
 
 

 

   
Abstract—This paper presents a study comparing different 

techniques to achieve minimal test suites in combinatorial 
testing. Considering high interaction strength is not without 
difficulties.  When the number of parameter coverage increases, 
the size of t-way test sets also increases exponentially, hence, 
resulting into combinatorial explosion problem.  Addressing 
these aforementioned issues, a new strategy capable of 
supporting high interaction strength, called Modified IPOG 
(MIPOG) is proposed.  Similar to its predecessor IPOG (In 
Parameter Order General), MIPOG adopts the horizontal and 
vertical extensions in order to construct the desired test set.  
However, unlike IPOG, MIPOG optimizes both the horizontal 
and vertical extensions resulting into a smaller size solution 
than that of IPOG, (i.e., with the test size ratio ≤ 1).  In fact, 
MIPOG, in most cases, surpasses some IPOG variants (IPOD, 
IPOF1, and IPOF2) as well as other existing strategies (Jenny, 
TVG, TConfig, and ITCH), as far as the test size is concerned 
with an acceptable execution time.  Additionally, MIPOG has 
also contributed to enhance many known CA and MCA that 
exist in the literature. 
 

Index Terms—combinatorial testing, covering array, mixed 
covering array, multi-way testing, pairwise testing, t-way 
testing.  
 

I. INTRODUCTION 
Testing is an important but expensive part of the software 

development process.  Lack of testing often leads to 
disastrous consequences including loss of data, fortunes and 
even lives. For these reasons, many input parameters and 
system conditions need to be tested against the specifications 
of the system for conformance. Although desirable, 
exhaustive testing is prohibitively expensive even in a 
moderate-sized project, due to resources as well as timing 
constraints [1].Therefore, it is necessary to reduce the test 
selection space in a systematic manner. In line with 
increasing consumer demands for new functionalities and 
innovations, software applications grew tremendously in size 
over the last 15 years. This sudden increase has a profound 
impact as far as testing is concerned. Here, the test size grew 
significantly as a result. To address the aforementioned 
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issues, much research is now focusing on sampling 
techniques based on interaction testing (termed t-way testing 
strategy) in order to derive the most optimum test suite  for 
testing consideration (i.e., termed as Covering Array (CA) 
for uniform parameter values and Mixed Covering Array 
(MCA) for non-uniform parameter values respectively).  
Earlier adoption of t-way testing gave mixed results. While 
2-way testing (also termed pairwise) testing appears to be 
adequate for achieving good test coverage in some existing 
system, a counter argument suggests that such a conclusion 
cannot be generalized to all (future) software system.  Often, 
the net effect of software growth introduces new intertwined 
dependency between parameters involved, thus, justifying 
the need to support for high interaction strength (t). 

One reduction approach is via pairwise testing [2, 3].  
Pairwise testing helps detect faults caused by interactions 
between two parameters.  Indeed, earlier work demonstrates 
that pairwise testing achieves higher block and decision 
coverage than traditional methods for a commercial email 
system [4]. While such a conclusion can be true for some 
system [5], a counter argument suggests that some faults may 
also be caused by the interaction of more than two parameters 
(i.e. often termed as t-way testing). For example, by applying 
t-way testing to a telephone software system demonstrates 
that several faults can only be detected under certain 
combinations of input parameters [6].  A study conducted by 
The National Institute of Standards and Technology (NIST) 
has shown that 95% of actual faults are caused by 4-way 
interactions in some system. In fact, only after considering up 
to 6-way interactions can all the faults be found [7, 8].  Given 
that software applications grew tremendously in the last 15 
years, there is clearly a need to consider the support for high 
interaction strength, that is, to cater for the possibility of new 
intertwined dependencies between involved parameters. 

Considering more than two parameter interactions is not 
without difficulties.  When the number of parameter 
coverage increases, the size of t-way test sets also increases 
exponentially.  As such, for a large system, considering a 
higher order t-way test set can lead to a combinatorial 
explosion problem. Here, computational efforts required in 
search of an optimum test set, termed as Covering Array (CA) 
(in which the parameter values are uniform) and Mixed 
Covering Array (MCA) (in which the parameter values are 
non-uniform), can be expensive especially when each 
interaction is to be covered optimally by the minimum 
number of test cases for a given interaction strength (t). 
Addressing the aforementioned issues, this paper proposes a 
new strategy, called Modified IPOG for t-way testing.  

The remaining sections of this paper are organized as 
follows. Section 2 discusses some related work. Section 3 
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gives the details of IPOG and our modified MIPOG.  The 
similarities and differences between the two are also 
explained.  Section 4 highlights comparisons between 
MIPOG and other existing tools.  Finally, Section 5 gives the 
conclusions and suggestions for future work. 

