

Abstract—This paper presents a study comparing different

techniques to achieve minimal test suites in combinatorial
testing. Considering high interaction strength is not without
difficulties. When the number of parameter coverage increases,
the size of t-way test sets also increases exponentially, hence,
resulting into combinatorial explosion problem. Addressing
these aforementioned issues, a new strategy capable of
supporting high interaction strength, called Modified IPOG
(MIPOG) is proposed. Similar to its predecessor IPOG (In
Parameter Order General), MIPOG adopts the horizontal and
vertical extensions in order to construct the desired test set.
However, unlike IPOG, MIPOG optimizes both the horizontal
and vertical extensions resulting into a smaller size solution
than that of IPOG, (i.e., with the test size ratio ≤ 1). In fact,
MIPOG, in most cases, surpasses some IPOG variants (IPOD,
IPOF1, and IPOF2) as well as other existing strategies (Jenny,
TVG, TConfig, and ITCH), as far as the test size is concerned
with an acceptable execution time. Additionally, MIPOG has
also contributed to enhance many known CA and MCA that
exist in the literature.

Index Terms—combinatorial testing, covering array, mixed
covering array, multi-way testing, pairwise testing, t-way
testing.

I. INTRODUCTION
Testing is an important but expensive part of the software

development process. Lack of testing often leads to
disastrous consequences including loss of data, fortunes and
even lives. For these reasons, many input parameters and
system conditions need to be tested against the specifications
of the system for conformance. Although desirable,
exhaustive testing is prohibitively expensive even in a
moderate-sized project, due to resources as well as timing
constraints [1].Therefore, it is necessary to reduce the test
selection space in a systematic manner. In line with
increasing consumer demands for new functionalities and
innovations, software applications grew tremendously in size
over the last 15 years. This sudden increase has a profound
impact as far as testing is concerned. Here, the test size grew
significantly as a result. To address the aforementioned

Manuscript received October 2, 2010; revised January 6, 2011. This work
is partly sponsored by generous grants – “Development of Variable Strength
Interaction Strategy for Combinatorial Test Data Generation”, and Post
Graduate Research Grant –“T-Way Test Data Generation Strategy Utilizing
Multicore System” from Universiti Sains Malaysia.

Mohammed I. Younis with the Software Engineering Research Group of
the School of Electrical and Electronic Engineering, USM (e-mail:
younismi@gmail.com).

Kamal Z. Zamli with the Software Engineering Research Group of the
School of Electrical and Electronic Engineering, USM (e-mail:
eekamal@eng.usm.my).

issues, much research is now focusing on sampling
techniques based on interaction testing (termed t-way testing
strategy) in order to derive the most optimum test suite for
testing consideration (i.e., termed as Covering Array (CA)
for uniform parameter values and Mixed Covering Array
(MCA) for non-uniform parameter values respectively).
Earlier adoption of t-way testing gave mixed results. While
2-way testing (also termed pairwise) testing appears to be
adequate for achieving good test coverage in some existing
system, a counter argument suggests that such a conclusion
cannot be generalized to all (future) software system. Often,
the net effect of software growth introduces new intertwined
dependency between parameters involved, thus, justifying
the need to support for high interaction strength (t).

One reduction approach is via pairwise testing [2, 3].
Pairwise testing helps detect faults caused by interactions
between two parameters. Indeed, earlier work demonstrates
that pairwise testing achieves higher block and decision
coverage than traditional methods for a commercial email
system [4]. While such a conclusion can be true for some
system [5], a counter argument suggests that some faults may
also be caused by the interaction of more than two parameters
(i.e. often termed as t-way testing). For example, by applying
t-way testing to a telephone software system demonstrates
that several faults can only be detected under certain
combinations of input parameters [6]. A study conducted by
The National Institute of Standards and Technology (NIST)
has shown that 95% of actual faults are caused by 4-way
interactions in some system. In fact, only after considering up
to 6-way interactions can all the faults be found [7, 8]. Given
that software applications grew tremendously in the last 15
years, there is clearly a need to consider the support for high
interaction strength, that is, to cater for the possibility of new
intertwined dependencies between involved parameters.

Considering more than two parameter interactions is not
without difficulties. When the number of parameter
coverage increases, the size of t-way test sets also increases
exponentially. As such, for a large system, considering a
higher order t-way test set can lead to a combinatorial
explosion problem. Here, computational efforts required in
search of an optimum test set, termed as Covering Array (CA)
(in which the parameter values are uniform) and Mixed
Covering Array (MCA) (in which the parameter values are
non-uniform), can be expensive especially when each
interaction is to be covered optimally by the minimum
number of test cases for a given interaction strength (t).
Addressing the aforementioned issues, this paper proposes a
new strategy, called Modified IPOG for t-way testing.

The remaining sections of this paper are organized as
follows. Section 2 discusses some related work. Section 3

MIPOG - An Efficient t-Way Minimization Strategy for
Combinatorial Testing

Mohammed I. Younis and Kamal Z. Zamli

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

388

gives the details of IPOG and our modified MIPOG. The
similarities and differences between the two are also
explained. Section 4 highlights comparisons between
MIPOG and other existing tools. Finally, Section 5 gives the
conclusions and suggestions for future work.

II. RELATED WORK
Combinatorial testing has been used to generate test inputs

for software testing. In combinatorial testing a set of inputs
are modeled as factors and values and all combinations of
each set of t-factors will be covered during testing using a
structure called a covering a CA (when the values are equal)
and MCA (for non-equal values). A number of strategies
exist to cater for CA and MCA. In general, these strategies
adopt either algebraic or computational approaches [9, 10].

Most algebraic approaches compute test sets directly by a
mathematical function [11]. As the name suggests, algebraic
approaches are often based on the extensions of the
mathematical methods for constructing Orthogonal Arrays
(OAs) [12, 13]. Younis et al. (2008) proposed a prime-based
strategy to construct OA directly using a simple formula, and
compared their strategy with the Latin OA strategy. Here, the
prime strategy does not require any storage. Nonetheless, the
prime strategy is restricted to the conditions that the number
of parameters are equal to the number of values, and both are
prime numbers [14].

Alternatively, OAs can be constructed by using Galois
Finite field (GF) [15]. The limitation of this approach is two
fold: the number of values (v) for each parameter should be a
prime number or a power of prime number; and the number
of parameters (p) should be ≤v.

