
International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

Abstract— We developed recently a new and novel student

project allocation model (SPA-(s, p)) in which the lecturers have
preference lists over pairs (student, project), and the students
have preference lists over projects. SPA-(s, p) is turned out to
be very useful in combination between the student project
allocation models with preference lists over students (or
projects) [8, 9]. SPA-(s, p) proposes several ways to construct
the lecturer's preference lists which give us higher efficiency
and accurate results. This study presents new data structure
which reduces the space to present an instance of SPA-(s, p).
Furthermore, this study presents a visualization of SPA-(s, p)
model. The visualization is implemented in java for the fact that
it is a web-oriented language.

Index Terms— Matching, Algorithms, Visualization.

I. INTRODUCTION
 Visualization programs have recently been used more

widely to help students understand some algorithms and also
clarify some data structures [7, 8, and 9]. In 1999 Byrne,
Catrambone and Stasko [10] presented a study which
assesses the performance of animation to help students
understand and realize the algorithm’s steps more effectively.
The aim of their study is to examine whether animations
helped students to understand the concepts of procedural
algorithms. The results showed that the animations help the
students to learn the algorithm and expect its behavior more
efficiently. In this type of programs the steps of the algorithm
are represent by some images and animations to help students
understand how this algorithm work. During the execution of
the program, the algorithm transforms from state to another.
These states can be animated for the students, one after
another. The students may have some kind of control over the
process, so they can interact with the system in order to stop,
continue or step through the animation. In this paper we
present visualization program for student project allocation
with preference over pairs which was an application of the
stable matching problem.

In many colleges, students have to take upon themselves
projects in some fields. To do this, the lecturers offer some
project topics; both projects and lecturers have capacity
constraints. The students choose from among these projects.
Each student gives a preference list over the projects that he
finds acceptable, the lecturers give preference lists over the

Manuscript received May 9, 2010.
Mahmoud I. Moussa is now with Computer Science Department , Faculty

of Computers and Information, Benha University, Egypt (e-mail:
moussa_6060@yahoo.com).

 Ahmed H. Abu El-Atta is now with Computer Science Department,
Faculty of Computers and Information, Benha University, Egypt (e-mail:
ahmed_123_hasan@yahoo.com).

students, and other time they give preference lists over the
projects that they offer. The student project allocation
problem with preference over students (denoted SPA) was
studied by Abraham [1] and Abraham and Irving [3]. In their
model, the students supply preference lists over projects that
were offered by lecturers and each lecturer supplies a
preference list over students who show interest in one or
more of his projects. Figure 1 describes an instance ܫଵ of SPA
where two students ݏଵ and ݏଶ and two lecturers ݈ଵ and ݈ଶ
indicated their preferences for the projects and students
respectively. Each project has a capacity of one. Lecturer ݈ଵ
can supervise two students whereas lecturer ݈ଶ can supervise
only one.

Students’ preferences Lecturers’ preferences ݏଵ ଷ ݈ଵ ଵ ଶ ଶݏ ଵݏ
ଶݏ ଷ ݈ଶ ଶ ଷ ଵ ݈ଶ offers ଵ ݈ଵ offersݏ ଶݏ

Figure 1: An instance ܫଵ of the SPA model.

Manlove and O’Malley [2] presented a model for the

student project allocation with preference lists over projects
denoted SPA-P. Figure2 shows an instance ܫଶ of the SPA-P
model, the students supply preference lists over projects,
while the lecturers indicate their preferences for the projects.

Students’ preferences Lecturers’ preferences ݏଵ ଵ ݈ଵ ଷ ଶ ଶݏ ଶ ଵ ସ ݈ଶ ଶ ଷ ସ ଷ ଶ ݈ଶ offers ଵ ସ ݈ଵ offers ଷ

Figure 2: An instance ܫଶ of SPA-P model.

