
International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

Abstract—The terms “Neural Network” (NN) and “Artificial

Neural Network” (ANN) usually refer to a Multilayer
Perceptron Network. It process the records one at a time, and
"learn" by comparing their prediction of the record with the
known actual record. The problem of model selection is
considerably important for acquiring higher levels of
generalization capability in supervised learning. This paper
discussed behavioral analysis of different number of hidden
layers and different number of hidden neurons. It’s very
difficult to select number of hidden layers and hidden neurons.
There are different methods like Akaike’s Information
Criterion, Inverse test method and some traditional methods
are used to find Neural Network architecture. What to do while
neural network is not getting train or errors are not getting
reduced. To reduce Neural Network errors, what we have to do
with Neural Network architecture. These types of techniques
are discussed and also discussed experiment and result. To solve
different problems a neural network should be trained to
perform correct classification..

Index Terms—Back Propagation; Neural Network; Training;
Testing; Weights.

I. INTRODUCTION TO NEURAL NETWORK
Neural networks are most effective and appropriate

artificial intelligence technology for pattern recognition.
Superior results in pattern recognition can be directly applied
for business purposes in forecasting, classification and data
analysis [1]. This new approach gives an extra advantage in
solving "real-world" problems in business and engineering.
However, to bring proper results, neural networks require
correct data pre-processing, architecture selection and
network training. In general terms, an artificial neural
network consists of a large number of simple processing units,
linked by weighted connections. Each unit receives inputs
from many other units and generates a single output. The
output acts as an input to other processing units. An MLP is a
network of simple neurons called perceptrons. The basic
concept of a single perceptron was introduced by Rosenblatt
in 1958. The perceptron computes a single output from
multiple real-valued inputs by forming a linear combination

Manuscript received March 28, 2011
Department of Computer Engineering, Charotar Institute of Technology

(Faculty of Technology and Engineering),
Charotar University of Science and Technology, Changa, Anand-388 421,

INDIA
1 gaurangpanchal.ce@ecchanga.ac.in, 2 amitganatra.ce@ecchanga.ac.in, 3

ypkosta.adm@ecchanga.ac.in, 4 devyanipanchal.it@ecchanga.ac.in

according to its input weights and then possibly putting the
output through some nonlinear activation function. There are
really two decisions that must be made regarding the hidden
layers: how many hidden layers to actually have in the neural
network and how many neurons will be in each of these
layers. We will first examine how to determine the number of
hidden layers to use with the neural network. Problems that
require two hidden layers are rarely encountered. However,
neural networks with two hidden layers can represent
functions with any kind of shape. There is currently no
theoretical reason to use neural networks with any more than
two hidden layers. In fact, for many practical problems, there
is no reason to use any more than one hidden layer.

II. INTRODUCTION TO MULTILAYER PERCEPTRONS
Multilayer perceptrons (MLPs) are feed forward neural

networks trained with the standard back propagation
algorithm. They are supervised networks so they require a
desired response to be trained. They learn how to transform
input data into a desired response, so they are widely used for
pattern classification. With one or two hidden layers, they
can approximate virtually any input-output map. They have
been shown to approximate the performance of optimal
statistical classifiers in difficult problems. Most neural
network applications involve MLPs.

This is perhaps the most popular network architecture in
use today. The units each perform a biased weighted sum of
their inputs and pass this activation level through a transfer
function to produce their output, and the units are arranged in
a layered feed forward topology. The network thus has a
simple interpretation as a form of input-output model, with
the weights and thresholds (biases) the free parameters of the
model. Such networks can model functions of almost
arbitrary complexity, with the number of layers, and the
number of units in each layer, determining the function
complexity. Important issues in Multilayer Perceptrons
(MLP) design include specification of the number of hidden
layers and the number of units in these layers.