Due to its popularity, catalogs of OAs can be found in the
appendix of many advanced statistics books. In fact, Neil
Sloan dedicates a web site to maintaining OA table [16].
While proven to be useful, OA-based approaches are often
too restrictive (i.e. typically requiring the parameter values to
be uniform). Furthermore, apart from merely supporting
pairwise (or 2-way) interactions, not all OA solutions can be
found for t>2.

An improvement of OA-based approaches, called CA has
been developed as a result [17]. CA-based approaches are
more flexible in the sense that it is independent of OA, i.e., a
CA solution is possible to be found even without the
existence of its OA solution. Some variations of the
algebraic approach also exploit recursion in order to permit
the construction of larger test sets from smaller ones [18]. In
addition, test sets are derived without performing any explicit
enumeration of the combinations to be covered. For instance,
Maity et al. (2003) proposed a pairwise strategy for
constructing CA by using algebraic product [19]. The
computations involved in algebraic approaches are typically
small and not subjected to the combinatorial explosion
problem. For this reason, strategies that are based on
algebraic approaches are extremely fast [20]. In some CA,
algebraic strategies give the most optimum test suite size (i.e.
within the lower bound) [21]. However, for large number of
parameters, the upper bound can not be determined [22].

As an improvement of CA, MCA is proposed to cater for
the support for non-uniform parameter values [23]. Maity

and Nayak (2005) extend their CA strategy to generate some
MCAs [24]. Colbourn et al. (2006) describe the construction
of CAs and MCAs of Roux type [21]. In a nut shell, the
construction of CAs or MCAs by means of pure algebraic
approaches (i.e., without searching) can be achieved either by
applying successive transformations to well known array or
by using a product of construction [25, 26]. For this reason,
algebraic approaches often impose restrictions on the system
configurations to which they can be applied [1]. This
significantly limits the applicability of algebraic approaches
for software testing [20].

 Unlike algebraic approaches, computational approaches
often rely on the generation of all tuples and search the tuple
space to generate the required test suite until all tuples have
been covered [27]. In the case where the number of tuples to
be considered is significantly large, adopting computational
approaches can be expensive especially in terms of the space
required to store the tuples and the time required for explicit
enumeration. Unlike algebraic approaches, the
computational approaches can be applied to arbitrary system
configurations. Furthermore, computational approaches are
more adaptable for constraint handling [28, 29] and test
prioritization [30].

Hartman et al. (2005) developed the IBM’s Intelligent Test
Case Handler (ITCH) as an Eclipse Java plug-in tool [31].
ITCH uses a combinatorial algorithm based on exhaustive
search to construct the test suites for t-way testing. Although
useful as part of IBM’s automated test plan generation, ITCH
results appear to be not optimized as far as the number of
generated test cases is concerned [20]. Furthermore, due to
its exhaustive search algorithm, ITCH execution typically
takes a long time. Concerning implementation, ITCH
consists of two deterministic strategies [31] namely: CTS
(Combinatorial Test Services) [10] and TOFU (Test
Optimizer for Functional Usage) [32]. Both CTS and TOFU
can support t-way test generation for 2≤t≤4. Typically, CTS
performs better than TOFU in terms of test size and execution
time.

Jenkins (2003) developed a deterministic t-way generation
strategy, called Jenny [33]. Jenny adopts a greedy algorithm
to produce a test suite in one-test-at-a time fashion. In Jenny,
each feature has its own list of tuples. It starts out with
1-tuple (just the feature itself). When there are no tuples left
to cover, Jenny goes to 2-tuples and so on. Hence, during
generation instances, it is possible to have one feature still
covering 2-tuples while another feature is already working on
3-tuples. This process goes on until all tuples are covered.
Jenny has been implemented as an MSDOS tool using C
programming language.

Complementary to the aforementioned work, significant
efforts also involve extending existing pairwise strategies
(e.g. in the case of Automatic Efficient Test Generator
(AETG) and In Parameter Order (IPO)) to support t-way
testing. AETG builds a test set “one-test-at-a-time” until all
tuples are covered [2, 3]. In contrast, IPO covers
“one-parameter-at-a-time” (i.e. through horizontal and
vertical extension mechanisms), achieving a lower order of
complexity than that of AETG [34].

Arshem (2003) developed a freeware Java-based t-way
testing tool called Test Vector Generator (TVG) based on

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

389

extension of AETG to support t-way testing. Similar efforts
are also undertaken by Bryce et al. (2005) to enhance AETG
for t-way testing [35, 36]. Nie et al. (2005) proposed a
generalization for IPO with the Genetic Algorithm (GA),
called IPO_N, and GA_N, respectively for t=3. IPO_N
performed better than GA_N in terms of test size as well as
execution time [37].

Williams et al. (2003) implemented a deterministic
Java-based t-way test tool called TConfig (Test
Configuration) [38]. TConfig consists of two strategies,
namely RE (REcursive algorithm); for t=2 [39, 40], and IPO
for 2 ≤ t ≤ 6 [38]. Williams reported that the RE failed to
cover all tuples for t>2. For this reason, TConfig uses a minor
version of IPO to cover the uncovered tuples in a greedy
manner [15].

 More recently, IPO is generalized to general t-way
combinatorial testing into IPOG (In Parameter Order
General)[41]. A number of variants have also been
developed to improve the IPOG’s performance. These
variants including: IPOD [20], IPOF and IPOF2 [42].

Both IPOG and IPOD are deterministic strategies. Unlike
IPOG, IPOD combines the IPOG strategy with an algebraic
recursive construction, called D-construction developed by
Chateauneuf et al (1999) [43], in order to reduce the number
of tuples to be covered. In fact, Lei et al (2008) reported that
when t=3, IPOD is degraded to the D-construction algebraic
approach [20]. Here, when t>3, a minor version of IPOG is
used to cover the uncovered tuples during D-construction
[20]. As such, IPOD tends to be faster than IPOG, even with
a high test size. It should be noted that the RE and IPO
version used in TConfig differs from that used by IPOD.