SPA is a two-sided matching problem[1] because the input

of SPA is a two disjoint sets A (in this case A is the set of
students) and B (in this case B is the set of projects), and we
seek to match members of A to members of B subject to
various criteria. In 2003 M. Thorn [4] presented an
automated system for allocating students to projects at the
Department of Computer Science, University of York. Other
university departments in particular seek to automate the
allocation of students to projects [5]. In 2005, D. F. Manlove
and G. O’Malley [2] gave a student project allocation with
preference over projects (SPA-P). Manlove and O’Malley
prove that; the SPA-P model is NP-Complete problem and he
gives an approximate algorithm to solve that problem. In
2006 J. Mestre[6] gave a linear time algorithm to find a
matching M with the property that there is no other matching
M′ preferred by a weighted majority of agents. The
algorithm is for a version of the problem in which each
applicant has an associated weight. The authors in [1, 2] notes

A Visual Implementation of Student Project
Allocation

Mahmoud I. Moussa and Ahmed H. Abu El-Atta

178

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

that a new model over (student, project) pairs may improve
the results of the problem.

This paper presents a new data structure for the student
project allocation problem with preference lists over (student,
project) pairs that we denote SPA-(s, p) to reduce the space
that needed to present an instance of SPA-(s, p). In SPA-(s, p)
the students supply preference lists over projects, and the
lecturers supply preference lists over (student, project) pairs.
This study uses java-applet program to present a visualization
of the student project allocation algorithm with Preference
over Pairs based on the fact that java is a web-oriented
language and object-oriented language.

 Figure 3 shows an instance ܫଷ of SPA-(s, p), in which each
lecturer has a capacity of two, the projects ଵ, ଶ, and ସ
have capacities one, whereas project pଷ has a capacity two.

Students’ preferences Lecturers’ preferences :ଵݏ :ଷ ݈ଵ ଵ ሺݏଷ, ,ଶݏଵሻሺ ,ଵݏଶሻሺ ,ଷݏଵሻሺ ଶሻ :ଶݏ :ସ ݈ଶ ଷ ଶ ሺݏଶ, ,ଷݏଷሻሺ ,ଶݏଷሻሺ ,ଵݏସሻሺ :ଷݏ ଷሻ ସ ଷ ଶ ݈ଶ offers ଵ ଷ ݈ଵ offers ଵ ଶ

Figure 3: An instance ܫଷ of SPA-(s, p).
SPA-(s, p) provides many of the facilities and possibilities

for building a preference lists over pairs (student, project).
These possibilities achieve a balance between students,
which diminish the number of unmatched students by
preventing student from quarantine on another. SPA-(s, p)
motivates the algorithm to find the maximum cardinality of
stable matching. These improvements do not exist in SPA
and SPA-p models. To clarify more, assume that the student ݏ is the first student in the preference list ܮ of ݈. In SPA,
the student ݏ has a greater opportunity to choose his favorite
project among the offers of ݈, this will reduce the chances of
other students. SPA-(s, p) overcomes these shortcomings
because the lecturers can be twinned between students and
projects, the lecturer ݈ may prefer s୧ to work in some
projects, in the same time he prefers other students to work in
other projects. For example, a small SPA instance consists of
two students ݏଵ and ݏଶ and one lecturer ݈ଵ offers the projects ଵ and ଶ. Each project has capacity 1, whilst ݈ଵ has capacity
2. Student ݏଵ prefers ଵ to ଶ , whilst ݏଶ finds only ଵ
acceptable. Lecturer ݈ଵ prefers ଵݏ to ଶݏ . Clearly then, the
matching ܯଵ ൌ ሼሺݏଵ, ,ଶሻ ሺsଶ pଵሻሽ admits the blocking
pair ሺsଵ, pଵሻ , whilst ܯଶ ൌ ሼሺsଵ, pଵሻሽ is the only stable
matching. In SPA-(s, p) lecturer ݈ଵ prefers ݏଵ to ݏଶ too, the
lecturer ݈ଵ twines between students and projects, then the
preference list of lecturer ݈ଵ may be as the following ݈ଵ ൌ ሼ ሺsଵ, pଶሻ ሺsଶ, pଵሻሺsଵ, pଵሻሽ so it is clear that ܯଵ
become the optimal matching of that instance. In SPA model
lecturer give his preference over students, so if he prefers a
student s୧ to another one s୰ then he will prefer s୧ to s୰ in all
projects he offered. In this case student s୰ may be unmatched
at all. If the lecturer supplies preference over pairs, the
student s୰ has a chance to work in one of the projects offered
by lecturer lଵ subject to the same criteria. On the other hand;
SPA-p model gives preference over projects with
indifference between the students, which may deprive the
students to work with their preferred projects. But SPA-(s, p)
works indifference (cases 2.c and 3.b), and it works too
towards the wishes of students and it avoids unexpected
un-assignments (cases 2.a, 2.b and 3.a). For example, a small
SPA-p instance consists of two students sଵ and sଶ and one

