ݐ௞ሺݓ ݐሺݕሻݐ∆݇ െ  ሻ             (8)ݐ∆݇

Alternatively, each of the delay-tap lines in Fig.(4) can be 
considered as feeding into a pseudo-neuron as the first 
(pseudo) layer of the network in Fig.(5).  

 This first layer can be considered as a pseudo-layer for the 

network because it does not perform extra computation, 
except for conceptualization of the equivalent neural network 
architecture.  The output of the kth time-delayed pseudo-input 
neuron can be expressed in terms of the initial input signal 
by:  

௞ܻሺݐሻ ൌ ݐሺݕ െ  ሻ         (9)ݐ∆݇

The layer of time-delayed inputs is now represented as a 
parallel layer rather than a cascaded sequential input layer.  
Accordingly, the single sequential time-series input is 
transformed into parallel inputs by the delay lines allowing 
for simultaneous parallel processing rather than sequential 
processing.  The neutron intensity signal can now be applied 
to the neurons of the input layer giving rise the neural 
network shown in Fig.6.  The delayed pick-up y(t-k∆t) signal 
will ANDed with the neutron intensity signal z(t) 
point-by-point during the measurement time Tm.  Yk(t) after 
iterating n discrete time steps becomes: 

 Y୩ሺ݆∆ݐሻ ൌ ෌ yሺj∆t െ k∆tሻzሺj∆tሻ௡௝ୀ଴          (10) 
 
The delay lines of the suggested TDNN can be 

implemented through a circular linked-list data structure with 
N elements.  The first and last elements of the linked-list are 
shifted right with one step every time-channel clock event 

allowing the insertion of the new coming pick-up pulse in the 
last element. At the same time the detector signal is checked 
and if it is logical “1”, the contents of the linked-list will be 
added to the corresponding output cells of the neural 
network. 

 

III.   CONCLUSION 
The neural network architecture introduced in this paper 

satisfies the main objective of creating a neural network that 
correlates the chopper-decoder and detector signals of the 
RTOF diffractometer.  The complete implementation of this 
design along with experimental measurements will be 
deferred to a subsequent paper.   
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