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Abstract—The terms “Neural Network” (NN) and “Artificial 

Neural Network” (ANN) usually refer to a Multilayer 
Perceptron Network. It process the records one at a time, and 
"learn" by comparing their prediction of the record with the 
known actual record. The problem of model selection is 
considerably important for acquiring higher levels of 
generalization capability in supervised learning. This paper 
discussed behavioral analysis of different number of hidden 
layers and different number of hidden neurons. It’s very 
difficult to select number of hidden layers and hidden neurons. 
There are different methods like Akaike’s Information 
Criterion, Inverse test method and some traditional methods 
are used to find Neural Network architecture. What to do while 
neural network is not getting train or errors are not getting 
reduced. To reduce Neural Network errors, what we have to do 
with Neural Network architecture. These types of techniques 
are discussed and also discussed experiment and result. To solve 
different problems a neural network should be trained to 
perform correct classification.. 
 

Index Terms—Back Propagation; Neural Network; Training; 
Testing; Weights.  

 

I.  INTRODUCTION TO NEURAL NETWORK 
Neural networks are most effective and appropriate 

artificial intelligence technology for pattern recognition. 
Superior results in pattern recognition can be directly applied 
for business purposes in forecasting, classification and data 
analysis [1]. This new approach gives an extra advantage in 
solving "real-world" problems in business and engineering. 
However, to bring proper results, neural networks require 
correct data pre-processing, architecture selection and 
network training. In general terms, an artificial neural 
network consists of a large number of simple processing units, 
linked by weighted connections. Each unit receives inputs 
from many other units and generates a single output. The 
output acts as an input to other processing units. An MLP is a 
network of simple neurons called perceptrons. The basic 
concept of a single perceptron was introduced by Rosenblatt 
in 1958. The perceptron computes a single output from 
multiple real-valued inputs by forming a linear combination 
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according to its input weights and then possibly putting the 
output through some nonlinear activation function.  There are 
really two decisions that must be made regarding the hidden 
layers: how many hidden layers to actually have in the neural 
network and how many neurons will be in each of these 
layers. We will first examine how to determine the number of 
hidden layers to use with the neural network. Problems that 
require two hidden layers are rarely encountered. However, 
neural networks with two hidden layers can represent 
functions with any kind of shape. There is currently no 
theoretical reason to use neural networks with any more than 
two hidden layers. In fact, for many practical problems, there 
is no reason to use any more than one hidden layer. 
 

II. INTRODUCTION TO MULTILAYER PERCEPTRONS 
Multilayer perceptrons (MLPs) are feed forward neural 

networks trained with the standard back propagation 
algorithm. They are supervised networks so they require a 
desired response to be trained. They learn how to transform 
input data into a desired response, so they are widely used for 
pattern classification. With one or two hidden layers, they 
can approximate virtually any input-output map. They have 
been shown to approximate the performance of optimal 
statistical classifiers in difficult problems. Most neural 
network applications involve MLPs. 

This is perhaps the most popular network architecture in 
use today. The units each perform a biased weighted sum of 
their inputs and pass this activation level through a transfer 
function to produce their output, and the units are arranged in 
a layered feed forward topology. The network thus has a 
simple interpretation as a form of input-output model, with 
the weights and thresholds (biases) the free parameters of the 
model. Such networks can model functions of almost 
arbitrary complexity, with the number of layers, and the 
number of units in each layer, determining the function 
complexity. Important issues in Multilayer Perceptrons 
(MLP) design include specification of the number of hidden 
layers and the number of units in these layers. 

The number of input and output units is defined by the 
problem (there may be some uncertainty about precisely 
which inputs to use, a point to which we will return later. 
However, for the moment we will assume that the input 
variables are intuitively selected and are all meaningful). The 
number of hidden units to use is far from clear. As good a 
starting point as any is to use one hidden layer, with the 
number of units equal to half the sum of the number of input 
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and output units. Again, we will discuss how to choose a 
sensible number later. 

 

Figure 1.  Architecture of Multilayer Perceptron 

Multilayer perceptrons (MLPs) are layered feed forward 
networks typically trained with static back propagation. Here 
you simply specify the number of hidden layers. These 
networks have found their way into countless applications 
requiring static pattern classification. Their main advantages 
are that they are easy to use, and that they can approximate 
any input/output map. The key disadvantages are that they 
train slowly, and require lots of training data (typically three 
times more training samples than network weights). 
 