 

II. RELATED WORK 
Combinatorial testing has been used to generate test inputs 

for software testing. In combinatorial testing a set of inputs 
are modeled as factors and values and all combinations of 
each set of t-factors will be covered during testing using a 
structure called a covering a CA (when the values are equal) 
and MCA (for non-equal values). A number of strategies 
exist to cater for CA and MCA. In general, these strategies 
adopt either algebraic or computational approaches [9, 10].  

Most algebraic approaches compute test sets directly by a 
mathematical function [11].  As the name suggests, algebraic 
approaches are often based on the extensions of the 
mathematical methods for constructing Orthogonal Arrays 
(OAs) [12, 13].  Younis et al. (2008) proposed a prime-based 
strategy to construct OA directly using a simple formula, and 
compared their strategy with the Latin OA strategy.  Here, the 
prime strategy does not require any storage.  Nonetheless, the  
prime strategy is restricted to the conditions that the number 
of parameters are equal to the number of values, and both are 
prime numbers [14]. 

Alternatively, OAs can be constructed by using Galois 
Finite field (GF) [15]. The limitation of this approach is two 
fold:  the number of values (v) for each parameter should be a 
prime number or a power of prime number; and the number 
of parameters (p) should be ≤v. 

Due to its popularity, catalogs of OAs can be found in the 
appendix of many advanced statistics books.  In fact,  Neil 
Sloan dedicates a web site to maintaining OA  table [16]. 
While proven to be useful, OA-based approaches are often 
too restrictive (i.e. typically requiring the parameter values to 
be uniform).  Furthermore, apart from merely supporting 
pairwise (or 2-way) interactions, not all OA solutions can be 
found for t>2. 

An improvement of OA-based approaches, called CA has 
been  developed as a result [17].  CA-based approaches are 
more flexible in the sense that it is independent of OA, i.e., a 
CA solution is possible to be found even without the 
existence of its OA solution.  Some variations of the 
algebraic approach also exploit recursion in order to permit 
the construction of larger test sets from smaller ones [18].  In 
addition, test sets are derived without performing any explicit 
enumeration of the combinations to be covered.  For instance, 
Maity et al. (2003) proposed a pairwise strategy for 
constructing CA by using algebraic product [19].  The 
computations involved in algebraic approaches are typically 
small and not subjected to the combinatorial explosion 
problem.  For this reason, strategies that are based on 
algebraic approaches are extremely fast [20].  In some CA, 
algebraic strategies give the most optimum  test suite size (i.e. 
within the lower bound) [21].  However, for large number of 
parameters, the upper bound can not be determined [22].    

As an improvement of CA, MCA is proposed to cater for 
the support for non-uniform parameter values [23].  Maity 

and Nayak (2005) extend their CA strategy to generate some 
MCAs [24]. Colbourn et al. (2006) describe the construction 
of CAs and MCAs of Roux type [21]. In a nut shell, the 
construction of CAs or MCAs by means of pure algebraic 
approaches (i.e., without searching) can be achieved either by 
applying successive transformations to well known array or 
by using a product of construction [25, 26]. For this reason, 
algebraic approaches often impose restrictions on the system 
configurations to which they can be applied [1].  This 
significantly limits the applicability of algebraic approaches 
for software testing [20].  

 Unlike algebraic approaches, computational approaches 
often rely on the generation of all tuples and search the tuple 
space to generate the required test suite until all tuples have 
been covered [27].  In the case where the number of tuples to 
be considered is significantly large, adopting computational 
approaches can be expensive especially in terms of the space 
required to store the tuples and the time required for explicit 
enumeration.  Unlike algebraic approaches, the 
computational approaches can be applied to arbitrary system 
configurations.  Furthermore, computational approaches are 
more adaptable for constraint handling [28, 29] and test 
prioritization [30].  

Hartman et al. (2005) developed the IBM’s Intelligent Test 
Case Handler (ITCH) as an Eclipse Java plug-in tool [31]. 
ITCH uses a combinatorial algorithm based on exhaustive 
search to construct the test suites for t-way testing. Although 
useful as part of IBM’s automated test plan generation, ITCH 
results appear to be not optimized as far as the number of 
generated test cases is concerned [20].  Furthermore, due to 
its exhaustive search algorithm, ITCH execution typically 
takes a long time. Concerning implementation, ITCH 
consists of two deterministic strategies [31] namely: CTS 
(Combinatorial Test Services)  [10] and TOFU (Test 
Optimizer for Functional Usage) [32]. Both CTS and TOFU 
can support t-way test generation for 2≤t≤4.  Typically, CTS 
performs better than TOFU in terms of test size and execution 
time.  

Jenkins (2003) developed a deterministic t-way generation 
strategy, called Jenny [33]. Jenny adopts a greedy algorithm 
to produce a test suite in one-test-at-a time fashion.  In Jenny, 
each feature has its own list of tuples.   It starts out with 
1-tuple (just the feature itself).  When there are no tuples left 
to cover, Jenny goes to 2-tuples and so on. Hence, during 
generation instances, it is possible to have one feature still 
covering 2-tuples while another feature is already working on 
3-tuples.  This process goes on until all tuples are covered. 
Jenny has been implemented as an MSDOS tool using C 
programming language. 