The number of input and output units is defined by the
problem (there may be some uncertainty about precisely
which inputs to use, a point to which we will return later.
However, for the moment we will assume that the input
variables are intuitively selected and are all meaningful). The
number of hidden units to use is far from clear. As good a
starting point as any is to use one hidden layer, with the
number of units equal to half the sum of the number of input

Behaviour Analysis of Multilayer Perceptrons
with Multiple Hidden Neurons and Hidden

Layers
Gaurang Panchal1, Amit Ganatra2, Y P Kosta3 and Devyani Panchal4

332

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

and output units. Again, we will discuss how to choose a
sensible number later.

Figure 1. Architecture of Multilayer Perceptron

Multilayer perceptrons (MLPs) are layered feed forward
networks typically trained with static back propagation. Here
you simply specify the number of hidden layers. These
networks have found their way into countless applications
requiring static pattern classification. Their main advantages
are that they are easy to use, and that they can approximate
any input/output map. The key disadvantages are that they
train slowly, and require lots of training data (typically three
times more training samples than network weights).

III. TRAINING MULTILAYER PERCEPTRON NETWORKS
There are several issues involved in designing and training

a multilayer perceptron network:

• Selecting how many hidden layers to use in the
network.

• Deciding how many neurons to use in each hidden
layer.

• Finding a globally optimal solution that avoids local
minima.

• Converging to an optimal solution in a reasonable
period of time.

• Validating the neural network to test for over fitting.
•

Once the number of layers, and number of units in each
layer, has been selected, the network's weights and thresholds
must be set so as to minimize the prediction error made by the
network. This is the role of the training algorithms. The
historical cases that you have gathered are used to
automatically adjust the weights and thresholds in order to
minimize this error. This process is equivalent to fitting the
model represented by the network to the training data
available. The error of a particular configuration of the
network can be determined by running all the training cases
through the network, comparing the actual output generated
with the desired or target outputs. The differences are
combined together by an error function to give the network
error. The most common error functions are the sum squared
error (used for regression problems), where the individual

errors of output units on each case are squared and summed
together, and the cross entropy functions (used for maximum
likelihood classification).

IV. HIDDEN LAYER SELECTION
For nearly all problems, one hidden layer is sufficient.

Two hidden layers are required for modeling data with
discontinuities such as a saw tooth wave pattern. Using two
hidden layers rarely improves the model, and it may
introduce a greater risk of converging to a local minima.
There is no theoretical reason for using more than two hidden
layers.

V. HIDDEN NEURONS SELECTION IN HIDDEN LAYER
Deciding the number of neurons in the hidden layers is a

very important part of deciding your overall neural network
architecture. Though these layers do not directly interact with
the external environment, they have a tremendous influence
on the final output. Both the number of hidden layers and the
number of neurons in each of these hidden layers must be
carefully considered. Using too few neurons in the hidden
layers will result in something called under fitting. Under
fitting occurs when there are too few neurons in the hidden
layers to adequately detect the signals in a complicated data
set.

Using too many neurons in the hidden layers can result in
several problems. First, too many neurons in the hidden
layers may result in over fitting. Over fitting occurs when the
neural network has so much information processing capacity
that the limited amount of information contained in the
training set is not enough to train all of the neurons in the
hidden layers. A second problem can occur even when the
training data is sufficient. An inordinately large number of
neurons in the hidden layers can increase the time it takes to
train the network. The amount of training time can increase to
the point that it is impossible to adequately train the neural
network. Obviously, some compromise must be reached
between too many and too few neurons in the hidden layers.

There are many rule-of-thumb methods for determining the
correct number of neurons to use in the hidden layers, such as
the following:

• The number of hidden neurons should be between the
size of the input layer and the size of the output layer.

• The number of hidden neurons should be 2/3 the size
of the input layer, plus the size of the output layer.

• The number of hidden neurons should be less than
twice the size of the input layer.

These three rules provide a starting point for you to
consider. Ultimately, the selection of architecture for your
neural network will come down to trial and error. You do not
want to start throwing random numbers of layers and neurons
at your network. To do so would be very time consuming.

