
International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

Abstract—The FIR & IIR Filters are being designed using

HDL languages since speed is among the chief interest in this
era; the main objective is to enhance the speed of the system. In
the whole system if the speed of the individual block is enhanced
the overall speed of the system is enhanced digital computer
arithmetic is an aspect of logic design with the objective of
developing appropriate algorithms in order to attain an
effective utilization of the available hardware. Since ultimately,
speed, power and chip area are the most often used measures of
the efficiency of an algorithm, there has a strong link between
the algorithms and technology applied for its implementation.
Here it is done by applying the technique pipelining. The
comparative analysis of pipelined & non-pipelined FIR and IIR
filters is performed by using different FPGA’s. The results
reveal that the implemented filters turn in a consistent quality
of output.

Index Terms— Infinite impulse response (IIR), Finite
impulse response (FIR), Pipelining, Field programmable gate
arrays.

I. INTRODUCTION
High-performance digital filters are all important to the

execution of digital signal processing systems. The speed of a
filter realization counts not alone on the potentialities of the
hardware platform employed, but as well on the
computational structure of the code. [1] In pipeline
processing, any operation on a long critical path is broken
into levels of smaller, quicker operations, with registers
between levels, so as to get a smaller critical path delay. The
result is a higher operating frequency and a higher throughput.
In a feedback system, viz an IIR filter, the registers
introduced in a feedback loop will alter the loop delay,
leading in a modified transfer function. Hence, in order to
pipeline an IIR filter while conserving its original transfer
function, the computations must first be redeveloped into
what is called a look-ahead filter form [2]. FIR filter is the
key functional block in the field of digital signal processing.
A count of implementations can be ascertained in the public
literatures, either by software or hardware solutions. [3] The
proposed design in this paper is an attempt to optimize the
system speed with minimal cost of hardware and software.
The central design concept is to build filters with minimal

Manuscript received July 14, 2010
Ravinder Kaur is with DAV Institute of Engineering & Technology,

Jalandhar, India.
Ashish Raman is Assistant Prof with Dr. B.R. Ambedkar National

Institute of Technology, Jalandhar , India
Hardev Singh is with Dr. B.R. Ambedkar National Institute of

Technology, Jalandhar , India
Jagjit Malhotra is Assistant Prof with DAV Institute of Engineering &

Technology, Jalandhar, India.

delay, without sacrificing the performance of original filters.
FIR filters feature the advantage of linear phase, stability,
fewer finite precision errors, and efficient implementation. In
contrast, they have a major disfavor of high order need (many
coefficients) than IIR counterpart with comparable
performance. The high order demand enforces additional
hardware demands, arithmetic operations, area usage, and
power consumption as designing and fabricating the filter.
Consequently, minimizing or reducing these parameters, is a
major aim in digital filter design task. [4] This paper
discusses the design and implementation of a non pipelined
and pipelined IIR and FIR filter to accelerate processing
while conserving the dynamics of the filters.

II. FINITE IMPULSE RESPONSE FILTER
The difference equation for FIR which defines the relation

of the input signal to the output signal is given as

y[n] =b0 x[n] + b1 x[n-1] +……..+ bN x[n-N] (i)

where x[n] is the input signal, y[n] is the output signal and bi
are the filter coefficients. N is known as the filter order; an
Nth-order filter has (N + 1) terms on the right-hand side; these
are commonly referred to as taps. The equation (i) can be
given as a convolution of filter coefficients and the input
signal.

y[n] = ∑ bேୀ i x[n-i] (ii)

III. INFINITE IMPULSE RESPONSE FILTER
The difference equation for IIR that defines how the output

signal is related to the input signal is given as ݕሾ݊ሿ ൌ ଵబ ሺܾݔሾ݊ሿ ܾଵݔሾ݊ െ 1ሿ ڮ ܾݔሾ݊ െ ܲሿ െܽଵݕሾ݊ െ 1ሿ െ ܽଶݕሾ݊ െ 2ሿ െ ڮ െ ሾ݊ݕொݍ െ ܳሿሻ (iii)

where P is the feedforward filter order, ܾ are the
feedforward filter coefficients is the feedback filter
order,ܽ are the feedback filter coefficients[n] is the input
signal ,y[n] is the output signal.

An IIR filter is a recursive filter where the current output
depends on previous outputs [5].The condensed form of the
difference equation (iii) is ݕሾ݊ሿ ൌ ଵబ ሺΣୀ ܾݔሾ݊ െ ݅ሿ െ Σୀଵொ ܽݕሾ݊ െ ݆ሿሻ (iv)

IV. PIPELINING
Pipelining is an implementation technique in which

multiple instructions are overlapped in execution. Today,
Pipelining is a key to making processors fast. The total
execution time for each individual instruction is not altered

Design and Implementation of High Speed IIR
and FIR Filter using Pipelining

Ravinder Kaur, Ashish Raman, Member, IACSIT, Hardev Singh and Jagjit Malhotra

292

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

by pipelining. Pipelining does not accelerate instruction
execution time, but it does accelerate program execution time
by increasing the number of instructions finished per unit
time.