Complementary to the aforementioned work, significant 
efforts also involve extending existing pairwise strategies 
(e.g. in the case of Automatic Efficient Test Generator 
(AETG) and In Parameter Order (IPO)) to support t-way 
testing.  AETG builds a test set “one-test-at-a-time” until all  
tuples are covered [2, 3]. In contrast, IPO covers 
“one-parameter-at-a-time” (i.e. through horizontal and 
vertical extension mechanisms), achieving a lower order of 
complexity than that of AETG [34].  

Arshem (2003) developed a freeware Java-based t-way 
testing tool called Test Vector Generator (TVG) based on 
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extension of AETG to support t-way testing.  Similar efforts 
are also undertaken by Bryce et al. (2005) to enhance AETG 
for t-way testing [35, 36]. Nie et al. (2005) proposed a 
generalization for IPO with the Genetic Algorithm (GA), 
called IPO_N, and GA_N, respectively for t=3. IPO_N 
performed better than GA_N in terms of test size as well as 
execution time [37].   

Williams et al. (2003) implemented a deterministic 
Java-based t-way test tool called TConfig (Test 
Configuration) [38].  TConfig consists of two strategies, 
namely RE (REcursive algorithm); for t=2 [39, 40], and IPO  
for 2 ≤ t ≤ 6 [38].  Williams reported that the RE failed to 
cover all tuples for t>2. For this reason, TConfig uses a minor 
version of IPO to cover the uncovered tuples in a greedy 
manner [15].  

 More recently, IPO is generalized to general t-way 
combinatorial testing into IPOG (In Parameter Order 
General )[41]. A number of variants have also been 
developed to improve the IPOG’s performance.  These 
variants including: IPOD [20], IPOF and IPOF2 [42]. 

Both IPOG and IPOD are deterministic strategies. Unlike 
IPOG, IPOD combines the IPOG strategy with an algebraic 
recursive construction, called D-construction developed by 
Chateauneuf et al (1999) [43], in order to reduce the number 
of tuples to be covered.  In fact, Lei et al (2008) reported that 
when t=3, IPOD is degraded to the D-construction algebraic 
approach [20]. Here, when t>3, a minor version of IPOG is 
used to cover the uncovered tuples  during D-construction 
[20]. As such, IPOD tends to be faster than IPOG, even with 
a high test size. It should be noted that the RE and IPO 
version used in TConfig differs from that used by IPOD. 

Unlike IPOG and IPOD, IPOF is a non-deterministic 
strategy.  For this reason, IPOF produces a different test set in 
each run.  Unlike IPOG, IPOF rearranges the rows during the 
horizontal extension in order to cover more tuples per 
horizontal extension.  Results on  the performance of IPOF 
with a small number of parameter values have been reported 
in [42].  Similarly, a variant of  IPOF, called IPOF2 [42] is 
also available, but it has been  demonstrated with a small 
number of parameter values. Unlike IPOF, IPOF2 uses a 
heuristic technique to cover the tuples, allowing a faster 
execution time than that of IPOF but with a higher test set 
size.  Currently, IPOG, IPOD, IPOF1 and IPOF2 are 
integrated into a Java-based tool called ACTS (Advanced 
Combinatorial Testing Suite). Finally, Cohen et al. (2008) 
proposed a heuristic search, particularly through the 
application of Simulated Annealing (SA) [44]. This local 
search method has provided many of the smallest test suites 
for different system configurations for t=2, and 3; however, 
at a cost in very high execution time to generate test suites [9, 
44]. 

Overall, comparative results have shown  that IPOG 
performed better than all the abovementioned t-way 
strategies (including some of its known variants such as 
IPOD, IPOF1, and IPOF2) particularly in terms of the  
support of higher order t with optimum test sizes and  
reasonable execution times [41]. For this reason, we have 
adopted the IPOG strategy as our benchmark.   

As part of the effort to develop an optimized strategy for 
t-way testing, we have improved IPOG into a new strategy 

called Modified IPOG (MIPOG).  Here, we aim to generate a 
more optimum test set, i.e. each t-way interaction is covered 
by as few test cases as possible; hence gives fewer 
combinations than that of IPOG. Furthermore, with MIPOG, 
we aim to contribute to the best well known results in [22].  It 
should be noted here that Colbourn collects the current best 
known upper bounds of CA for 2 ≤ t ≤ 6 regardless of the 
strategies used (i.e. computational or algebraic approaches).   