The best number of hidden units depends in a complex
way on:

• The numbers of input and output units
• The number of training cases

333

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

• The amount of noise in the targets
• The complexity of the function or classification to be

learned
• The architecture o the type of hidden unit activation

function
• The training algorithm

VI. DIFFERENT APPROACHES FOR HIDDEN NEURONS
SELECTION

A. Simple Method
There is a simple method to find out Neural Network

hidden Neurons. Assume a Back Propagation Neural
Network Configuration is l-m-n. Here l is input neurons, m is
hidden neurons and n is output layers. If we have two input
and two output in our problem than we can take same number
of hidden neurons. So our configuration becomes 2-2-2. (l=2
input neurons=2 hidden neurons and n=2 output neurons.)

Total numbers of weights to be determined are

mnWeights *)1(+= (1)

B. Based on Hopfiled Neural Network
The Hopfield network consists of a set of N interconnected

neurons which update their activation values asynchronously
and independently of other neurons. All neurons are both
input and output neurons. The Hopfield neural network is
perhaps the simplest of neural networks. The Hopfield neural
network is a fully connected single layer auto associative
network. This means it has one single layer, with each neuron
connected to every other neuron. In this chapter we will
examine a Hopfield neural network with just four neurons.
This is a network that is small enough that it can be easily
understood, yet can recognize a few patterns. A Hopfield
network with connections we will build an example program
that creates the Hopfield network shown in Figure 2.6. A
Hopfield neural network has every Neuron connected to
every other neuron. This means that in a four Neuron network
there are a total of four squared or 16 connections. However,
16 connections assume that every neuron is connected to
itself as well. This is not the case in a Hopfield neural
network, so the actual number of connections is 12.From this
concepts we can take same number of hidden neurons and
input neurons.

C. Akaike’s Information Criterion (AIC)
Akaike's information criterion, developed by Hirotsugu

Akaike under the name of "an information criterion" (AIC) in
1971 and proposed in Akaike (1974), is a measure of the
goodness of an estimated statistical model. It is grounded in
the concept of entropy, in effect offering a relative measure
of the information lost when a given model is used to
describe reality and can be said to describe the tradeoff
between bias and variance in model construction. The AIC is
not a test on the model in the sense of hypothesis testing;
rather it is a tool for model selection. Given a data set, several
competing models may be ranked according to their AIC,
with the one having the lowest AIC being the best. From the

AIC value if top three models are in a tie and the rest are far
worse, but one should not assign a value above which a given
model is 'rejected'. The AIC is a basis of comparison and
selection among several statistical models. As we all know
the goodness of parameters of a model can be calculated by
the expected log likelihood, means the larger the expected log
likelihood is better explanation. In looking at the relationship
between the bias and the number of free parameters of a
model [1], it is found that,

(Maximum log likelihood of a model) – (number of free
parameters of the model)

It is an asymptotically unbiased estimator of the mean
expected log likelihood. AIC estimator of Kullback –Leibler
information is

AIC = -2 * (maximum log likelihood of the model) + 2 *
(number of free parameters of the model).
In the general case, the AIC [5] is,

klikelihoodAIC *2)ln(*2 +−= (2)

Where ln is the natural logarithm, k is the number of
parameters in the statistical model and RSS is the residual
sums of squares (Calculation of RSS value is discussed later
in this paper). AIC can also be calculated using residual sums
of squares [5] from regression

KnRSSnAIC *2)/ln(* += (3)

Where n is the number of data points (observations). AIC
requires a bias-adjustment small sample sizes. If ratio of n/K
< 40 then uses bias adjustment

)1/())1(**2(*2)ln(*2 −−+++−= KnKKKLAIC (4)

For example, consider 3 candidate models for the growth
model, their RSS values, and assume n = 100 samples in the
data.Table1 shows the Calculation of AIC values for
different Models. AIC is calculated using different RSS
values and different no of free parameters. Lower AIC is
better for model.