V. PIPELINING OF MULTIPLICATIONS
In a filter the multiplication of a signal by a constant filter

coefficient is the most time-consuming operation. By
revising the conditions of shifts and additions the pipelining
of the multiplications is achieved. The constant is constituted
in canonical signed digit (CSD) format as to minimize the
amount of shift-and-add operations for a constant
multiplication [6].Like an binary format the CSD is
represented with the difference that each digit might have an
value of 0,1, or -1 (represented here as 1). Representing a
constant filter coefficient in CSD significantly scales down
the number of shift-and-add operations demanded to
perform the multiplication by that coefficient. For example,
the binary value as “11111010” stood for the decimal value
250 and in CSD as “100001010”. Since the binary
representation has six non- zero digits, multiplication by 250
demands the addition of six terms when a binary
representation is applied:

u × 250 = u × 21 + u × 2 3 + u × 2 4 + u × 2 5 + u × 2 6 + u × 2 7
(v)

The CSD representation, with only three non-zero digits,
calls for the addition (or subtraction) of only three terms:

u × 250 = u × 21 − u × 2 3 + u × 2 8 (vi)

In a binary tree of ripple carry adders the additions
themselves are coordinated. As a whole, if A denotes the
number of non-zero digits used to constitute the constant, the
number of levels in the binary adder tree is given by M= [log
2 A]. For our example, the CSD format demands only two
levels where as the binary representation leads in a
multiplier with three levels. The multiplier coefficient
represented by using a value of A has a two-fold effect on the
filter implementation. 1st, it checks the number of adders
required for the multiplier itself. 2nd it checks the number of
levels M in the consequent tree of adders, which can cause an
effect on the structure of the filter. Since lower values of M, a
given system throughput perhaps attained with less pipelining.
This successively means that fewer registers are demanded in
the reformulated system, and a lower-order filter, may be
implemented. Hence applying the CSD representation to
minimize A not just brings down the number of adders in
each multiplier, but as well reduces the amount of multipliers
required to implement the filter.

VI. LOOK-AHEAD FILTER FORMS
The reformulation of the filter in a look-ahead filter form

demands the pipelining of the feedback loop in an IIR filter.
Here it is exemplify by the process upon a second-order
digital filter constituted by the transfer function ܩሺݖሻ ൌ ଶݖܽ ݖܾ ଶݖܿ ݖ݀ ݁ ሺ݅݅ݒሻ
and represents the difference equation ݕሺ݇ሻ ൌ ሺ݇ሻݑܽ ሺ݇ݑܾ െ 1ሻ ሺ݇ݑܿ െ 2ሻ െ ሺ݇ݕ݀ െ 1ሻെ ሺ݇ݕ݁ െ 2ሻ ሺ݅݅݅ݒሻ

In an look-ahead form of the difference equation (viii), the
term y(k −1) is rewritten in terms by older values of y, such
y(k − 2) and y(k − 3) which are variable earliest. As, for
example, y(k − 2) is available one clock cycle earlier than y(k
−1) , the reformulation allows for the insertion of one another
level of pipelining in the feedback computation. Not every
look-ahead forms preserve the stability of the original filter
[7]; one that make so is the Scattered Look-Ahead (SLA)
form [8]. Beginning from the transfer function of the original
filter in (vii), the transfer function of the SLA filter comprises
ሻݖ௦ሺܩ ൌ ଶݖܽ ݖܾ ଶݖܿ ݖ݀ ݁ . ଶݖ െ ݖ݀ ଶݖ݁ െ ݖ݀ ݁
 ൌ ොܽݖସ ܾݖଷ ଶݖ̂ܿ መ݂ݖ ො݃ݖସ መ݀ݖଶ ݁̂ ሺ݅ݔሻ

 where ොܽ ൌ ܽ, ܾ ൌ ܾ െ ܽ݀, ܿ̂ ൌ ܽ݁ ܿ െ ܾ݀, መ݀ ൌ 2݁ െ ݀ଶ, ݁̂ ൌ ݁ଶ, መ݂ ൌ ܾ݁ െ ܿ݀, ܽ݊݀ ො݃ ൌ ܿ݁.
Two newer poles have been acquainted; these poles feature

the same magnitudes as the original poles, and alter by them
alone in their angles. This implies that the SLA form is stable
when the original system was stable (all poles inside the unit
circle). The transfer function in (ix) equates to the difference
equation ݕሺ݇ሻ ൌ ොܽݑሺ݇ሻ ܾݑሺ݇ െ 1ሻ ሺ݇ݑ̂ܿ െ 2ሻ መ݂ݑሺ݇ െ 3ሻ ො݃ݑሺ݇ െ 4ሻ െ መ݀ݕሺ݇ െ 2ሻ െ ሺ݇ݕ̂݁ െ 4ሻ
 (x)

This is to be noted that in the difference equation (x), y(k
−1) has been eliminated, and y(k) is calculated from y(k − 2)
and y(k − 4) . It is likewise possible to eliminate y(k − 2) , and
so forth, whenever more levels of pipelining are demanded.