 

III. THE PROPOSED STRATEGY 
As discussed earlier, the proposed strategy, MIPOG, is 

based on the IPOG strategy [41]. For a system with at least t 
or more parameters, the MIPOG strategy constructs a t-way 
test set configuration for the first t parameters. Then, it 
extends the test set to construct a t-way test set for t+1 
parameters.  After that, it continues to extend the test set until 
a t-way test set has been constructed for all the parameters of 
the system.  Like IPOG, MIPOG also performs the horizontal 
growth followed by the vertical growth, but in a different way 
in order to optimize the number of generated test sizes such 
that the t-way interaction element is covered by the minimum 
number of test cases.  For comparative purposes, Fig. 1 and 
Fig. 2 illustrate the IPOG strategy and MIPOG strategy, 
respectively.   

As can be seen in Fig.s 1 and 2, the inputs to both 
algorithms are the degree of interaction ‘t’ and the set of 
parameters ‘ps’.  The output is a t-way test set for all the 
parameters in the system.  The differences between the two 
strategies lie in both horizontal and vertical extensions (from 
line 6 onwards). 

 
Algorithm IPOG-Test (int t, ParameterSet ps) 
{ 
1. initialize test set ts to be an empty set 
2. denote the parameters in ps, in an arbitrary order, as P1, 

P2, …, and Pn 
3. add into test set ts a test for each combination of values 

of the first t parameters 
4. for (int i = t + 1; i ≤ n; i ++){ 
5. let π be the set of t-way combinations of values involving 

parameter Pi and t -1 parameters among the first i – 1 
parameters 

6. // horizontal extension for parameter Pi 
7. for (each test τ = (v1, v2, …, vi-1) in test set ts) { 
8. choose a value vi of Pi and replace τ with τ’ = (v1, v2, …, 

vi-1, vi) so that τ’ covers the 
    most number of combinations of values in π 
9. remove from π the combinations of values covered by τ’ 
10. } 
11. // vertical extension for parameter Pi 
12. for (each combination σ in set π){ 
13. if (there exists a test that already covers σ) { 
14. remove σ from π 
15. } else { 
16. change an existing test, if possible, or otherwise   add a 

new test to cover σ and remove it from π 
17. } 
18. } 
19.} 
20. return ts;} 
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Fig. 1. The IPOG Strategy 

Algorithm  MIPOG-Test (int t, ParameterSet ps) 
{ 
1. initialize test set ts to be an empty set 
2. denote the parameters in ps, in an arbitrary order, as P1, 

P2, …, and Pn 
3. add into test set ts a test for each combination of  values 
of the first t parameters 
4. for (int i = t + 1; i ≤ n; i ++){ 
5. let π be the set of t-way combinations of values involving 

parameter Pi and t -1 parameters among the first i – 1 
parameters 

6. // horizontal extension for parameter Pi 
7. for (each test τ = (v1, v2, …, vi-1) in test set ts) { 
8. if (τ  not contains don’t care){ 
      // don’t care means that there is a previous parameter(s) 

that //not assigned value(s). As  
// such, it can be further optimized 
   choose a value vi of Pi and replace τ with τ’ = (v1, v2,…, 

vi-1, vi) so that τ’ covers the    maximum number of 
combinations of values in π} 

9. else {  
     choose a value vi of Pi and search all possible tuples 

that can be optimized the don’t care to construct τ’ = (v1, 
v2, …, vi-1, vi) so that τ’ covers the    maximum number 
of combinations of values in π and optimized the don’t 
care 

} 
10. remove from π the combinations of values covered  by τ’} 
11. // vertical extension for parameter Pi 
12. while ( π not empty){ 
13. rearrange π in decreasing order according to the size of 

the remaining tuples 
14. Choose the first tuple and generate test case (τ)                                                                            

that   combine maximum number of tuples  
15. delete the tuples covered by τ, add τ to local ts 
16. } //while 
17. return ts;} 

Fig. 2. The MIPOG Strategy 

In the horizontal extension, the MIPOG strategy checks all 
the values of the input parameters, and chooses the value that 
contains the maximum number of combinations for the 
uncovered tuples in the π set.  MIPOG also optimizes the 
‘don’t care’ value.  For this reason, MIPOG always generates 
a stable test case (that cannot be modified) by searching for 
tuples that can be covered by the same test.  This is performed 
by means of searching of uncovered tuples that can be 
combined with the test case to fill the ‘don’t care’ values 
during the horizontal extension (i.e. to ensure that the test 
case is indeed optimized). 

 In the vertical extension, MIPOG rearranges the π set in a 
decremented order size.  After that, MIPOG chooses the first 
tuple from the rearranged π set and combines the tuple with 
other suitable tuples in the π set (i.e. the resulting test case 
must have the maximum weight of uncovered tuples).  Once 
combined, all the tuples are removed from the π set.  This 
process is repeated until the π set is empty (i.e. to ensure the 
complete interaction coverage). 

To illustrate the differences between horizontal and 
vertical extensions of IPOG and MIPOG, we consider a 
system with 4 parameters (3 2-valued and 1 3-valued 

parameters).  Fig. 3 and Fig. 4 demonstrate the processes of 
generating the 3-way test set for IPOG and MIPOG, 
respectively. Here, MIPOG generates a minimal test set 
(3*2*2=12 values), while IPOG generates 14 test cases.  