lecturer lଵ offers the projects pଵ pଶ and pଷ . Each project
has capacity 1, whilst lଵ has capacity 2. The student sଵ
prefers the project pଷ to the project pଵ and the
student sଶ prefers the project pଷ to the project pଶ . This
instance has two stable matching Mଵ ൌ ሼሺsଵ, pଷሻ ሺsଶ, pଶሻሽ
and Mଶ ൌ ሼሺsଵ, pଵሻ ሺsଶ, pଷሻሽ. It is clearly that Mଶ is better
than Mଵ but in that model it is NP problem to find best
matching, the authors of SPA-p models [2] note that a new
model over pairs may solve that problem. In SPA-(s, p)
model; The stability can be defined as the following: a stable
matching M guarantees that there is no pair ሺs୧, p୨ሻ ב M
where l୩ is the lecturer who offers , such that ݏ is
unassigned or prefers to remain within assignment in ܯ
and also ݈ is undersubscribed or prefers ሺݏ, ሻ to the worst
pair ሺݏ, A new definition of the blocking pair has .ܯ ሻ in
been introduced. The remainder of this paper is organized as
follows. In section 2 we give a formal definition of the
SPA-(s, p) and show some methods to ranking preference
lists of lecturers, we present and discuss a student-oriented
algorithm for SPA-(s, p). Section 3 is the conclusion of this
research.

II. DEFINITION OF THE SPA-(S, P) MODEL
An instance of SPA-(s, p) consists of a set of students ܵ ൌሼݏଵ, ,ଶݏ … , ܲ ሽ, a set of projectsݏ ൌ ሼଵ, ,ଶ … , ሽ, and a set

of lecturers ܮ ൌ ሼ݈ଵ, ݈ଶ, … , ݈ሽ . Each lecturer ݈ offers a
non-empty set of projects ܲ , so the project set P has the
partition ଵܲ, ଶܲ, … , ܲ . Each student ݏ supplies a set of
projects ܣ ك ܲ. Then student ݏ ranks ܣ in strict order to
construct his preference list. For any project on ݏ 's
preference list, we say that ݏ finds acceptable. For each
project א ܲ we define ܮ as the project preference list
of by deleting all pairs that do not contain from ܮ then
we take students from the remaining pairs in the same order
of that pairs. Each lecturer ݈ has a capacity ݀. Similarly,
each project has a capacity ܿ. We assume that ݔܽܯ ൛ ܿ א ܲሽ ݀ ∑൛ ܿ א ܲൟ.

In the other hand, each lecturer ݈ scan the students’
preference lists to find the students that are find one or more
of his project acceptable and he constructs ܤ from students’
preference lists as follows ܤ ൌ ሼ൫ݏ, ൯ א ܵ ൈ ܲ ݀݊ܽ ܲ א א ,ݏ is the set of ሺܤ .ሽ (i.eܣ ሻ pairs such that
students ݏ finds acceptable where is offered by ݈).
Each lecturer ݈ supplies a preference list ܮ ranking ܤ .
Where ܤ consists of (student, project) pairs, the ranking of ܤ is depend on the ranking of student, project, or both. For
some cases, lecturer ݈ must give an order for students ݈௦ ൌ ൛ݏగభ ݏగమ గ್ൟ and projects ݈ݏ … ൌ ሼగభ గమ .గሽ …
In the following we present many ways to rank ܤ;

Case I: Lecturers rank ܤ respect to both students and
projects. In this case each lecturer ݈ gives weight to each
pair in his ܤ and then he orders that pairs respect to their
weights not respect to students only or project only. The
lecturers rank their preference lists like in instance ଷܫ .
Lecturer ݈ଵ mates between student ݏଷ and
project ଵ, student ݏଶ and project ଶ, and students ݏଵ and

179

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

project ଵ. Again he mates between student ݏଷ and
project ଶ . Lecturer ݈ଶ mates between student ݏଶ and
project ଷ, student ݏଷ and project ଷ, and students ݏଵ and
project .ଷ Again he mates between student ݏଶ and
project ସ. In instance Iଷ the lecturers order the pairs based
on the strong performance of the students in the projects.