III. TRAINING MULTILAYER PERCEPTRON NETWORKS 
There are several issues involved in designing and training 

a multilayer perceptron network:  
 

• Selecting how many hidden layers to use in the 
network.  

• Deciding how many neurons to use in each hidden 
layer.  

• Finding a globally optimal solution that avoids local 
minima.  

• Converging to an optimal solution in a reasonable 
period of time.  

• Validating the neural network to test for over fitting. 
•  

Once the number of layers, and number of units in each 
layer, has been selected, the network's weights and thresholds 
must be set so as to minimize the prediction error made by the 
network. This is the role of the training algorithms. The 
historical cases that you have gathered are used to 
automatically adjust the weights and thresholds in order to 
minimize this error. This process is equivalent to fitting the 
model represented by the network to the training data 
available. The error of a particular configuration of the 
network can be determined by running all the training cases 
through the network, comparing the actual output generated 
with the desired or target outputs. The differences are 
combined together by an error function to give the network 
error. The most common error functions are the sum squared 
error (used for regression problems), where the individual 

errors of output units on each case are squared and summed 
together, and the cross entropy functions (used for maximum 
likelihood classification). 
 

IV. HIDDEN LAYER SELECTION 
For nearly all problems, one hidden layer is sufficient. 

Two hidden layers are required for modeling data with 
discontinuities such as a saw tooth wave pattern. Using two 
hidden layers rarely improves the model, and it may 
introduce a greater risk of converging to a local minima. 
There is no theoretical reason for using more than two hidden 
layers. 
 

V. HIDDEN NEURONS SELECTION IN HIDDEN LAYER 
Deciding the number of neurons in the hidden layers is a 

very important part of deciding your overall neural network 
architecture. Though these layers do not directly interact with 
the external environment, they have a tremendous influence 
on the final output. Both the number of hidden layers and the 
number of neurons in each of these hidden layers must be 
carefully considered. Using too few neurons in the hidden 
layers will result in something called under fitting. Under 
fitting occurs when there are too few neurons in the hidden 
layers to adequately detect the signals in a complicated data 
set. 

Using too many neurons in the hidden layers can result in 
several problems. First, too many neurons in the hidden 
layers may result in over fitting. Over fitting occurs when the 
neural network has so much information processing capacity 
that the limited amount of information contained in the 
training set is not enough to train all of the neurons in the 
hidden layers. A second problem can occur even when the 
training data is sufficient. An inordinately large number of 
neurons in the hidden layers can increase the time it takes to 
train the network. The amount of training time can increase to 
the point that it is impossible to adequately train the neural 
network. Obviously, some compromise must be reached 
between too many and too few neurons in the hidden layers. 

There are many rule-of-thumb methods for determining the 
correct number of neurons to use in the hidden layers, such as 
the following: 

• The number of hidden neurons should be between the 
size of the input layer and the size of the output layer. 

• The number of hidden neurons should be 2/3 the size 
of the input layer, plus the size of the output layer. 

• The number of hidden neurons should be less than 
twice the size of the input layer. 

These three rules provide a starting point for you to 
consider. Ultimately, the selection of architecture for your 
neural network will come down to trial and error. You do not 
want to start throwing random numbers of layers and neurons 
at your network. To do so would be very time consuming. 

The best number of hidden units depends in a complex 
way on:  

• The numbers of input and output units  
• The number of training cases  
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• The amount of noise in the targets  
• The complexity of the function or classification to be 

learned  
• The architecture o the type of hidden unit activation 

function  
• The training algorithm  
 

VI. DIFFERENT APPROACHES FOR HIDDEN NEURONS 
SELECTION 

A. Simple Method  
There is a simple method to find out Neural Network 

hidden Neurons. Assume a Back Propagation Neural 
Network Configuration is l-m-n. Here l is input neurons, m is 
hidden neurons and n is output layers. If we have two input 
and two output in our problem than we can take same number 
of hidden neurons. So our configuration becomes 2-2-2. (l=2 
input neurons=2 hidden neurons and n=2 output neurons.) 
 