∑= εRSS i
2 =1.13 (5)

Where RSS is Residual sum of Square and E is error.
The best model is determined by examining their relative

distance to the “truth”. The first step is to calculate the
difference between lowest AIC model and the others as

AICAICii min−=Δ (6)

Where Δi is the difference between the AIC of the individual
models and min AIC is the minimum AIC value of all models
[5]. The smallest value of AIC is –130.21(using equation 5).
Thus the Δi is show in table1.

334

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

TABLE I. CALCULATION OF ΔI

K RSS AICc Δi
4 25 -130.21 0
3 26 -114.15 1.75

3 27 -98.73 5.53

To quantify the plausibility of each model as being the best
approximating, we need an Estimate of the likelihood of our
model given our data

)|(dataModelL

Interestingly, this proportional () to the exponent of

(-0.5*Δi) so that

)*5.0exp()|(idataModelL Δ−α (7)

The right hand side of above is known as the relative
likelihood of the model, given the data. A better means of
interpreting the data is to normalize the relative likelihood [5]
values as

∑ ∑ Δ−Δ−=
R

i
iii)*5.0exp(/)*5.0exp((8)

TABLE II. EXPONENT OF DELTA

K RSS AICc Δi exp(-0.5*Δi)
4 25 -130.21 0 1
3 26 -128.46 1.75 0.4166
3 27 -124.68 5.52 0.0631
 Sum = 1.4798

The sum of the relative likelihoods is 1.4798, so we obtain

the Akaike weights for each by dividing the relative
likelihood by 1.4798.

TABLE III. AKAIKE’S WEIGHTS FOR DIFFERENT MODELS

K RSS AICc Δi Wi
4 25 -130.21 0 0.6758
3 26 -128.46 1.75 0.2816
3 27 -124.68 5.52 0.0427

Where Wi are known as Akaike weights for model I and the
denominator is simply the sum of the relative likelihoods for
all candidate models. For example, using the earlier values
from the 3 growth models:

For the above example, the first model is (0.6758/0.2816)
= 2.4 times more likely to be the best explanation for growth
compared to second Model only and (0.6758/0.0427) = 15.8
times more likely than third model only.

As a general rule of thumb, the confidence set of candidate
models (analogous to a confidence interval for a mean
estimate) include models with Akaike weights that are within
10% of the highest, which is comparable with the minimum

cut-off point (i.e., 8 or 1/8) suggested by Royall (1997) as a
general rule-of-thumb for evaluating strength of evidence.

For the above example, this would include any candidate
model with a value greater than (0.6758*0.10) = 0.0676.
Thus, we would probably exclude the third model only from
the model confidence set because its weight, 0.0427<0.0676

D. Inverse Test Error Method
In mathematics, the error function (also called the Gauss

error function) is a special function (non-elementary) of
sigmoid shape which occurs in probability, statistics,
materials science, and partial differential equations. How to
select neurons using Inverse test error method is discussed
later.

The error function is used in training the network and in
reporting the error. The error function used can have a
profound effect on the performance of training algorithms.

E. Depend on Neural Network Error
If neural network is not producing correct output at that

time we have to increase number of hidden neurons. Also if
neural network is not giving less error at time we have to
increase number of hidden layers.

F. Depend on Neural Network Training
If neural network is getting train at that time we have to

increase number of hidden neurons.

G. Depend on Neural Network Output
If neural network is not giving predicated output at that

time we have to increase number of hidden neurons/Layers.
To creating best neural network architecture we have to
increase number of hidden neurons by 2 or 3 increment.

H. Hidden Layers and MSE
Hidden layers can also be finding out by following

relationship,

ehl NN α (9)
Where Ne is number of epochs and Nhl is number of hidden
layers. So,

)(
1
MSEMin

Neα (10)

So,

)(
1
MSEMin

Nhlα (11)

VII. PROBLEM STATEMENT
Here we have considered employee retention Problem for

behavioral analysis of multilayer perceptrons and hidden
neurons. In this problem there are 17 inputs and one output is
Employee Retention Probability. This problem is analyzed
with different methods as mention before. In next section we
will see all the methods one by one.

