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Abstract—This paper proposes a central pattern generators 

based control architecture using a frequency adaptive 
oscillator for learning to locomotion of humanoid robot. 
Central pattern generators are biological neural networks that 
can produce coordinated multidimensional rhythmic signals, 
under the control of simple input signals. They are found both 
in vertebrate and invertebrate animals for the control of 
locomotion. In this article, we present a novel system composed 
of adaptive nonlinear oscillators that can learn arbitrary 
rhythmic signals in a supervised learning framework, and 
apply it to control   a simulated humanoid robot with up to 22 
degrees of freedom. A key feature of the proposed architecture 
is that the learning is completely embedded in to the dynamical 
control, and does not require external optimization algorithms.  
As a test bed, we chose Robocup 3D soccer simulation 
environment (spark). Experimental results show that learn to 
walk of the robot could be successfully performed, thus 
allowing the biped robot to walk fast, stable and straightly. 

 

I. INTRODUCTION 
In more and more scientific projects we can see scenarios 

where robots are placed in a home environment helping 
humans, in particular elderly or disabled persons. Robots 
that are supposed to work in places where humans live (e.g. 
service robots) have to meet additional constraints. The 
environment in which they act is very complex: A world 
designed by humans, for humans.   

The ability to efficiently move in complex environments 
is a key property of animals. It is central to their survival, i.e. 
to avoid predators, to look for food, and to find mates for 
reproduction. Similarly, providing good locomotors skills to 
robots is of primary importance in order to design robots 
that can carry out useful tasks in a variety of environments. 

 There exist a number of approaches to biped locomotion. 
Among the most successful ones is trajectory tracking 
methods that are based on precompiled trajectories of the 
legs or the Zero Moment Point (ZMP). The ZMP is the 
point on the ground where the total moment generated due 
to gravity and inertia equals zero [1].  

A completely different approach to walking is that of 
passive dynamic walkers. These use the inherent machine 
dynamics for walking and thus are very efficient in energy. 
Most of them walk without actuation or control. McGeer [2] 
first introduced the notion of passive dynamic walking and 
showed that unsaturated and uncontrolled planar walking 
down a slope is possible.  
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Studying bipedal locomotion in animals and in particular 
humans, gives us a good idea on how their gait could be 
modeled. Although bipedal locomotion has been studied by 
scientists of different domains, this problem has not been 
completely solved yet [3]. 

Studies in animal locomotion suggest that gait patterns 
are generated by rhythmic pattern generators. Following 
those observations, simple neural oscillators have been 
designed to work as CPG. CPGs generate trajectories for the 
joints by using nonlinear oscillators. 

In order to represent the CPG and generate the required 
signals, several nonlinear oscillators that are coupled 
together have been developed, such as the Hopf, Rayleigh, 
Van del Pol, and Matsuoka oscillators, etc.  

The oscillator model used in this work has been first 
studied by Matsuoka [10] and is widely used in many 
researches on robotics and CPGs [3][5] thus we selected it 
in our project. Models of CPGs have been used to control a 
variety of different types of robots and different modes of 
locomotion. For instance [5], models of CPG are also 
increasingly used for the control of biped locomotion in 
humanoid robots, Examples of CPG-controlled biped 
locomotion [6, 7, 8, 9]. 

One drawback of the CPG approach is too many 
parameters to set for CPG and there is no methodology for it. 
Therefore, evolutionary computation methods are often used 
to optimize the parameters [8]. 

However, when the evolutionary method is applied to 
find CPG parameters, learn to walk is very slowly and time-
consuming for instance [12]. 

In this work we combined   a learning rule [4] With the 
Matsuoka oscillator, and we have made an adaptive 
oscillator that can learn arbitrary periodic signals in a 
supervised learning framework very fast and it is completely 
embedded into the dynamical system, and does not require 
any external regression or optimization algorithms, or any 
preprocessing of the teaching signal. Then, we used a CPG 
with this adaptive oscillator for learning to walk a humanoid 
robot. 

The rest of the paper is organized as follows. Section 2 
describes our model and simulator to simulate the 
locomotion of the humanoid robot. Section 3 describes the 
details of the CPG architecture. Section 4 presents the 
results of the experiments. 

 

II. BIPED MODEL AND SIMULATOR 
We decided to use a simulation for this project. Having a 

simulated robot has many advantages besides the price 
lower than a real robot. First a simulation is infinitely more 
flexible than a real robot. In the simulation we have the 
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complete control over the robot's model: Its shape or its 
weight can be easily changed or adapted to fit our needs. 
That would be almost impossible with a real robot. 