Students’ preferences ݏଵ ଵ ݈ଵ௦ ଶ ଶݏ ଶݏ ଵݏ ଶ ݈ଵ ଵ ଶ ଵ

Figure4: Preference lists to create an instance ܫସ of SPA-(s, p).
In the next cases during the construction of ܤ ; the

lecturers take into account the preference list of students on
projects, or the lecturers’ preferences on the projects.
Indifferent with the first case where the lecturers give
preference list of pairs (student, project) based on their point
of view only.

Case II: In this case, each lecturer ݈ is working scan of
students who accept one of his projects; the lecturer supplies
a preference list over these students denoted ݈௦ ൌሼݏగభ ݏగమ గ್ሽ. The lecturer ݈ constructs the preferenceݏ …
list ܮ as following; he first divide his ܤ into ܾ ordered
subsets ܤ௦ഏభ , ௦ഏమܤ , … , ௦ഏ್ܤ where each ܤ௦ഏ is defined as ܤ௦ഏ ൌ ൛൫ݏగ, ൯ ൫ݏగ, ൯ א ௦ഏܤ .ൟ (i.eܤ is the set of
all pairs in ܤ that contains student ݏగ) and 1 ݅ ܾ. The
preference list ܮ is then constructed by concatenating the
subsets ܤ௦ഏ one after another with respect to the students
order in ݈௦ . The pairs inside the subsets ܤ௦ഏభ , ௦ഏమܤ , … , ௦ഏ್ܤ
are ordered lexicographically according to their end point in
different ways as the following;

a) There is a symmetrical arrangements between the order
of the projects in the student s preference list and the order

of the pairs in B୩ୱಘ . Figure 4 illustrates this process: Let
unordered primary list Bଵ ൌ ሼሺsଵ, pଵሻ ሺsଶ, pଶሻሺsଵ, pଶሻሺsଶ, pଵሻ ሽ, Bଵ is divided into Bଵୱభ ൌ ሼሺsଵ, pଶሻ ሺsଵ, pଵሻሽ and Bଵୱమ ൌ ሼሺsଶ, pଵሻ ሺsଶ, pଶሻሽ
where Bଵୱభ and Bଵୱమ are ordered symmetrical the preferences
lists of sଵ , sଶ respectively. The subset Bଵୱభ inherits its order
from sଵ preference list so lecturer l୩ prefers ሺsଵ, pଶሻ to ሺsଵ, pଵሻ because sଵ prefers pଶ to pଵ, and the same for Bଵୱమ .
Finally place Bଵୱమ after Bଵୱభ because lecturer l୩ prefers student sଵ to the student sଶ in lଵୱ then the lecturer’s preferences list
is L୩ ൌ ሼሺsଵ, pଶሻ ሺsଵ, pଵሻ ሺsଶ, pଵሻ ሺsଶ, pଶሻሽ . For any two
students s୧, s୲ א L୩ the lecturer l୩ prefers s୧ to s୲ iff the
lecturer prefers ሺs୧, p୴ሻ to ሺs୲, p୳ሻ.

b) There is a symmetrical arrangements between the order
of the projects in the lecturer l୩ preference list and the order
of the pairs in B୩ୱಘ . Figure 4 gives an example to illustrate
these arrangements: Let Bଵ ൌ ሼሺsଵ, pଵሻ ሺsଶ, pଶሻ ሺsଵ,pଶሻ ሺsଶ, pଵሻሽ, Bଵ is divided into Bଵୱభ ൌ ሼሺsଵ, pଵሻ ሺsଵ, pଶሻሽ
and Bଵୱమ ൌ ሼሺsଶ, pଵሻ ሺsଶ, pଶሻሽ where Bଵୱభ and Bଵୱమ are
ordered symmetrical with the lecturers’ preferences lists lଵ୮
over projects, for the subset Bଵୱభ the lecturer lଵ prefers ሺsଵ, pଵሻ to ሺsଵ, pଶሻ because lଵ prefers pଵ to pଶ in lଵ୮, in the
subset Bଵୱమ the lecturer lଵ prefers ሺsଶ, pଵሻ to ሺsଶ, pଶሻ
because lଵ prefers pଵ to pଶ in lଵ୮ . The subset Bଵୱమ

concatenates after Bଵୱభ because lecturer l୩ prefers sଵ to sଶ
in lଵୱ . Finally the lecturer’s preference list is L୩ ൌ ሼሺsଵ,pଵሻ ሺsଵ, pଶሻ ሺsଶ, pଵሻ ሺsଶ, pଶሻሽ.