335

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

VIII. BEHAVIORAL ANALYSIS

A. As per First method the network configuration becomes
l-m-n (l is input neurons is hidden neurons and n is output
neurons).Here l=17, m=17 and n=1 as per the method.

TABLE IV. HIDDEN LAYER=1 AND HIDDEN NEURONS=17

 Training Validation

CCR,%: 100 -

Network Error: 0.000298 0

Iteration: 501

Training Speed:,Iter/sec: 47.264175

Architecture: [17-17-1]

TABLE V. HIDDEN LAYER=2 AND HIDDEN NEURONS=8 IN EACH

 Training Validation

CCR,%: 100

Network Error: 0.000298 0

Iteration: 501

Training Speed:,Iter/sec: 52.187524

Architecture: [17-8-8-1]

Table number 4 the architecture with 17 hidden neurons
with one hidden layer which gives 0.000298 network error
while table 5 shows the neural network architecture with two
hidden layers and 8 hidden neurons in each layer though we
are getting same network error.

B. Using Akaike’s Information Criterions
The Akaike’s information criterion is most successful

method to find neural network architecture. By using this
method we can find number of hidden neurons for given
problem. The method is discussed in previous section. Lower
AIC is better for model.

TABLE VI. AIC CALCULATION

ID Architecture
of
Weight Fitness AIC

1 [17-3-1] 58.00 9164.053 -9164.053

2 [17-43-1] 818.00 7644.053 -7644.053

3 [17-27-1] 514.00 8252.053 -8252.053

4 [17-17-1] 324.00 8632.053 -8632.053

5 [17-11-1] 210.00 8860.053 -8860.053

6 [17-7-1] 134.00 9012.053 -9012.053

7 [17-9-1] 172.00 8936.053 -8936.053

8 [17-5-1] 96.00 9088.053 -9088.053

9 [17-6-1] 115.00 9050.053 -9050.053

We have started searching neural network architecture
with hidden neurons 2 to 30 and incrementing hidden
neurons by 3.We get better result in first architecture [17-3-1]
with lowest AIC

TABLE VII. HIDDEN LAYER=1 AND HIDDEN NEURONS=3

 Training Validation

CCR,%: 100

Network Error: 0.000303 0

Iteration: 501

Training Speed:,Iter/sec: 131.84

Architecture: [17-3-1]

C. Using Inverse Test Error Method

TABLE VIII. HIDDEN LAYER=1 AND HIDDEN NEURONS=2

 Training Validation

CCR,%: 100

Network Error: 0.000318 0

Iteration: 501

Training Speed:,Iter/sec: 125.25

Architecture: [17-2-1]

By using this method we are getting more network errors but
time taken to execute is less than the previous methods.

D. With different Hidden Neurons and Layers

TABLE IX. HIDDEN LAYER=2 AND HIDDEN NEURONS=4 IN EACH

 Training Validation

CCR,%: 100

Network Error: 0.000287 0

Iteration: 501

Training Speed:,Iter/sec: 83.5

Architecture: [17-4-4-1]

TABLE X. HIDDEN NEURONS IN EACH LAYERS IS 8, 4 AND 2
RESPECTIVELY

 Training Validation

CCR,%: 100

Network Error: 0.000304 0

Iteration: 501

Training Speed:,Iter/sec: 55.66

Architecture: [17-8-4-2-1]

From result of table 4 and 5, we can say that as soon as
number of unnecessary layers increase than network error
will increase.

IX. EXPERIMENT AND RESULTS
We have taken the employee retention problem with nine

inputs like experience, age, qualification etc, and we are
getting following result.