Total numbers of weights to be determined are  

mnWeights *)1( +=                      (1) 

B. Based on Hopfiled Neural Network 
The Hopfield network consists of a set of N interconnected 

neurons which update their activation values asynchronously 
and independently of other neurons. All neurons are both 
input and output neurons. The Hopfield neural network is 
perhaps the simplest of neural networks. The Hopfield neural 
network is a fully connected single layer auto associative 
network. This means it has one single layer, with each neuron 
connected to every other neuron. In this chapter we will 
examine a Hopfield neural network with just four neurons. 
This is a network that is small enough that it can be easily 
understood, yet can recognize a few patterns. A Hopfield 
network with connections we will build an example program 
that creates the Hopfield network shown in Figure 2.6. A 
Hopfield neural network has every Neuron connected to 
every other neuron. This means that in a four Neuron network 
there are a total of four squared or 16 connections. However, 
16 connections assume that every neuron is connected to 
itself as well. This is not the case in a Hopfield neural 
network, so the actual number of connections is 12.From this 
concepts we can take same number of hidden neurons and 
input neurons. 

C. Akaike’s Information Criterion (AIC) 
Akaike's information criterion, developed by Hirotsugu 

Akaike under the name of "an information criterion" (AIC) in 
1971 and proposed in Akaike (1974), is a measure of the 
goodness of an estimated statistical model. It is grounded in 
the concept of entropy, in effect offering a relative measure 
of the information lost when a given model is used to 
describe reality and can be said to describe the tradeoff 
between bias and variance in model construction. The AIC is 
not a test on the model in the sense of hypothesis testing; 
rather it is a tool for model selection. Given a data set, several 
competing models may be ranked according to their AIC, 
with the one having the lowest AIC being the best. From the 

AIC value if top three models are in a tie and the rest are far 
worse, but one should not assign a value above which a given 
model is 'rejected'. The AIC is a basis of comparison and 
selection among several statistical models. As we all know 
the goodness of parameters of a model can be calculated by 
the expected log likelihood, means the larger the expected log 
likelihood is better explanation. In looking at the relationship 
between the bias and the number of free parameters of a 
model [1], it is found that, 

 
(Maximum log likelihood of a model) – (number of free 
parameters of the model) 
 

It is an asymptotically unbiased estimator of the mean 
expected log likelihood. AIC estimator of Kullback –Leibler 
information is 
 
AIC = -2 * (maximum log likelihood of the model) + 2 * 
(number of free parameters of the model). 
In the general case, the AIC [5] is, 

klikelihoodAIC *2)ln(*2 +−=             (2) 

Where ln is the natural logarithm, k is the number of 
parameters in the statistical model and RSS is the residual 
sums of squares (Calculation of RSS value is discussed later 
in this paper). AIC can also be calculated using residual sums 
of squares [5] from regression 

KnRSSnAIC *2)/ln(* +=                   (3) 

Where n is the number of data points (observations). AIC 
requires a bias-adjustment small sample sizes. If ratio of n/K 
< 40 then uses bias adjustment  

)1/())1(**2(*2)ln(*2 −−+++−= KnKKKLAIC   (4) 

For example, consider 3 candidate models for the growth 
model, their RSS values, and assume n = 100 samples in the 
data.Table1 shows the Calculation of AIC values for 
different Models. AIC is calculated using different RSS 
values and different no of free parameters. Lower AIC is 
better for model. 

∑= εRSS i
2 =1.13                          (5) 

Where RSS is Residual sum of Square and E is error. 
The best model is determined by examining their relative 

distance to the “truth”. The first step is to calculate the 
difference between lowest AIC model and the others as  

AICAICii min−=Δ                         (6) 

Where Δi is the difference between the AIC of the individual 
models and min AIC is the minimum AIC value of all models 
[5]. The smallest value of AIC is –130.21(using equation 5). 
Thus the Δi is show in table1. 
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TABLE I.  CALCULATION OF ΔI  

K RSS AICc Δi 
4 25 -130.21 0 
3 26 -114.15 1.75 

3 27 -98.73 5.53 
 

To quantify the plausibility of each model as being the best 
approximating, we need an Estimate of the likelihood of our 
model given our data 

)|( dataModelL  

Interestingly, this proportional ( ) to the exponent of  

(-0.5*Δi) so that 

)*5.0exp()|( idataModelL Δ−α              (7) 

The right hand side of above is known as the relative 
likelihood of the model, given the data. A better means of 
interpreting the data is to normalize the relative likelihood [5] 
values as  

∑ ∑ Δ−Δ−=
R

i
iii )*5.0exp(/)*5.0exp(     (8) 

TABLE II.  EXPONENT OF DELTA  

K RSS AICc Δi exp(-0.5*Δi)
4 25 -130.21 0 1 
3 26 -128.46 1.75 0.4166 
3 27 -124.68 5.52 0.0631 
    Sum = 1.4798

 
The sum of the relative likelihoods is 1.4798, so we obtain 

the Akaike weights for each by dividing the relative 
likelihood by 1.4798. 