 

 
Fig. 3. Generation of Test Set Using IPOG 

 
Fig. 4. Generation of Test Set Using MIPOG 

Because of the  optimization process in the MIPOG 
strategy (i.e. in search for the optimized tuples to be 
combined with the current test case in the vertical and 
horizontal extensions), we expect  the MIPOG strategy  to 
always give the same or a smaller  test set than that of IPOG 
(especially in the case involving the ‘don’t care’ values).  
However, such an optimization process is not without a cost.  
We do expect that the MIPOG strategy to be slightly slower 
than that of IPOG as far as the execution time is concerned. 

 

IV. EVALUATION AND DISCUSSION 
In this section, we evaluate MIPOG with the following 

objectives: 
i. To investigate the overall performance of MIPOG 

ii. To investigate whether MIPOG can have a significant 
gain against IPOG in terms of test size ratio. 

iii. To investigate whether MIPOG contributes to the 
best known results for CAs. 

iv. To compare against other existing strategies 
especially for MCAs.  

 
In order to achieve the first three objectives, three groups 

of experiments are applied to determine the respective CAs 
adopted from Lei et al (2008) [20].    

• In the first group, we fix both the number of 
parameters (p) to 10 and the strength of coverage 
(t) to 5, and vary the values (v) from 2 to 7.  
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• In the second group, we fix both (v) and (t) to 5, 
and change (p) from 6 to16.  

• In the third group, we fix p=10 and v=6, and 
change t from 2 to 7.  

To perform the experiments, we have downloaded ACTS 
from the NIST website [45]. In this case, the comparison is 
fair since MIPOG and IPOG (which is an available option in 
ACTS tool) are executed within the same platform consisting 
of Windows XP, with 1.6 GHz CPU, 1 GB RAM, and with 
JDK 1.6 installed. The results of the three groups of 
experiments are tabulated in Tables 1, 2, and 3, respectively.  
Darkened cells indicate the best performance in term of the 
test size and the execution time. Entries marked ‘NS’ indicate 
non-supported features of the corresponding tool for the 
corresponding value of t. 

TABLE 1: RESULTS FOR CAS WITH T= 5, P=10, AND V=(2,..,7) 

V 

MIPOG IPOG MIPOG/IPOG
Size Ratio  Size Time 

(second) 
Size Time 

(second) 

2 92 0.172 98 0.221 0.939 
3 626 0.5 93 751 1.361 0.834 
4 2911 5.046 3057 6.375 0.952 
5 8169 45.95 10111 31.875 0.879 
6 23557 766.58 25247 126.156 0.933 
7 49597 1365.45 54567 430.937 0.909 
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Fig. 5.  MIPOG’s Test  Size versus Values  for Group 1 
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Fig. 6.  MIPOG’s Execution Time versus Value  for Group 1 

From Table 1, we plot the test size against the number of 
values, as given in Fig. 5.  We also plot the execution time 
versus the number of values, as shown in Fig. 6. 

Referring to Figures 5 and 6, we conclude that both the test 
size and execution time are proportional quinary with the 
number of values. 

From Table 2, we plot the test size versus the number of 
parameters, as given in Fig. 7.  Then, we also plot the 
execution time versus the number of parameters, as shown in 
Fig. 8. 

TABLE 2: RESULTS FOR CAS WITH T= 5, P=(6,..,16), AND V=5 

P 
 

MIPOG IPOG MIPOG/IPOG
Size Ratio  Size Time 

(second) 
Size Time 

(second) 
6 3125 0.97 4149 1.265 0.753 
7 5625 2.86 6073 4.656 0.926 
8 5954 12.569 7517 8.796 0.792 
9 6996 24.462 8882 27.656 0.787 

10 8169 57.444 10111 31.875 0.808 
11 9067 147.488 11276 55.594 0.804 
12 9974 330.740 12337 107.266 0.808 
13 1100

4 
1112.302 13361 195.86 0.824 

14 1192
4 

4476.252 14284 334.829 0.835 

15 1270
4 

13881.09 15168 528.907 0.837 

16 1346
9 

31577.4 15993 848.062 0.842 
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Fig. 7. MIPOG’s Test  Size versus Parameter  for Group 2 
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Fig. 8.  MIPOG’s Execution Time versus log (p) for Group 2 

Referring to Fig. 7, we conclude that the test size grows 
logarithmically with the increasing.  number of parameters.  
From Fig. 8, we note that the execution time grows in quinary 
with respect to the logarithmic scale of parameters. 

In order to investigate the characteristics of the test size 
and execution time against varying strength of coverage (t), 
we plot the test size versus t from Table 3, as given in Fig. 9.  
Here, we also plot the execution time versus t, as shown in 
Fig. 10. 