TABLE XI. CRR WITH DIFFERENT NN ARCHITECTURE

Hidden Layer Architecture CRR %

1 [9-1-1] 95.65

1 [9-2-1] 96.38

1 [9-3-1] 96.38

1 [9-4-1] 95.65

1 [9-5-1] 95.65

1 [9-6-1] 95.65

1 [9-7-1] 96.33

1 [9-8-1] 95.65

336

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

1 [9-10-1] 97.83

1 [9-15-1] 95.65

2 [9-5-51] 96.38

3 [9-5-5-1] 97.1

From the above table we can say that as soon as we
increase the number of hidden layers or number of hidden
neurons we are getting better results or Classification Rate
will increase and error will reduces. If we analyze the above
result in graphical representation, we get better idea. The
graphical representation is shown below.

Hidden Layers vs. CRR

94.5

95
95.5

96
96.5

97
97.5

98

[9
-1

-1
]

[9
-2

-1
]

[9
-3

-1
]

[9
-4

-1
]

[9
-5

-1
]

[9
-6

-1
]

[9
-7

-1
]

[9
-8

-1
]

[9
-9

-1
]

[9
-1

0-
1]

[9
-1

5-
1]

[9
-5

-5
1]

[9
-5

-5
-1

]

Neural Network Architecture

C
or

re
ct

 C
la

ss
ifi

ca
tio

n
R

at
e(

C
R

R
)

CRR %

Figure 2. Graphical Representation of Hidden Layers vs. CRR

From the above figure shows that as soon as numbers of
hidden neurons and hidden layers increase neural network
get better performance. We have discussed various
techniques to select number of hidden neurons and number of
hidden layers for better neural network result. As we expand
the neural network architecture, the training time will also
increase.

X. CONCLUSION
The training process of neural network become slowdown

because of number of epoch increased. So if accuracy of the
result is critical factor for an application then more hidden
layers should be used but if time is major factor at that time
single hidden layer should be used.

ACKNOWLEDGEMENTS
The authors’ wishes to thank all the colleagues for their

guidance, encouragement and support in undertaking the
research work. Special thanks to the Management for their
moral support and continuous encouragement.

REFERENCES
[1] Goldberg, D.E. “Genetic algorithms in search, optimization, and

machine learning”, Pearson Education, 2001.
[2] R. K. Gupta, A. K. Bhunia, “An Application of real-coded Genetic

Algorithm for integer linear programming”, AMO-Advanced
Modeling and Optimization, Volume 8, Number 1, 2006.

[3] V.srinivas, G.L.Thompson. “Benefit-cost Analysis of coding
techniques for the Primal Transportation Algorithm.”, Journal of the
association for computing machinery, Vol.20, April 1973, pp194-213

[4] Man Mohan, Gupta P.K .Operations research, Methods and
Solutions.Reading, Sultan Chand and Sons, 1992

[5] BL Mak, H Sockel – Info. & Mgmt, A confirmatory factor analysis of
IS employee motivation and retention, 2001

[6] K. Hornik,M. Stnchcombe and H White,Multilayer Feedforward
Networks are Universal Approximators, Neural Network,2:pg359-
366,1989

[7] Poonam Garg,Advanced in Computer Science & Engineering,
MacMillan Publication,2009.

[8] Vijyalakshmi Pai G.A. & Rajasekaran S. Neural networks, fuzzy logic
and genetic algorithms, Synthesis and applications. Reading,
Prentice-Hall of India, 2004

[9] S. Kullback and R. A. Leibler, ‘On Information and Sufficiency’, The
Annals of Mathematical Statistics, Vol. 22, No. 1, pp. 79–86, 1951

[10] H. Akaike, ‘A new look at the statistical model identification’, IEEE
Transactions on Automatic Control, Vol. 19, No. 6, pp. 716–723, 1974

[11] H. Linhart and W. Zucchini, Model Selection, John Wiley and Sons,
1986

[12] C. M. Hurvich and C. Tsai, ‘Regression and Time Series Model
Selection in Small Samples’, Biometrika, Vol. 76, pp. 297–307, 1989

[13] J. E. Cavanaugh, ‘Unifying the Deriviations for the Akaike and
Corrected Akaike Information Criteria’, Statistics & Probability Letters,
Vol. 33, pp. 201–208, 1997

337