TABLE III.  AKAIKE’S WEIGHTS FOR DIFFERENT MODELS 

K RSS AICc Δi Wi 
4 25 -130.21 0 0.6758 
3 26 -128.46 1.75 0.2816 
3 27 -124.68 5.52 0.0427 

 
Where Wi are known as Akaike weights for model I and the 
denominator is simply the sum of the relative likelihoods for 
all candidate models. For example, using the earlier values 
from the 3 growth models: 

For the above example, the first model is (0.6758/0.2816) 
= 2.4 times more likely to be the best explanation for growth 
compared to second Model only and (0.6758/0.0427) = 15.8 
times more likely than third model only.  

As a general rule of thumb, the confidence set of candidate 
models (analogous to a confidence interval for a mean 
estimate) include models with Akaike weights that are within 
10% of the highest, which is comparable with the minimum 

cut-off point (i.e., 8 or 1/8) suggested by Royall (1997) as a 
general rule-of-thumb for evaluating strength of evidence.  

For the above example, this would include any candidate 
model with a value greater than (0.6758*0.10) = 0.0676. 
Thus, we would probably exclude the third model only from 
the model confidence set because its weight, 0.0427<0.0676 

D. Inverse Test Error Method 
In mathematics, the error function (also called the Gauss 

error function) is a special function (non-elementary) of 
sigmoid shape which occurs in probability, statistics, 
materials science, and partial differential equations. How to 
select neurons using Inverse test error method is discussed 
later. 

The error function is used in training the network and in 
reporting the error. The error function used can have a 
profound effect on the performance of training algorithms. 

E. Depend on Neural Network Error 
If neural network is not producing correct output at that 

time we have to increase number of hidden neurons. Also if 
neural network is not giving less error at time we have to 
increase number of hidden layers. 

F. Depend on Neural Network Training 
If neural network is getting train at that time we have to 

increase number of hidden neurons. 

G. Depend on Neural Network Output 
If neural network is not giving predicated output at that 

time we have to increase number of hidden neurons/Layers. 
To creating best neural network architecture we have to 
increase number of hidden neurons by 2 or 3 increment. 

H. Hidden Layers and MSE 
Hidden layers can also be finding out by following 

relationship, 

ehl NN α                                   (9) 
Where Ne is number of epochs and Nhl is number of hidden 
layers. So, 

 

)(
1
MSEMin

Neα                        (10) 

So, 

)(
1
MSEMin

Nhlα                         (11) 

VII. PROBLEM STATEMENT 
Here we have considered employee retention Problem for 

behavioral analysis of multilayer perceptrons and hidden 
neurons. In this problem there are 17 inputs and one output is 
Employee Retention Probability. This problem is analyzed 
with different methods as mention before. In next section we 
will see all the methods one by one. 
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VIII. BEHAVIORAL ANALYSIS 

A. As per First method the network configuration becomes 
l-m-n (l is input neurons is hidden neurons and n is output 
neurons).Here l=17, m=17 and n=1 as per the method. 

TABLE IV.  HIDDEN LAYER=1 AND HIDDEN NEURONS=17  

  Training Validation 

CCR,%: 100  - 

Network Error: 0.000298 0 

Iteration: 501 

Training Speed:,Iter/sec: 47.264175 

Architecture: [17-17-1] 
 

TABLE V.  HIDDEN LAYER=2 AND HIDDEN NEURONS=8 IN EACH  

  Training Validation 

CCR,%: 100   

Network Error: 0.000298 0 

Iteration: 501 

Training Speed:,Iter/sec: 52.187524 

Architecture: [17-8-8-1] 
 

Table number 4 the architecture with 17  hidden neurons 
with one hidden layer which gives 0.000298 network error 
while table 5 shows the neural network architecture with two 
hidden layers and 8 hidden neurons in each layer though we 
are getting same network error. 