c) For any two pairs contain the same student s the
lecturer l୩ does not prefer one to other. Returns to instance Iସ
in figure 4, let a given unordered list Bଵ such that Bଵ ൌ ሼሺsଵ,pଵሻ ሺsଶ, pଶሻ ሺsଵ, pଶሻ ሺsଶ, pଵሻሽ , then we divide Bଵ into Bଵୱభ ൌ ൛ሼሺsଵ, pଵሻ ሺsଵ, pଶ൯ሽሽ and Bଵୱమ ൌ ሼሼሺsଶ, pଵሻ ሺsଶ,pଶሻሽሽ where lecturer l୩ indifferent between pairs in the same
partition. Finally we we place Bଵୱమ after Bଵୱభ because lecturer l୩ prefers student sଵ to the student sଶ in lଵୱ , then the
lecturer’s preferences L୩ ൌ ሼሼሺsଵ, pଵሻ ሺsଵ, pଶሻሽ ሼሺsଶ, pଵሻ ሺsଶ,pଶሻሽሽ where ሼሺsଵ, pଵሻ ሺsଵ, pଶሻሽ means lecturer l୩ is
indifferent between these two pairs.

Case III: the lecturer supplies a preference list that
contains all projects he offers denoted ݈ ൌ ሼగభ గమ .గሽ …
The lecturer ݈ constructs the preference list asܮ
following; he constructs ܤഏభ , ഏమܤ , … , ഏܤ where each

subset is defined as ܤഏೕ ൌ ቄቀݏ, గೕቁ ቀݏ, గೕቁ א ഏೕܤ .ቅ(i.eܤ is the set of all pairs in ܤ that contains project గೕ)
where 1 ݆ ܿ. Then the preference list ܮ is constructed
by concatenating the partition ܤഏೕ one after another with
respect to the projects’ order in the ݈ list. The pairs inside ܤഏೕ are ordered lexicographically according to their end
point in different ways as the following

a) There is a symmetrical arrangements between the order
of the students in the lecturer preference list l୩ୱ and the order

of the pairs in B୩୮ಘౠ . For a given unordered list Bଵ ൌ ሼሺsଵ,pଵሻ ሺsଶ, pଶሻ ሺsଵ, pଶሻ ሺsଶ, pଵሻሽ, and based on the data in the
instance Iସ , the lecturer’s preference list L୩ will be ሼሺsଵ,pଵሻሺsଶ, pଵሻሺsଵ, pଶሻሺsଶ, pଶሻሽ. Any student s୧ prefers the
project p୳ to the project p୰ iff the lecturer l୩ prefers the pair ሺs୧, p୳ሻ to the pair ሺs୧, p୰ሻ.

b) For any two pairs contain the same project pౠ the
lecturer l୩ does not prefer one to other(i.e. for any two pairs ቀs୰, pౠቁ , ቀs୲, pౠቁ א B୩୮ಘౠ lecturer l୩ does not prefer ቀs୰, pౠቁ to ቀs୲, pౠቁ and vice versa). Returns to instance Iସ
in figure 4, let a given unordered
list Bଵ ൌ ሼሺsଵ, pଵሻሺsଶ, pଶሻሺsଵ, pଶሻሺsଶ, pଵሻሽ, then we divide Bଵ into Bଵ୮భ ൌ ሼሺሺsଶ, pଵሻ ሺsଵ, pଵሻሻሽ and Bଵ୮మ ൌ ሼሺሺsଵ,pଶሻ ሺsଶ, pଶሻሻሽ , the lecturer lଵ is indifferent between the
pairs that contain the same project. The subset Bଵ୮మ placed
after the subset Bଵ୮భ because the lecturer l୩ prefers project pଵ
to the project pଶ in lଵ୮ then the lecturer’s preference list Lଵ is ሼሼሺsଶ, pଵሻ ሺsଵ, pଵሻሽ ሼሺsଵ, pଶሻ ሺsଶ, pଶሻሽሽ where { ሺsଶ,pଵሻ ሺsଵ, pଵሻሽ means that the lecturer is indifferent between
these two pairs.