Unlike IPOG and IPOD, IPOF is a non-deterministic
strategy. For this reason, IPOF produces a different test set in
each run. Unlike IPOG, IPOF rearranges the rows during the
horizontal extension in order to cover more tuples per
horizontal extension. Results on the performance of IPOF
with a small number of parameter values have been reported
in [42]. Similarly, a variant of IPOF, called IPOF2 [42] is
also available, but it has been demonstrated with a small
number of parameter values. Unlike IPOF, IPOF2 uses a
heuristic technique to cover the tuples, allowing a faster
execution time than that of IPOF but with a higher test set
size. Currently, IPOG, IPOD, IPOF1 and IPOF2 are
integrated into a Java-based tool called ACTS (Advanced
Combinatorial Testing Suite). Finally, Cohen et al. (2008)
proposed a heuristic search, particularly through the
application of Simulated Annealing (SA) [44]. This local
search method has provided many of the smallest test suites
for different system configurations for t=2, and 3; however,
at a cost in very high execution time to generate test suites [9,
44].

Overall, comparative results have shown that IPOG
performed better than all the abovementioned t-way
strategies (including some of its known variants such as
IPOD, IPOF1, and IPOF2) particularly in terms of the
support of higher order t with optimum test sizes and
reasonable execution times [41]. For this reason, we have
adopted the IPOG strategy as our benchmark.

As part of the effort to develop an optimized strategy for
t-way testing, we have improved IPOG into a new strategy

called Modified IPOG (MIPOG). Here, we aim to generate a
more optimum test set, i.e. each t-way interaction is covered
by as few test cases as possible; hence gives fewer
combinations than that of IPOG. Furthermore, with MIPOG,
we aim to contribute to the best well known results in [22]. It
should be noted here that Colbourn collects the current best
known upper bounds of CA for 2 ≤ t ≤ 6 regardless of the
strategies used (i.e. computational or algebraic approaches).

III. THE PROPOSED STRATEGY
As discussed earlier, the proposed strategy, MIPOG, is

based on the IPOG strategy [41]. For a system with at least t
or more parameters, the MIPOG strategy constructs a t-way
test set configuration for the first t parameters. Then, it
extends the test set to construct a t-way test set for t+1
parameters. After that, it continues to extend the test set until
a t-way test set has been constructed for all the parameters of
the system. Like IPOG, MIPOG also performs the horizontal
growth followed by the vertical growth, but in a different way
in order to optimize the number of generated test sizes such
that the t-way interaction element is covered by the minimum
number of test cases. For comparative purposes, Fig. 1 and
Fig. 2 illustrate the IPOG strategy and MIPOG strategy,
respectively.

As can be seen in Fig.s 1 and 2, the inputs to both
algorithms are the degree of interaction ‘t’ and the set of
parameters ‘ps’. The output is a t-way test set for all the
parameters in the system. The differences between the two
strategies lie in both horizontal and vertical extensions (from
line 6 onwards).

Algorithm IPOG-Test (int t, ParameterSet ps)
{
1. initialize test set ts to be an empty set
2. denote the parameters in ps, in an arbitrary order, as P1,

P2, …, and Pn
3. add into test set ts a test for each combination of values

of the first t parameters
4. for (int i = t + 1; i ≤ n; i ++){
5. let π be the set of t-way combinations of values involving

parameter Pi and t -1 parameters among the first i – 1
parameters

6. // horizontal extension for parameter Pi
7. for (each test τ = (v1, v2, …, vi-1) in test set ts) {
8. choose a value vi of Pi and replace τ with τ’ = (v1, v2, …,

vi-1, vi) so that τ’ covers the
 most number of combinations of values in π
9. remove from π the combinations of values covered by τ’
10. }
11. // vertical extension for parameter Pi
12. for (each combination σ in set π){
13. if (there exists a test that already covers σ) {
14. remove σ from π
15. } else {
16. change an existing test, if possible, or otherwise add a

new test to cover σ and remove it from π
17. }
18. }
19.}
20. return ts;}

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

390

Fig. 1. The IPOG Strategy

Algorithm MIPOG-Test (int t, ParameterSet ps)
{
1. initialize test set ts to be an empty set
2. denote the parameters in ps, in an arbitrary order, as P1,

P2, …, and Pn
3. add into test set ts a test for each combination of values
of the first t parameters
4. for (int i = t + 1; i ≤ n; i ++){
5. let π be the set of t-way combinations of values involving

parameter Pi and t -1 parameters among the first i – 1
parameters

6. // horizontal extension for parameter Pi
7. for (each test τ = (v1, v2, …, vi-1) in test set ts) {
8. if (τ not contains don’t care){
 // don’t care means that there is a previous parameter(s)

that //not assigned value(s). As
// such, it can be further optimized
 choose a value vi of Pi and replace τ with τ’ = (v1, v2,…,

vi-1, vi) so that τ’ covers the maximum number of
combinations of values in π}

9. else {
 choose a value vi of Pi and search all possible tuples

that can be optimized the don’t care to construct τ’ = (v1,
v2, …, vi-1, vi) so that τ’ covers the maximum number
of combinations of values in π and optimized the don’t
care

}
10. remove from π the combinations of values covered by τ’}
11. // vertical extension for parameter Pi
12. while (π not empty){
13. rearrange π in decreasing order according to the size of

the remaining tuples
14. Choose the first tuple and generate test case (τ)

that combine maximum number of tuples
15. delete the tuples covered by τ, add τ to local ts
16. } //while
17. return ts;}

Fig. 2. The MIPOG Strategy

In the horizontal extension, the MIPOG strategy checks all
the values of the input parameters, and chooses the value that
contains the maximum number of combinations for the
uncovered tuples in the π set. MIPOG also optimizes the
‘don’t care’ value. For this reason, MIPOG always generates
a stable test case (that cannot be modified) by searching for
tuples that can be covered by the same test. This is performed
by means of searching of uncovered tuples that can be
combined with the test case to fill the ‘don’t care’ values
during the horizontal extension (i.e. to ensure that the test
case is indeed optimized).

 In the vertical extension, MIPOG rearranges the π set in a
decremented order size. After that, MIPOG chooses the first
tuple from the rearranged π set and combines the tuple with
other suitable tuples in the π set (i.e. the resulting test case
must have the maximum weight of uncovered tuples). Once
combined, all the tuples are removed from the π set. This
process is repeated until the π set is empty (i.e. to ensure the
complete interaction coverage).