TABLE 3: RESULTS FOR CAS WITH T=(2,..,7), P=10, AND V=6 

t

MIPOG IPOG MIPOG/IPOG
Size Ratio Size Time 

(second) 
Size Time 

(second) 

2 63  0.33 67 0.073 0.94 
3 512  1.797 532 0.594 0.962 
4 3657 69.05 3843 8.945 0.951 
5 23557 766.58 25247 126.156 0.933 
6 139638 13239.92 152014 2773.485 0.918 
7 775163 46259.89 NS - 
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Fig. 9. Test  Size versus (t) for Group 3 
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Fig. 10.  Execution Time versus (t) for Group 3 

From Figures 9 and 10, it is evident that the test sizes as 
well as the execution time grow exponentially as the strength 
of coverage (t) increases. Putting all together, the test size as 
well as the execution time can be summoned in O (v t log p).  

In order to achieve the second objective, we re-visit the 
size ratio in the last column of Tables 1, 2, and 3, respectively. 
Here, the size ratio is defined as the size obtained from 
MIPOG to the size obtained from IPOG.  From these tables, 
we note that the size ratio is always ≤1, which is an indication 

that MIPOG is able to outperform IPOG in terms of the test 
size. On one hand, as expected, due to optimization of both 
horizontal and vertical extensions, we observe that IPOG in 
most cases outperformed MIPOG in terms of the execution 
time. On the other hand, MIPOG’s test size is significantly 
smaller than that of IPOG.  Furthermore, MIPOG supports 
t≥6 whilst IPOG support up to t=6 (see Table 3). 

To achieve the third objective, we compare our results 
against the reported results in Colbourn’s catalogue [22].  
Here, we adopt the Colbourn’s notation CA (t,p,v) where t 
indicates the interaction strength, p indicates the number of 
parameters, and v indicates the number of values. Table 4 
reports the new upper bound of the  existing CAs  (i.e. 
CA(4,6,6), CA(5,8,3), CA(5,8,5), CA(5,9,5), CA(5,10,5) 
CA(5,11,5), CA(5,13,5), CA(5,14,5), CA(5,15,5), 
CA(5,16,5), CA(5,7,6), CA(6,8,6), CA(6,9,6), and 
CA(6,10,6)) as well as new ones (CA(7,8,6), CA(7,9,6), and 
CA(7,10,6)).  

In order to achieve the final objective, we consider 
non-homogeneous (i.e., mixing) MCAs. We have 
downloaded all the tools (IPOG, IPOD, IPOF, IPOF2, TVGII, 
Jenny, and TConfig) within our platform. Note that IPOG, 
IPOD, IPOF, and IPOF2 are integrated in the ACTS tool.  
Here, we subject MIPOG and all other tools to a series of 
experiments using our in-house RFID Tracking System 
module (TS). As explained earlier, the TS module has eleven 
parameters: seven parameters have 5 values, and four 
parameters have 2 values.  The results are tabulated in Tables 
5 and 6.  Similar to the earlier results (see Tables 1 to 3), 
darkened cells indicate the best performances in terms of the 
test size and the execution time. Entries marked ‘NA’ 
indicate that the results are not available (even though the 
tool supports the data entry, the execution time exceeded one 
day (i.e. > 1 day).  Entries marked ‘NS’ indicate 
non-supported features of the corresponding tool. 

 

TABLE 4: NEW CANS DERIVED FROM MIPOG 

CAN (t,p,v) MIPOG Best Upper Bound [22] 
Size(N) Algorithm Old Size 

CA(4,6,6) 1851 Soriano CA(4,7,6) 1893 
CA(5,8,3) 432  Simulated Annealing (Cohen) 457 
CA(5,8,5) 5954 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 6392 

CA(5,9,5) 6996 Density (Colbourn algorithm by Linnemann-Frewer) postop 
Nayeri-Colbourn-Konjevod 7647 

CA(5,10,5) 8169 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 8555 
CA(5,11 ,5) 9067 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 9793 
CA(5,13 ,5) 11004 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 11944 
CA(5,14 ,5) 11924 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 12777 
CA(5,15 ,5) 12704 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 14326 
CA(5,16 ,5) 13469 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 14326 
CA(5,7,6) 12944 IPOF (NIST) 14712 
CA(6,8,6) 87818 CA(6,7,6) extends by one factor 103446 
CA(6,9,6) 115811 CA(6,8,6) extends by one factor 160236 

CA(6,10,6) 139638 Composition 208656 
CA(7,8 ,6) 279936 NA NA 
CA(7,9 ,6) 569050 NA NA 
CA(7,10 ,6) 775163 NA NA 
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TABLE 5: MCAS FOR TS MODULE WHERE T CHANGES FROM 2 TO 11 

t MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG II TConfig ITCH 
CTS TOFU 