We used the simulator of the RoboCup 3D Simulation 
League. The RoboCup 3D Simulation League uses a 
simulator program, called the server, which uses the Open 
Dynamics Library (ODE) to simulate a football game [11]. 
The dynamics of the simulation include realistic, Newtonian 
physics such as gravity, friction and collisions. In the ODE 
implementation, a motor is associated with each joint. The 
physics engine is implemented in such a way that the motors 
can be controlled by simply setting a desired position angle. 

The robots used in the 3D Simulations are models of 
humanoid robots. It is based on the NAO robot and has 
realistic sizes, weights, et cetera. Figure 1 shows the 
simulated agent in the football field along with his joints 
that make up its Degrees Of Freedom. It is a real humanoid 
Robot with two arms, two legs and a head. This robot 
weighs 4.5kg, stands 57cm high and has 22 degrees of 
freedom (DOF). There are six DOFs in each leg; two in the 
hip, two in the ankle and one at the knee. An additional 
DOF that exists at each leg's hip for yaw causes the legs to 
rotate outward and inward. 

 

III. CENTRAL PATTERN GENERATORS 
Studies made on the vertebrates' neural system tend to 

show that every degree of freedom in the animal's body 
corresponds to a single neural oscillator. To achieve 
locomotion the neural system generates rhythmic signals by 
neural oscillators that are sent to the muscle-skeletal system 
in order to produce torques on the different joints of the 
animal. So, once again in this project we will inspire our 
self from the biology and we will use one neural oscillator 
for each robot's degree of freedom. The output signals of 
neural oscillators are used as the target angles of 
corresponding joints. 

The CPG found in the vertebrates are made of neural 
oscillators. Thus if we want to simulate a CPG, we first 
have to simulate one of these neural oscillators. One 
approach could be to build a model as close as possible to 
the behavior of the real neurons. But that's not what we 
decided to do, for two major reasons: First, the real neurons 
have very complex behaviors and are far from being fully 
understood by the biologists. Second, such a model would 
be pretty complicated and there for it would be difficult to 
embed it on a real robot.  

In order to represent the CPG and generate the required 
signals, several nonlinear oscillators that are coupled 
together have been developed, such as the Hopf, Rayleigh, 
Van del Pol, and Matsuoka oscillators, etc. We selected 
Matsuoka oscillator in our project. 

In this section, first, we present the learning rule for 
oscillators which adapts their frequency to the frequency of 
any input signal briefly. It introduced in the [4] completely 
and then we descript Matsuoka adaptive oscillator with one 
example. In continue, we present a control based CPG using 
a frequency adaptive Matsuoka oscillator for learning to 
locomotion of humanoid robot. 

A. A generic rule for frequency adaptation 
We consider general equations for an oscillator perturbed 

by a periodic driving signal. 
ሶݑ   )1( ൌ ௨݂ሺݑ, ,ݒ ሻݓ ൅ ܭ ·     ሻݐሺܨ
ሶݒ     )2( ൌ ௩݂ሺݑ, ,ݒ                   ሻݓ

Where fu and fv are functions of the state variables that 
produce a structurally stable limit cycle and of a parameter 
ω that has a monotonic relation with the frequency of the 
oscillator when unperturbed, K = 0 (we do not require this 
relation to be linear). F (t) is a time periodic perturbation 
and K > 0 the coupling strength. 

In order to make the oscillator learn the frequency of F (t), 
we transform the ω parameter into a new state variable that 
will have its own dynamics. The generic rule that allows us 
to transform this oscillator into an adaptive frequency one is 
as follows.  

)3(       ωሶ ൌ േܭ · ሻݐሺܨ ௩ඥ௨మା௩మ                                  

Where the sign depends on the direction of rotation of 
the limit cycle in the (x, y) plane. 

B. Matsuoka adaptive oscillator 
We use the neural oscillator model proposed by Matsuoka 

[10]. The neural model is a half-center oscillator which 
consists of two (extensor and flexor) neurons, having 
mutual inhibitory interactions. We According to the generic 
rule for frequency adaptation modified it. The model can be 
described by the following set of differential equations. 

)4( τଵu ሶୣ ൌ u଴ୣ െ uୣ െ βvୣ െ wୣ୤ሾu୤ሿା ൅ K · Fሺtሻ/2  
)5( ߬ଶݒ௘ሶ ൌ  െݒ ௘ ൅ ሾݑ௘ሿା                                                                     
)6( τଵu୤ሶ ൌ  u଴୤ െ u୤ െ βv୤ െ w୤ୣሾuୣሿା ൅ K · Fሺtሻ/2   
)7( ߬ଶݒ௙ሶ ൌ   െݒ ௙ ൅ ሾݑ௙ሿା                                                                   
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Where ue, νe, u f , and vf are the internal states of the 
oscillator. yout is the output of the oscillator. β is the 
adaptation coefficient. 