B. Using Akaike’s Information Criterions 
The Akaike’s information criterion is most successful 

method to find neural network architecture. By using this 
method we can find number of hidden neurons for given 
problem. The method is discussed in previous section. Lower 
AIC is better for model. 

TABLE VI.  AIC CALCULATION  

ID Architecture 
# of 
Weight Fitness AIC 

1 [17-3-1] 58.00 9164.053 -9164.053 

2 [17-43-1] 818.00 7644.053 -7644.053 

3 [17-27-1] 514.00 8252.053 -8252.053 

4 [17-17-1] 324.00 8632.053 -8632.053 

5 [17-11-1] 210.00 8860.053 -8860.053 

6 [17-7-1] 134.00 9012.053 -9012.053 

7 [17-9-1] 172.00 8936.053 -8936.053 

8 [17-5-1] 96.00 9088.053 -9088.053 

9 [17-6-1] 115.00 9050.053 -9050.053 
 

We have started searching neural network architecture 
with hidden neurons 2 to 30 and incrementing hidden 
neurons by 3.We get better result in first architecture [17-3-1] 
with lowest AIC 

TABLE VII.  HIDDEN LAYER=1 AND HIDDEN NEURONS=3  

  Training Validation 

CCR,%: 100   

Network Error: 0.000303 0 

Iteration: 501 

Training Speed:,Iter/sec: 131.84 

Architecture: [17-3-1] 

C. Using Inverse Test Error Method 

TABLE VIII.  HIDDEN LAYER=1 AND HIDDEN NEURONS=2 

  Training Validation 

CCR,%: 100   

Network Error: 0.000318 0 

Iteration: 501 

Training Speed:,Iter/sec: 125.25 

Architecture: [17-2-1] 
 
By using this method we are getting more network errors but 
time taken to execute is less than the previous methods. 

D. With different Hidden Neurons and Layers 

TABLE IX.  HIDDEN LAYER=2 AND HIDDEN NEURONS=4 IN EACH 

  Training Validation 

CCR,%: 100   

Network Error: 0.000287 0 

Iteration: 501 

Training Speed:,Iter/sec: 83.5 

Architecture: [17-4-4-1] 

TABLE X.  HIDDEN NEURONS IN EACH LAYERS IS 8, 4 AND 2 
RESPECTIVELY 

  Training Validation 

CCR,%: 100   

Network Error: 0.000304 0 

Iteration: 501 

Training Speed:,Iter/sec: 55.66 

Architecture: [17-8-4-2-1] 
 

From result of table 4 and 5, we can say that as soon as 
number of unnecessary layers increase than network error 
will increase. 
 

IX. EXPERIMENT AND RESULTS 
We have taken the employee retention problem with nine 

inputs like experience, age, qualification etc, and we are 
getting following result. 

TABLE XI.  CRR WITH DIFFERENT NN ARCHITECTURE 

# Hidden Layer Architecture CRR  % 

1 [9-1-1] 95.65 

1 [9-2-1] 96.38 

1 [9-3-1] 96.38 

1 [9-4-1] 95.65 

1 [9-5-1] 95.65 

1 [9-6-1] 95.65 

1 [9-7-1] 96.33 

1 [9-8-1] 95.65 

336



International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011 
ISSN: 1793-8201 

 

 

1 [9-10-1] 97.83 

1 [9-15-1] 95.65 

2 [9-5-51] 96.38 

3 [9-5-5-1] 97.1 
 

From the above table we can say that as soon as we 
increase the number of hidden layers or number of hidden 
neurons we are getting better results or Classification Rate 
will increase and error will reduces. If we analyze the above 
result in graphical representation, we get better idea. The 
graphical representation is shown below. 
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Figure 2.  Graphical Representation of Hidden Layers vs. CRR 

From the above figure shows that as soon as numbers of 
hidden neurons and hidden layers increase neural network 
get better performance. We have discussed various 
techniques to select number of hidden neurons and number of 
hidden layers for better neural network result. As we expand 
the neural network architecture, the training time will also 
increase. 

X. CONCLUSION 
The training process of neural network become slowdown 

because of number of epoch increased. So if accuracy of the 
result is critical factor for an application then more hidden 
layers should be used but if time is major factor at that time 
single hidden layer should be used. 
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