To illustrate the differences between horizontal and
vertical extensions of IPOG and MIPOG, we consider a
system with 4 parameters (3 2-valued and 1 3-valued

parameters). Fig. 3 and Fig. 4 demonstrate the processes of
generating the 3-way test set for IPOG and MIPOG,
respectively. Here, MIPOG generates a minimal test set
(3*2*2=12 values), while IPOG generates 14 test cases.

Fig. 3. Generation of Test Set Using IPOG

Fig. 4. Generation of Test Set Using MIPOG

Because of the optimization process in the MIPOG
strategy (i.e. in search for the optimized tuples to be
combined with the current test case in the vertical and
horizontal extensions), we expect the MIPOG strategy to
always give the same or a smaller test set than that of IPOG
(especially in the case involving the ‘don’t care’ values).
However, such an optimization process is not without a cost.
We do expect that the MIPOG strategy to be slightly slower
than that of IPOG as far as the execution time is concerned.

IV. EVALUATION AND DISCUSSION
In this section, we evaluate MIPOG with the following

objectives:
i. To investigate the overall performance of MIPOG

ii. To investigate whether MIPOG can have a significant
gain against IPOG in terms of test size ratio.

iii. To investigate whether MIPOG contributes to the
best known results for CAs.

iv. To compare against other existing strategies
especially for MCAs.

In order to achieve the first three objectives, three groups

of experiments are applied to determine the respective CAs
adopted from Lei et al (2008) [20].

• In the first group, we fix both the number of
parameters (p) to 10 and the strength of coverage
(t) to 5, and vary the values (v) from 2 to 7.

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

391

• In the second group, we fix both (v) and (t) to 5,
and change (p) from 6 to16.

• In the third group, we fix p=10 and v=6, and
change t from 2 to 7.

To perform the experiments, we have downloaded ACTS
from the NIST website [45]. In this case, the comparison is
fair since MIPOG and IPOG (which is an available option in
ACTS tool) are executed within the same platform consisting
of Windows XP, with 1.6 GHz CPU, 1 GB RAM, and with
JDK 1.6 installed. The results of the three groups of
experiments are tabulated in Tables 1, 2, and 3, respectively.
Darkened cells indicate the best performance in term of the
test size and the execution time. Entries marked ‘NS’ indicate
non-supported features of the corresponding tool for the
corresponding value of t.

TABLE 1: RESULTS FOR CAS WITH T= 5, P=10, AND V=(2,..,7)

V

MIPOG IPOG MIPOG/IPOG
Size Ratio Size Time

(second)
Size Time

(second)

2 92 0.172 98 0.221 0.939
3 626 0.5 93 751 1.361 0.834
4 2911 5.046 3057 6.375 0.952
5 8169 45.95 10111 31.875 0.879
6 23557 766.58 25247 126.156 0.933
7 49597 1365.45 54567 430.937 0.909

0

10000

20000

30000

40000

50000

0 1 2 3 4 5 6 7 8

Value

Si
ze

Fig. 5. MIPOG’s Test Size versus Values for Group 1

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8

Value

Ti
m

e
(s

)

Fig. 6. MIPOG’s Execution Time versus Value for Group 1

From Table 1, we plot the test size against the number of
values, as given in Fig. 5. We also plot the execution time
versus the number of values, as shown in Fig. 6.

Referring to Figures 5 and 6, we conclude that both the test
size and execution time are proportional quinary with the
number of values.

From Table 2, we plot the test size versus the number of
parameters, as given in Fig. 7. Then, we also plot the
execution time versus the number of parameters, as shown in
Fig. 8.

TABLE 2: RESULTS FOR CAS WITH T= 5, P=(6,..,16), AND V=5

P

MIPOG IPOG MIPOG/IPOG
Size Ratio Size Time

(second)
Size Time

(second)
6 3125 0.97 4149 1.265 0.753
7 5625 2.86 6073 4.656 0.926
8 5954 12.569 7517 8.796 0.792
9 6996 24.462 8882 27.656 0.787

10 8169 57.444 10111 31.875 0.808
11 9067 147.488 11276 55.594 0.804
12 9974 330.740 12337 107.266 0.808
13 1100

4
1112.302 13361 195.86 0.824

14 1192
4

4476.252 14284 334.829 0.835

15 1270
4

13881.09 15168 528.907 0.837

16 1346
9

31577.4 15993 848.062 0.842

0

2000

4000

6000

8000

10000

12000

14000

0 4 8 12 16

Parameter

S
iz

e

Fig. 7. MIPOG’s Test Size versus Parameter for Group 2

0

5000

10000

15000

20000

25000

30000

35000

0.7 0.8 0.9 1 1.1 1.2

log (p)

Ti
m

e
(s

)

Fig. 8. MIPOG’s Execution Time versus log (p) for Group 2

Referring to Fig. 7, we conclude that the test size grows
logarithmically with the increasing. number of parameters.
From Fig. 8, we note that the execution time grows in quinary
with respect to the logarithmic scale of parameters.

In order to investigate the characteristics of the test size
and execution time against varying strength of coverage (t),
we plot the test size versus t from Table 3, as given in Fig. 9.
Here, we also plot the execution time versus t, as shown in
Fig. 10.

TABLE 3: RESULTS FOR CAS WITH T=(2,..,7), P=10, AND V=6

t

MIPOG IPOG MIPOG/IPOG
Size Ratio Size Time

(second)
Size Time

(second)

2 63 0.33 67 0.073 0.94
3 512 1.797 532 0.594 0.962
4 3657 69.05 3843 8.945 0.951
5 23557 766.58 25247 126.156 0.933
6 139638 13239.92 152014 2773.485 0.918
7 775163 46259.89 NS -

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

392

0

100000

200000

300000

400000

500000

600000

700000

800000

0 1 2 3 4 5 6 7 8

t

Si
ze

Fig. 9. Test Size versus (t) for Group 3

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 1 2 3 4 5 6 7 8

t

Ti
m

e
(s

)

Fig. 10. Execution Time versus (t) for Group 3

From Figures 9 and 10, it is evident that the test sizes as
well as the execution time grow exponentially as the strength
of coverage (t) increases. Putting all together, the test size as
well as the execution time can be summoned in O (v t log p).