With this generic architecture, we are able to learn any 
periodic input signal. We just have to provide Qlearn the 
periodic trajectory we want to learn as input and integrate 
the system of equations. After convergence, we can set F(t) 

 

Figure 1: The NAO robot in the football field along with his 
joints
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= 0.  

We performed simulations to confirm whether the 
frequency adaptive oscillator can adapt its phase to an input 
signal with varying frequency. We set the parameters of the 
oscillator as follows: τ1initial= 0.3, R = 0.5, β = 2.5, wef = 
wf e = 2.5, u0e = u0 f = 5.0.The input signal is represented by a 
sinusoidal function sin 5t. After learning, the periodic signal 
is encoded in the network of oscillators, as can be seen in 
Figure2. 

 
C. Application to Bipedal locomotion 

In this section we show how, given a sample trajectory, 
we can use our generic CPG architecture to control bipedal 
locomotion on a simulation of the NAO. First, we present 
the controller architecture made of several Matsuoka 
adaptive oscillator one for each DOF. 

It is found that 6 DOFs (three for each leg) are more 
important than other DOFs in fast walking. These are DOFs 
of hip; knee and ankle DOFs which move on the same plane 
of forward-backward. Although other DOFs are effective in 
walking behavior, but in fact, their role is more in 
smoothing the robots walking motion. So here, it’s preferred 
to ignore them to decrease learning search space [12]. 
Therefore, in our controller architecture, we control 6 of the 
22 DOFs of the robot. Figure 3 shows a schematic view of 
the controller architecture.  

 

IV. EXPERIMENTAL AND RESULTS 
In this section we present experiments we did with the 

CPG we presented. We did this experiment with the 
simulator of the RoboCup 3D Simulation League. The      

 
robots used in the 3D Simulations are models of humanoid 
robots. It is based on the NAO robot and has realistic sizes, 
weights, et cetera. 

With this control architecture is introduced, we are able to 
learn any locomotion. We just have to provide Qteach the 
periodic trajectory we want to learn as input and integrate 
the system of equations. After convergence, we can set F (t) 
= 0 (no more input nor feedback loop) and the periodic 
signal stays encoded into the network of oscillators. The 
learning process is embedded in the equations, there is no 
need of any external optimization or learning algorithm. 

We trained the Matsuoka adaptive oscillator with sample 
trajectories of walk motion of the NAO provided by a player 
of the Nexus team in 2009 ROBOCUP competition. Each 
trajectory was a teacher signal to the corresponding CPG 
controlling the associated DOF. All the control parameters 
of the CPGs converged correctly and, after learning, the 
sample trajectories are encoded in the controller as can be 
shown in Figure 4. 

K is a coupling constant in the rule of the frequency 
adaptation (equation 3). We changed the value of k 
according to error. The initial value of K was 0.9. We 

Figure 4: Structure of the CPG for the humanoid 

 

(a). plots of the oscillations (blue line) and of the input signal F 
(red line), before adaptation. 

 

 

(b).plots of the oscillations (blue line) and of the input signal F 
(red line), before adaptation. 

 

(c). plot of the error, defined by error = |yout − Qlearned_|. 
Figure 2: Adaptive Matsuoka oscillator 

Figure 3: Result of training of the generic CPG. We plotted the 3 
controlled DOFs, the blue line corresponds to the output of the CPG 
for each DOF, and the red line corresponds to the sample trajectory.
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defined a threshold for the error value. We multiplied 0.5 in 
the K when the error is less than threshold and we reduced 
the threshold value. We used equation 13 to obtain the error.  

ݎ݋ݎݎ݁ )13( ൌ ԡ݄ܶ݁ ݎ݋ݐ݈݈ܽ݅ݏ݋ ݂݋ ݐݑ݌ ݐݑ݋ െ Inputԡ        
Recently, Shafi [12] proposed a method base on evolution 

algorithm but his method is too slow. The NAO robot could 
walk after 9 hours in the [12] but the time of adaptation was 
1.5 hours in our experiment. 

Our NAO robot could walk similar to the virtual NAO 
robot of the Nexus team (figure 5). Our NAO robot could 
walk 25 m in 27 s with average body speed of around 0.92 
m/s. 
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Figure 5: Snapshots of the robot while walking. 
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