VII. RESULTS & CONCLUSION
The design and implementation of non pipelined and

pipelined IIR and FIR filters was carried out. Simulation and
synthesis for FPGAs has been accomplished on Spartan 3
series FPGA, target device (XC3S500E) (Speed Grade -4)
and Virtex 2P series FPGA, target device (XC2VB50) (Speed
Grade -6) from Xilinx. Simulation results obtained for IIR
and FIR Filters have been successfully implemented on
FPGA. The synthesis report results are tabulated in Table
1.The simulation results obtained on synthesis device, FPGA
SPARTAN 3E shows that by using pipelined technique the
delay for an IIR Filter reduced to 4.534ns from 4.903ns as
obtained for non pipelined technique. Significant decline in
delay from 15.458ns to 8.631ns was observed in case of FIR
filters with the implementation of pipelined technique. The
advantage of pipelining was also verified by using VIRTEX
2P. Similar results were observed wherein the delay for IIR
and FIR filters reduced by 0.575ns and 5.654ns with the
implementation of pipelining technique.
The above results demonstrate that the pipelined technique
reduces delay and enhances speed as compared to non
pipelined technique. However, the impact of pipelining is
more significant on FIR filters as compared to IIR filters.

293

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

TABLE 1: SHOWS THE SIMULATION RESULTS OF THE DIGITAL FILTERS ON
DIFFERENT FPGA’S

SYNTHESIS
DEVICE FILTER

NON PIPELINED PIPELINED

Delay Frequency Delay Frequency

FPGA
(SPARTAN

3E)

IIR 4.903ns 203.957MHz 4.534ns 220.556MHz

FIR 15.458ns 64.691MHz 8.631ns 115.861MHz

FPGA
(VIRTEX

2P)

IIR 3.665ns 272.851MHz 3.09ns 322.997MHz

FIR 12.29ns 81.327MHz 6.636ns 150.693MHz

The graphs below fig 1(a) & fig 1(b) shows the delays(ns)

for IIR and FIR Filters on Spartan 3E and Virtex 2P FPGA’s
which clearly shows that the delay in the pipelined filter is far
less than non pipelined filter. It can be clearly seen that
results for Virtex 2P for pipelining is more significant.

Fig 1(a) Graph for IIR Filter showing delay

Fig 1(b) Graph for FIR Filter showing delay

The screen shots showing the synthesis report for IIR &

FIR filters (pipelined) during the synthesis taken are shown
below from fig 2(a) to fig 2(d)

Fig 2(a) synthesis report for FIR pipelined implementation on Virtex 2p

 Fig 2(b) synthesis report for IIR pipelined implementation on Virtex 2p

 Fig 2(c) synthesis report for FIR pipelined implementation on Spartan 3E

 Fig 2(d) synthesis report for IIR implementation on Spartan 3E

The simutation waveform results are shown in fig 3(a) and
3(b) for IIR & FIR pipelined filters

Fig 3(a) Simulation results for FIR Pipelined

Fig 3(b) Simulation results for IIR Pipelined

294

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

REFERENCES
[1] Sami Khorbotly, Joan E. Carletta, Robert J. Veillette “A Methodology

for Implementing Pipelined Fixed-Point Infinite Impulse Response
Filters” 41st Southeastern Symposium on System Theory University of
Tennessee Space Institute Tullahoma, TN, USA, March 15-17, 2009

[2] A. Shaw and M. Ahmed, “Pipelined recursive digital filters: a general
look-ahead scheme and optimal approximation,” IEEE Trans. on
Circuits and Systems II: Analog & Digital Signal Processing, vol. 46,
no. 11, pp. 1415– 1420, Nov. 1999.

[3] Chao-Huang Wei, Hsiang-Chieh Hsiao, Su-Wei Tsai “FPGA
Implementation of FIR Filter with smallest Processor” IEEE, 2005

[4] Mohamed Al Mahdi Eshtawie, and Masuri Bin Othman “ An
Algorithm Proposed for FIR Filter Coefficients Representation”D.
International Journal of Applied Mathematics and Computer Sciences
4;1 2008

[5] “Fpga Implementation Of Adaptive Iir Filters With Particle Swarm
Optimization Algorithm” ZhenbinGao , XiangyeZeng , Jingyi Wang ,
Jianfei LiuSchool of Information Engineering, Hebei University of
TechnologyTianjin 300401, P. R. China

[6] A. Avizienis, “Signed-digit number representation for fast
parallel arithmetic,” IRE Transactions on Electronic Computers, vol. 10,
pp. 389–400, Sept.1961

[7] Y.C. Lim and B. Liu,“Pipelined recursive filter with minimum order
augmentation,” IEEE Transactions on Signal Processing, vol. 40, no. 7,
pp.1643-1651, July 1992.

[8] K. Parhi & D. G. Messerschmitt, “Pipeline interleaving and parallelism
in recursive digital filters I. Pipelining using scattered look-ahead and
decomposition,” IEEE Transactions on Acoustics Speech & Signal
Processing, vol. 37, no. 7, pp. 1099-1117, July 1989.

295