2 38 41 52 39 40 41 43 
RE IPO 

45 121 45 40 
3 218 239 277 240 244 245 270 239 225 1358 
4 1154 1290 1850 1262 1311 1273 1420 1320 1750 NA 
5 5625 6073 9894 5975 6036 6268 6501 NA NS NS 
6 17527 21452 33611 22135 22485 26012 25601 NA NS NS 
7 78940 NS NS NS NS NA NA NS NS NS 
8 158526 NS NS NS NS NA NA NS NS NS 
9 468750 NS NS NS NS NA NA NS NS NS 
10 625000 NS NS NS NS NA NA NS NS NS 
11 1250000 NS NS NS NS NA NA NS NS NS 

 
TABLE 6: TIME REQUIRED TO GENERATE MCAS FOR TS MODULE WHERE T CHANGES FROM 2 TO 11 

t MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG II TConfig ITCH 
CTS TOFU 

2 

0.07 0.016 <0.001 0.01 0.01 0.11 0.05 

RE IPO 

0.55 2.3 0.11 0.1 
3 0.275 0.188 0.002 0.02 0.031 0.5 2.281 25.32 1.23 30.44 
4 1.125 1.75 0.188 0.422 0.563 3.09 29.66 >10hour 120.665 >day 
5 35.15 17.891 4.375 7.502 10.1 66.41 2164.98 >day NS NS 
6 350.12 68.531 59.016 114.33 128.64 842.33 >9hour >day NS NS 
7 680.23 NS NS NS NS >day >day NS NS NS 
8 990.77 NS NS NS NS >day >day NS NS NS 
9 1800.82 NS NS NS NS >day >day NS NS NS 
10 3399.66 NS NS NS NS >day >day NS NS NS 
11 2.483 NS NS NS NS >day >day NS NS NS 

 
Referring to Table 5, MIPOG clearly outperforms all 

existing strategies in terms of the test size. Furthermore, 
MIPOG appears to be the only strategy that generate a test 
suite for t>6.  As seen in Table 7, for low value of t, IPOD has 
the fastest time. For t>7, MIPOG outperforms all other 
strategies.  Even though Jenny and TVGII accept the request 
of generation of a test suite for t>6, no results were obtained 
after 1 day (see ‘NS’ and ‘NA’ entries in Tables 5 and 6, 
respectively).  Another observation is that the execution time 
for MIPOG for 10-way test data generation is more than 
11-way (i.e., an exhaustive testing). Such a result is expected 
as there is no need for optimization in the case of exhaustive 
testing; thus, rendering faster computation.  

Going back to Table 6, the fact that IPOD (as well as other 
IPOG variants) is dominant as far as the execution time is 
concerned is justifiable. The general aim of IPOD is to get a 
faster execution time than that of its predecessor, IPOG.  In 
general, getting an optimized test size and obtaining a fast 
execution time are two complementary and intertwined 
issues.  On one hand, it is desirable to achieve a fast 
execution time under the cost of little optimization as far as 
the test size is concerned. On the other hand, obtaining the 
most minimum test size typically requires a longer execution 
time in order to select the most optimum interaction elements.  
As discussed earlier, MIPOG adopts different horizontal and 
vertical extension mechanisms; that requires more 
computation (i.e., in order to optimize the ‘don’t care’) than 
that of IPOG (including IPOD and IPOF).  Thus, MIPOG’s 
execution time tends to be slower than those from most of the 

IPOG family, a reasonable cost to pay for smaller test sizes.  
As far as investigating the effects of variations in domain 

sizes is concerned, we have also applied all the strategies to 
four system configurations with mixed domain sizes (i.e. 
similar to previous studies. Tables 7 to 11 depict the results 
for the four configurations for t=2, 3, 4, 5, and 6, respectively, 
in terms of the test size.  Column “Configuration” shows the 
parameters and values of each configuration in the following 
format: d1 

k1 d2 
k2 indicate that there are  k1 parameters with  

d1 values, k2 parameters with d2  values, and so on. For 
example, configuration 513822 in the second row indicates 
that there is one parameter with five values, eight parameters 
with three values, and two parameters with two values.  In 
addition to the earlier defined entry of ‘NA’, entries marked 
‘-‘ in Table 7 indicate  that no best result is published. The 
last column in Table 7 indicates the best published results by 
Bryce et al. [46]. Here, the column enteries “1C”, “5C”, and 
“10C” refers to using one candidate, five candidates, and 10 
candidates test cases respectively. During the searching 
process, then select the test case (from these candidates) that 
covers the maximum number of uncovered tuples. 

 
Referring to Tables 7 to 11, MIPOG outperforms all other 

strategies for most cases, except for the third row in the 
Configuration column.  Here, OA exists for 9-8 valued 
parameters algebraically. As such, the third row is a subset of 
this OA. Both CTS in ITCH and RE in TConfig are able to 
produce the OA (see Table 7). The same observation is 
applicable to CTS in the case of t=3 (see Table 8).  
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IPOF gives the minimal test suite for t=4 (see Table 9) 
using the dynamic programming technique [42] rather than 
algebraic.  Additionally, IPOF produces the minimal test 
suite for the first and third configurations for t=5 (see Table 
10).  MIPOG produces the minimal test suite when t=6 (see 
Table 11).  