In order to achieve the second objective, we re-visit the
size ratio in the last column of Tables 1, 2, and 3, respectively.
Here, the size ratio is defined as the size obtained from
MIPOG to the size obtained from IPOG. From these tables,
we note that the size ratio is always ≤1, which is an indication

that MIPOG is able to outperform IPOG in terms of the test
size. On one hand, as expected, due to optimization of both
horizontal and vertical extensions, we observe that IPOG in
most cases outperformed MIPOG in terms of the execution
time. On the other hand, MIPOG’s test size is significantly
smaller than that of IPOG. Furthermore, MIPOG supports
t≥6 whilst IPOG support up to t=6 (see Table 3).

To achieve the third objective, we compare our results
against the reported results in Colbourn’s catalogue [22].
Here, we adopt the Colbourn’s notation CA (t,p,v) where t
indicates the interaction strength, p indicates the number of
parameters, and v indicates the number of values. Table 4
reports the new upper bound of the existing CAs (i.e.
CA(4,6,6), CA(5,8,3), CA(5,8,5), CA(5,9,5), CA(5,10,5)
CA(5,11,5), CA(5,13,5), CA(5,14,5), CA(5,15,5),
CA(5,16,5), CA(5,7,6), CA(6,8,6), CA(6,9,6), and
CA(6,10,6)) as well as new ones (CA(7,8,6), CA(7,9,6), and
CA(7,10,6)).

In order to achieve the final objective, we consider
non-homogeneous (i.e., mixing) MCAs. We have
downloaded all the tools (IPOG, IPOD, IPOF, IPOF2, TVGII,
Jenny, and TConfig) within our platform. Note that IPOG,
IPOD, IPOF, and IPOF2 are integrated in the ACTS tool.
Here, we subject MIPOG and all other tools to a series of
experiments using our in-house RFID Tracking System
module (TS). As explained earlier, the TS module has eleven
parameters: seven parameters have 5 values, and four
parameters have 2 values. The results are tabulated in Tables
5 and 6. Similar to the earlier results (see Tables 1 to 3),
darkened cells indicate the best performances in terms of the
test size and the execution time. Entries marked ‘NA’
indicate that the results are not available (even though the
tool supports the data entry, the execution time exceeded one
day (i.e. > 1 day). Entries marked ‘NS’ indicate
non-supported features of the corresponding tool.

TABLE 4: NEW CANS DERIVED FROM MIPOG

CAN (t,p,v) MIPOG Best Upper Bound [22]
Size(N) Algorithm Old Size

CA(4,6,6) 1851 Soriano CA(4,7,6) 1893
CA(5,8,3) 432 Simulated Annealing (Cohen) 457
CA(5,8,5) 5954 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 6392

CA(5,9,5) 6996 Density (Colbourn algorithm by Linnemann-Frewer) postop
Nayeri-Colbourn-Konjevod 7647

CA(5,10,5) 8169 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 8555
CA(5,11 ,5) 9067 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 9793
CA(5,13 ,5) 11004 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 11944
CA(5,14 ,5) 11924 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 12777
CA(5,15 ,5) 12704 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 14326
CA(5,16 ,5) 13469 Density (Colbourn) postop Nayeri-Colbourn-Konjevod 14326
CA(5,7,6) 12944 IPOF (NIST) 14712
CA(6,8,6) 87818 CA(6,7,6) extends by one factor 103446
CA(6,9,6) 115811 CA(6,8,6) extends by one factor 160236

CA(6,10,6) 139638 Composition 208656
CA(7,8 ,6) 279936 NA NA
CA(7,9 ,6) 569050 NA NA
CA(7,10 ,6) 775163 NA NA

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

393

TABLE 5: MCAS FOR TS MODULE WHERE T CHANGES FROM 2 TO 11

t MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG II TConfig ITCH
CTS TOFU

2 38 41 52 39 40 41 43
RE IPO

45 121 45 40
3 218 239 277 240 244 245 270 239 225 1358
4 1154 1290 1850 1262 1311 1273 1420 1320 1750 NA
5 5625 6073 9894 5975 6036 6268 6501 NA NS NS
6 17527 21452 33611 22135 22485 26012 25601 NA NS NS
7 78940 NS NS NS NS NA NA NS NS NS
8 158526 NS NS NS NS NA NA NS NS NS
9 468750 NS NS NS NS NA NA NS NS NS
10 625000 NS NS NS NS NA NA NS NS NS
11 1250000 NS NS NS NS NA NA NS NS NS

TABLE 6: TIME REQUIRED TO GENERATE MCAS FOR TS MODULE WHERE T CHANGES FROM 2 TO 11

t MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG II TConfig ITCH
CTS TOFU

2

0.07 0.016 <0.001 0.01 0.01 0.11 0.05

RE IPO

0.55 2.3 0.11 0.1
3 0.275 0.188 0.002 0.02 0.031 0.5 2.281 25.32 1.23 30.44
4 1.125 1.75 0.188 0.422 0.563 3.09 29.66 >10hour 120.665 >day
5 35.15 17.891 4.375 7.502 10.1 66.41 2164.98 >day NS NS
6 350.12 68.531 59.016 114.33 128.64 842.33 >9hour >day NS NS
7 680.23 NS NS NS NS >day >day NS NS NS
8 990.77 NS NS NS NS >day >day NS NS NS
9 1800.82 NS NS NS NS >day >day NS NS NS
10 3399.66 NS NS NS NS >day >day NS NS NS
11 2.483 NS NS NS NS >day >day NS NS NS

Referring to Table 5, MIPOG clearly outperforms all

existing strategies in terms of the test size. Furthermore,
MIPOG appears to be the only strategy that generate a test
suite for t>6. As seen in Table 7, for low value of t, IPOD has
the fastest time. For t>7, MIPOG outperforms all other
strategies. Even though Jenny and TVGII accept the request
of generation of a test suite for t>6, no results were obtained
after 1 day (see ‘NS’ and ‘NA’ entries in Tables 5 and 6,
respectively). Another observation is that the execution time
for MIPOG for 10-way test data generation is more than
11-way (i.e., an exhaustive testing). Such a result is expected
as there is no need for optimization in the case of exhaustive
testing; thus, rendering faster computation.

Going back to Table 6, the fact that IPOD (as well as other
IPOG variants) is dominant as far as the execution time is
concerned is justifiable. The general aim of IPOD is to get a
faster execution time than that of its predecessor, IPOG. In
general, getting an optimized test size and obtaining a fast
execution time are two complementary and intertwined
issues. On one hand, it is desirable to achieve a fast
execution time under the cost of little optimization as far as
the test size is concerned. On the other hand, obtaining the
most minimum test size typically requires a longer execution
time in order to select the most optimum interaction elements.
As discussed earlier, MIPOG adopts different horizontal and
vertical extension mechanisms; that requires more
computation (i.e., in order to optimize the ‘don’t care’) than
that of IPOG (including IPOD and IPOF). Thus, MIPOG’s
execution time tends to be slower than those from most of the

IPOG family, a reasonable cost to pay for smaller test sizes.
As far as investigating the effects of variations in domain

sizes is concerned, we have also applied all the strategies to
four system configurations with mixed domain sizes (i.e.
similar to previous studies. Tables 7 to 11 depict the results
for the four configurations for t=2, 3, 4, 5, and 6, respectively,
in terms of the test size. Column “Configuration” shows the
parameters and values of each configuration in the following
format: d1

k1 d2
k2 indicate that there are k1 parameters with

d1 values, k2 parameters with d2 values, and so on. For
example, configuration 513822 in the second row indicates
that there is one parameter with five values, eight parameters
with three values, and two parameters with two values. In
addition to the earlier defined entry of ‘NA’, entries marked
‘-‘ in Table 7 indicate that no best result is published. The
last column in Table 7 indicates the best published results by
Bryce et al. [46]. Here, the column enteries “1C”, “5C”, and
“10C” refers to using one candidate, five candidates, and 10
candidates test cases respectively. During the searching
process, then select the test case (from these candidates) that
covers the maximum number of uncovered tuples.

Referring to Tables 7 to 11, MIPOG outperforms all other

strategies for most cases, except for the third row in the
Configuration column. Here, OA exists for 9-8 valued
parameters algebraically. As such, the third row is a subset of
this OA. Both CTS in ITCH and RE in TConfig are able to
produce the OA (see Table 7). The same observation is
applicable to CTS in the case of t=3 (see Table 8).

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

394

IPOF gives the minimal test suite for t=4 (see Table 9)
using the dynamic programming technique [42] rather than
algebraic. Additionally, IPOF produces the minimal test
suite for the first and third configurations for t=5 (see Table
10). MIPOG produces the minimal test suite when t=6 (see
Table 11).

From the overall results, two conclusions can be drawn.
Firstly, even though an algebraic OA exists, the algebraic
strategy will not necessarily produce the minimal test suite in
the case of MCAs for varying t. For the case of CA, the
algebraic strategy always gives the minimal test suite when

OA exists.
Finally, keeping MIPOG aside, IPOF, IPOF2, IPOG,

IPOD, and Jenny are suitable for generating test suites for t≤6
within acceptable times. TVG II also could produce a test
suite for t=6, for some configurations. Similarly, TConfig
could produce a test suite for t=5, for some configurations.
TOFU is more suitable for generating test suites for t=2, and
t=3, and only supports t=4 for small system configurations
(see Table 9). In most cases, TOFU and CTS require a longer
execution time to produce the required test suite.

TABLE 7: COMPARATIVE RESULTS FOR FOUR SYSTEM CONFIGURATIONS WITH MIXED DOMAIN SIZES USING T=2

Configuration MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG
II

TConfig ITCH Best Published
[46]

RE IPO CTS TOFU 1C 5C 10C

4534 22 24 31 24 24 26 27 28 22 28 75 23 23 22
513822 17 19 29 23 22 23 22 21 19 41 31 20 19 19
82726252 67 73 112 69 70 76 79 64 78 64 231 69 68 68
102413227 100 100 130 100 100 106 101 120 100 120 132 - - -

TABLE 8: COMPARATIVE RESULTS FOR FOUR SYSTEM CONFIGURATIONS WITH MIXED DOMAIN SIZES USING T=3

Configuration MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG
II

TConfig ITCH

CTS TOFU

4534 101 108 121 103 114 115 122 103 112 593
513822 78 85 113 85 87 85 88 89 222 577

82726252 558 591 729 560 623 645 716 594 511 3031
102413227 400 400 480 402 427 411 434 472 2415 471

TABLE 9: COMPARATIVE RESULTS FOR FOUR SYSTEM CONFIGURATIONS WITH MIXED DOMAIN SIZES USING T=4

Configuration MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG
II

TConfig ITCH

CTS TOFU

4534 425 434 704 429 455 452 481 444 704 NA
513822 275 300 527 291 317 303 317 302 1683 3518

82726252 4163 4302 7571 4077 4491 4580 5098 4317 4085 NA
102413227 1265 1361 2522 1352 1644 1527 1599 1476 1484 NA

TABLE 10: COMPARATIVE RESULTS FOR FOUR SYSTEM CONFIGURATIONS WITH MIXED DOMAIN SIZES USING T=5

Configuration MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG II TConfig

4534 1562 1625 2859 1561 1642 1667 1699 1641
513822 901 983 1909 960 1015 996 1005 986

82726252 26023 27676 42380 25954 27995 29326 31707 NA
102413227 4196 4219 5306 4290 5018 4680 4773 NA

TABLE 11: COMPARATIVE RESULTS FOR FOUR SYSTEM CONFIGURATIONS WITH MIXED DOMAIN SIZES USING T=6

Configuration MIPOG IPOG IPOD IPOF IPOF2 Jenny TVG II TConfig
4534 4972 5393 8143 5125 5331 5501 5495 NA

513822 2657 2910 5179 2844 2971 3017 3100 NA

82726252 141445 154315 170098 144510 151973 179591 >day NA

102413227 10851 10919 14480 11234 13310 11608 12732 NA

V. CONCLUSION AND FUTURE WORK
In this paper, we have proposed an efficient t-way test data

generator (MIPOG) based on IPOG. Like IPOG, MIPOG
adopts the horizontal and vertical extensions in order to
construct the desired test set. Unlike IPOG, MIPOG
optimizes both the horizontal and vertical extensions
resulting in a smaller size solution than that of IPOG (i.e.
with the test size ratio of ≤ 1). In fact, MIPOG, in most cases,
surpasses other existing strategies (Jenny, TVG, TConfig,

ITCH) including some known IPOG and its variants (IPOD,
IPOF1, IPOF2), as far as the test size is concerned with an
acceptable execution time. As such, MIPOG has also
contributed to enhance many known CA and MCA as
described in the literature.