From the overall results, two conclusions can be drawn. 
Firstly, even though an algebraic OA exists, the algebraic 
strategy will not necessarily produce the minimal test suite in 
the case of MCAs for varying t. For the case of CA, the 
algebraic strategy always gives the minimal test suite when 

OA exists. 
Finally, keeping MIPOG aside, IPOF, IPOF2, IPOG, 

IPOD, and Jenny are suitable for generating test suites for t≤6 
within acceptable times. TVG II also could produce a test 
suite for t=6, for some configurations. Similarly, TConfig 
could produce a test suite for t=5, for some configurations. 
TOFU is more suitable for generating test suites for t=2, and 
t=3, and only supports t=4 for small system configurations 
(see Table 9). In most cases, TOFU and CTS require a longer 
execution time to produce the required test suite.

TABLE 7: COMPARATIVE RESULTS FOR FOUR SYSTEM CONFIGURATIONS WITH MIXED DOMAIN SIZES USING T=2 

Configuration MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG 
II 

TConfig ITCH Best Published 
[46] 

RE IPO CTS TOFU 1C 5C 10C

4534 22 24 31 24 24 26 27 28 22 28 75 23 23 22 
513822 17 19 29 23 22 23 22 21 19 41 31 20 19 19 
82726252 67 73 112 69 70 76 79 64 78 64 231 69 68 68 
102413227 100 100 130 100 100 106 101 120 100 120 132 - - - 

TABLE 8: COMPARATIVE RESULTS FOR FOUR SYSTEM CONFIGURATIONS WITH MIXED DOMAIN SIZES USING T=3 

Configuration MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG 
II 

TConfig ITCH 

CTS TOFU 

4534 101 108 121 103 114 115 122 103 112 593 
513822 78 85 113 85 87 85 88 89 222 577 

82726252 558 591 729 560 623 645 716 594 511 3031 
102413227 400 400 480 402 427 411 434 472 2415 471 

TABLE 9:  COMPARATIVE RESULTS FOR FOUR SYSTEM CONFIGURATIONS WITH MIXED DOMAIN SIZES USING T=4 

Configuration MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG 
II 

TConfig ITCH 

CTS TOFU 

4534 425 434 704 429 455 452 481 444 704 NA 
513822 275 300 527 291 317 303 317 302 1683 3518 

82726252 4163 4302 7571 4077 4491 4580 5098 4317 4085 NA 
102413227 1265 1361 2522 1352 1644 1527 1599 1476 1484 NA 

TABLE 10: COMPARATIVE RESULTS FOR FOUR SYSTEM CONFIGURATIONS WITH MIXED DOMAIN SIZES USING T=5 

Configuration MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG II TConfig 

4534 1562 1625 2859 1561 1642 1667 1699 1641 
513822 901 983 1909 960 1015 996 1005 986 

82726252 26023 27676 42380 25954 27995 29326 31707 NA 
102413227 4196 4219 5306 4290 5018 4680 4773 NA 

TABLE 11: COMPARATIVE RESULTS FOR FOUR SYSTEM CONFIGURATIONS WITH MIXED DOMAIN SIZES USING T=6 

Configuration MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG II TConfig 
4534 4972 5393 8143 5125 5331 5501 5495 NA 

513822 2657 2910 5179 2844 2971 3017 3100 NA 

82726252 141445 154315 170098 144510 151973 179591 >day NA 

102413227 10851 10919 14480 11234 13310 11608 12732 NA 

 

V. CONCLUSION AND FUTURE WORK 
In this paper, we have proposed an efficient t-way test data 

generator (MIPOG) based on IPOG.  Like IPOG, MIPOG 
adopts the horizontal and vertical extensions in order to 
construct the desired test set.  Unlike IPOG, MIPOG 
optimizes both the horizontal and vertical extensions 
resulting in a smaller size solution than that of IPOG (i.e. 
with the test size ratio of ≤ 1).  In fact, MIPOG, in most cases, 
surpasses other existing strategies (Jenny, TVG, TConfig, 

ITCH) including some known IPOG and its variants (IPOD, 
IPOF1, IPOF2), as far as the test size is concerned with an 
acceptable execution time. As such, MIPOG has also 
contributed to enhance many known CA and MCA as 
described in the literature.  

Considering the fact that in most cases MIPOG generates 
the small test suite sizes (for both CA and MCA) with an 
acceptable execution time, our evaluation of MIPOG is 
encouraging.  In fact, our experience also indicates MIPOG is 
capable to generate higher strength test suite that has never 
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been reported in the literature (i.e., t>6). As part of future 
work, we are integrating MIPOG within the GRID 
environment in order to obtain more speed as far as execution 
time is concerned. In addition, we will improve the algorithm 
to handle other practical testing issues such as dependencies 
between factors and values. 
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