Considering the fact that in most cases MIPOG generates
the small test suite sizes (for both CA and MCA) with an
acceptable execution time, our evaluation of MIPOG is
encouraging. In fact, our experience also indicates MIPOG is
capable to generate higher strength test suite that has never

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

395

been reported in the literature (i.e., t>6). As part of future
work, we are integrating MIPOG within the GRID
environment in order to obtain more speed as far as execution
time is concerned. In addition, we will improve the algorithm
to handle other practical testing issues such as dependencies
between factors and values.

ACKNOWLEDGMENT
Here, we would like to thank all the anonymous reviewers

for giving a comprehensive review on our paper. Special
thanks to Prof. C.P. Lim for his valuable efforts and
comments to improve the paper. In addition, we acknowledge
the help of Jeff Lei, Raghu Kacker, Rick Kuhn, Myra B.
Cohen, and Bob Jenkins for providing us with useful
comments and the background materials.

REFERENCES
[1] M. I. Younis, K. Z. Zamli, M. F. J. Klaib, Z. C. Soh, S. C. Abdullah, and

N. A. M. Isa, "Assessing IRPS as an Efficient Pairwise Test Data
Generation Strategy," International Journal of Advanced Intelligence
Paradigms (IJAIP), vol. 2, pp. 90-104, 2010.

[2] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, "The
Combinatorial Design Approach to Automatic Test Generation," IEEE
Software, vol. 13, pp. 83-88, 1996.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, "The
AETG System: An Approach to Testing based on Combinatorial
Design," IEEE Transactions on Software Engineering, vol. 23, pp.
437–443, 1997.

[4] K. Burr and W. Young, "Combinatorial Test Techniques: Table Based
Automation, Test Generation and Code Coverage," in Proceedings of
the International Conference on Software Testing Analysis & Review
(STAR), San Diego, CA, 1998, pp. 503-513.

[5] C. Yilmaz, M. B. Cohen, and A. Porter, "Covering Arrays for Efficient
Fault Characterization in Complex Configuration Spaces," IEEE
Transactions on Software Engineering, vol. 31, pp. 20–34, 2006.

[6] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz, "Model-Based Testing in Practice," in
International Conference on Software Engineering, Los Angeles,
California, United State, 1999, pp. 285 -294.

[7] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, "Software Fault
Interactions and Implications for Software Testing," IEEE Transactions
on Software Engineering, vol. 30, pp. 418-421, 2004.

[8] D. R. Kuhn and V. Okun, "Pseudo Exhaustive Testing For Software,"
in Proceedings of the 30th NASA/IEEE Software Engineering
Workshop, Washington, DC, USA, 2006, pp. 153-158.

[9] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mugridge,
"Constructing Test Suites for Interaction Testing," in Proceedings of
the 25th IEEE International Conference on Software Engineering,
Portland, Oregon, 2003, pp. 38-48.

[10] A. Hartman and L. Raskin, "Problems and Algorithms for Covering
Arrays," Discrete Mathematics, vol. 284, pp. 149-156, 2004.

[11] M. Grindal, J. Offutt, and S. Andler, "Combination Testing Strategies:
a Survey," Software Testing, Verification, and Reliability, vol. 15, pp.
167-199, 2005.

[12] K. A. Bush, "Orthogonal Arrays of Index Unity," Annals of
Mathematical Statistics, vol. 23, pp. 426-434, 1952.

[13] R. Mandl, "Orthogonal Latin Squares: An Application of Experiment
Design to Compiler Testing," Communications of the ACM, vol. 28, pp.
1054-1058, 1985.

[14] M. I. Younis, K. Z. Zamli, and N. A. M. Isa, "Algebraic Strategy to
Generate Pairwise Test Set for Prime Number Parameters and
Variables," in Proceedings of the 3rd International Symposium on
Information Technology (ITSim’08), KLCC, Malaysia, 2008, pp.
1662-1666.

[15] A. W. Williams, "Software Component Interaction Testing: Coverage
Measurment and Generation of the Configurations (PhD Thesis)," in
School of Information Technology and Engineering Ottawa, Canada:
University of Ottawa, 2002.

[16] N. J. A. Sloane, "A Library of Orthogonal Arrays," Information
Sciences Research Center, AT&T Shannon Labs, available from
http://www.research.att.com/~njas/oadir, last accessed on March,
2010.

[17] B. Stevens and E. Mendelsohn, "Efficient Software Testing Protocols,"
in Proceedings of the 8th IBM Centre for Advanced Studies
Conference (CASCON ’98), Toronto, Ontario, Canada, 1998, pp.
279-293.

[18] A. W. Williams, "Determination of Test Configurations for Pair-Wise
Interaction Coverage," in Proceedings of the 13th International
Conference on the Testing of Communicating Systems (Testcom 2000),
Ottawa, Canada, 2000, pp. 59-74.

[19] S. Maity, A. Nayak, M. Zaman, N. Bansal, and A. Srivastav, "An
Improved Test Generation Algorithm for Pair-Wise Testing," in
Proceedings of the 14th International Symposium on Software
Reliability Engineering (Fast Abstract ISSRE 2003) Denver, Colorado:
Chillarege Press, 2003.

[20] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,
"IPOG/IPOG-D: Efficient Test Generation for Multi-way
Combinatorial Testing," Software Testing, Verification, and Reliability,
vol. 18, pp. 125-148, 2008.

[21] C. J. Colbourn, S. S. Martirosyan, T. Trung, and R. A. Walker,
"Roux-Type Constructions for Covering Arrays of Strengths Three and
Four," Designs, Codes, and Cryptography, vol. 41, pp. 33-57, 2006.

[22] C. J. Colbourn, "Covering Array Tables, available from
http://www.public.asu.edu/ccolbou/src/tabby, last access on March
2010."

[23] M. B. Cohen, "Designing Test Suites for Software Interaction Testing
(PhD Thesis)," in Computer Science Auckland: University of
Auckland, 2004.

[24] S. Maity and A. Nayak, "Improved Test Generation Algorithms for
Pairwise Testing," in Proceedings of the 16th IEEE International
Symposium on Software Reliability Engineering (ISSRE 2005),
Chicago, Illinois, USA, 2005, pp. 235-244.

[25] C. J. Colbourn, S. S. Martirosyan, G. L. Mullen, D. Shasha, G. B.
Sherwood, and J. L. Yucas, "Products of Mixed Covering Arrays of
Strength Two," Journal of Combinatorial Designs, vol. 14, pp. 124–138,
2006.

[26] G. B. Sherwood, "Pairwise Testing Comes of Age," Testcover Inc.,
2008.

[27] M. I. Younis, K. Z. Zamli, and N. A. M. Isa, "IRPS: An Efficient Test
Data Generation Strategy for Pairwise Testing," in Proceedings of the
12th international conference on Knowledge-Based Intelligent
Information and Engineering Systems, Part I, Zagreb, Croatia, 2008, pp.
493-500.

[28] M. Grindal, J. Offutt, and J. Mellin, "Conflict Management when Using
Combination Strategies for Software Testing," in Proceedings of the
18th Australian Software Engineering Conference (ASWEC 2007),
Melbourne, Australia, 2007, pp. 1-10.

[29] M. B. Cohen, M. B. Dwyer, and J. Shi, "Interaction Testing of
Highly-Configurable Systems in the Presence of Constraints," in
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA 2007), New York, NY, USA, 2007, pp. 129–139.

[30] R. C. Bryce and C. J. Colbourn, "Prioritized Interaction Testing for
Pairwise Coverage with Seeding and Avoids," Information and
Software Technology Journal, vol. 48, pp. 960-970, 2006.

[31] A. Hartman, T. Klinger, and L. Raskin, "WHITCH: IBM Intelligent
Test Configuration Handler," IBM Haifa and Watson Research
LaboratoriesApril 2005 2005.

[32] R. Biyani and P. Santhanam, "TOFU Test Optimizer for Functional
Usage," Software Engineering Technical Brief, IBM T.J. Watson
Research Center, vol. 2, 1997.

[33] B. Jenkins, "Jenny Test Tool, available from
http://www.burtleburtle.net./bob/math/jenny.html, last accessed on
April, 2010.."

[34] K. C. Tai and Y. Lei, "A Test Generation Strategy for Pairwise
Testing," IEEE Transactions on Software Engineering, vol. 28, pp.
109-111, January 2002.

[35] R. C. Bryce, C. J. Colbourn, and M. B. Cohen, "A Framework of
Greedy Methods for Constructing Interaction Test Suites," in
Proceedings of the 27th IEEE International Conference on Software
Engineering, NY, USA, 2005, pp. 146-155.

[36] R. C. Bryce and C. J. Colbourn, "A Density-based Greedy Algorithm
for Higher Strength Covering Arrays," Software Testing, Verification,
and Reliability, vol. 19, pp. 37-53, 2009.

[37] C. Nie, B. Xu1, L. Shi1, and G. Dong, "Automatic Test Generation for
N-Way Combinatorial Testing," LNCS, vol. 3712, pp. 203-211, Friday,
September 09, 2005 2005.

[38] A. W. Williams, J. H. Ho, and A. Lareau, "TConfig Test Tool Version
2.1,"Ottawa, Ontario, Canada, available from
http://www.site.uottawa.ca/~awilliam, last access on March 2010:

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

396

School of Information Technology and Engineering (SITE), University
of Ottawa, 2003.

[39] A. W. Williams and R. L. Probert, "A Practical Strategy for Testing
Pair-Wise Coverage of Network Interfaces," in Proceedings of the 7th
International Symposium on Software Reliability Engineering (ISSRE
'96), White Plains, New York, 1996, pp. 246-254.

[40] A. W. Williams and R. L. Probert, "A Measure for Component
Interaction Test Coverage," in Proceedings of the ACSI/IEEE
International Conference on Computer Systems and Applications
(AICCSA 2001), Beirut, Lebanon, 2001, pp. 304-311.

[41] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, "IPOG: A
General Strategy for T-Way Software Testing," in Proceedings of the
14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS2007), Tucson, AZ,
2007, pp. 549-556.

[42] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn,
"Refining the In-Parameter-Order Strategy for Constructing Covering
Arrays," Journal of Research of the National Institute of Standards and
Technology, vol. 113, pp. 287-297., October 2008 2008.

[43] M. A. Chateauneuf, C. J. Colbourn, and D. L. Kreher, "Covering
Arrays of Strength 3," Designs, Codes, and Cryptography, vol. 16, pp.
235-242, 1999.

[44] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, "Constructing
Strength Three Covering Arrays with Augmented Annealing," Discrete
Mathematics, vol. 308, pp. 2709-2722, 2008.

[45] NIST, "Web Site, Automated Combinatorial Testing for Software,
available from http://csrc.nist.gov/groups/SNS/acts, last accessed on
September, 2010."

[46] R. C. Bryce, C. J. Colbourn, and M. B. Cohen, "A Framework of
Greedy Methods for Constructing Interaction Test Suites," in
Proceedings of 27th IEEE International Conference on Software
Engineering, NY, USA, 2005, pp. 146-155.

Mohammed I. Younis obtained his BSc in
computer engineering from the University of
Baghdad in 1997, and his MSc degree from the same
university in 2001, and PhD in software engineering
and parallel processing from Universiti Sains
Malaysia in 2010. He is currently a Post-Doc
researcher attached to the Software Engineering
Research Group of the School of Electrical and
Electronic Engineering, USM.

He is a Senior Lecturer and a Cisco instructor at Computer Engineering
Department, College of Engineering, University of Baghdad. He is also a
software-testing expert in Malaysian Software Engineering Interest Group
(MySEIG). His research interests include software engineering, parallel and
distributed computing, algorithm design, RFID, networking, and security. Dr.
Younis is also a member of Iraqi Union of Engineers, IEEE, IET, IAENG,
CEIA, and ICCIS.

Kamal Z. Zamli obtained his BSc in Electrical
Engineering from Worcester Polytechnic
Institute,Worcester, USA in 1992, MSc in Real
Time Software Engineering from CASE, Universiti
Teknologi Malaysiain 2000, and PhD in Software
Engineering from the University of Newcastle
upon Tyne, UK in 2003. He is currently an
Associate Professor attached to the Software
Engineering Research Group, in the School of
Electrical and Electronic Engineering, USM.

He is also a software-testing expert in Malaysian Software Engineering
Interest Group (MySEIG). His research interests include software
engineering, software testing automation, and algorithm design. Dr. Zamli is
also a member in IEEE, and IET.

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

397