 An assignment ؿ ܯ ܵ ൈ ܲ is called match if:
1. ൫ݏ, ൯ א Implies that ܯ א ܣ
2. Each student is assigned to at most one project,
3. Each project א ܲ is assigned at most ܿ students, and
4. Each lecturer ݈ א .supervises at most ݀ student ,ܮ

If M is a match then for any student s we define Mሺsሻ to be

180

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

the project which is applied to s in M and the same for each
project p (or lecturer l) we define Mሺpሻ (or Mሺlሻ) to be the
set of students (or pairs) that are assigned to project p (or
lecturer l) in M . We say that the project p୨ is
under-subscribed, full, or over-subscribed if หܯ൫൯ห is less
than, equal to, or greater than ܿ , respectively. Similarly,
lecturer ݈ is under-subscribed, full, or over-subscribed if |ܯሺ݈ሻ| is less than, equal to, or greater than ݀ respectively.
The pair ൫ݏ, ൯ א ܵ ൈ ך ܲ blocks a matching ܯ ܯ ,
where ݈ is the lecturer who offers , if:

 .1 א .(acceptable findsݏ .i.e) ܣ
2. Either ݏ is unmatched in M, or ݏ prefers to ܯሺݏሻ.
3. Either

 is under subscribed and either 3.1
(a) ܯሺݏሻ א ܲ and ݈ prefers ൫ݏ, ൯
to ൫ݏ, ሻ൯, orݏሺܯ
(b) ܯሺݏሻ ב ܲ and ݈ is under- subscribed, or
(c) ܯሺݏሻ ב ܲ and ݈ is full, and ݈ prefers ൫ݏ, ,ݏ൯ to the worst pair ሺ ௨ሻ that is being
assigned to ݈, or

,ݏ is full and ݈ prefers ൫ 3.2 ,ݏ൯ to the pair ൫ ,൯
where ݏ is the worst student in ܯ൫൯ and either

(a) ܯሺݏሻ ב ܲ , or
(b) ܯሺݏሻ א ܲ and ݈ prefers ൫ݏ, ൯
to ൫ݏ, .ሻ൯ݏሺܯ

We call ൫s୧, p୨൯ a blocking pair of M. A matching is stable
if it admits no blocking pairs. A student s୧ can improve his
project to p୨ in two cases; first case if s୧ is not assigned to l୩
and either if there is space in p୨ and l୩ ,or there is space in p୨
but l୩ is full and prefers ൫s୧, p୨൯ to the worst pair ሺs୰, p୳ሻ
assigned to him. Otherwise, if p୨ is full then s୧ can be
assigned to p୨ only when l୩ prefers ൫s୧, p୨൯ to ൫s୰, p୨൯ where s୰ is the worst student assigned to p୨. On the other hand, the
second case happen when s୧ is assigned to project was
offered by lecturer l୩. In this case to improve s୧ project to p୨,
lecturer l୩ must prefers ൫s୧, p୨൯ to ൫s୧, Mሺs୧ሻ൯ . That new
condition is added to the previous conditions.

III. STUDENT-ORIENTED ALGORITHM FOR SPA-(S, P)
The student-oriented algorithm for SPA-(s, p) is similar to

the student-oriented algorithm of SPA [3]. The algorithm is
divided into number of passes. Initially, all students are free,
and all projects and lecturers are under-subscribed. In each
pass, a free student is assigned to the first project in his
preference list. This leads to a provisional assignment
between students, projects and lecturers, this assignment can
be broken later when a project or a lecturer becomes
over-subscribed. Also some entries may be deleted from the
preference lists of the students, projects, and lecturers when a
project or a lecturer become a full. The process DELETE
ݏ) ,) indicates delete from the preference list of ݏ ,
delete ݏ from preference list of and delete (ݏ ,) from
the preference list of ݈ . For any project offered by
lecturer ݈ , when project becomes full during the
execution of the algorithm it may become under-subscribed

again only if ݈ becomes over-subscribed and one of his
assignments involving is broken. Also, if ݈ becomes full
during the execution of the algorithm it does not become
under-subscribed again. The student-oriented algorithm for
SPA-(s, p)-student is an extension of the student-oriented
algorithm of SPA [1, 3]. So, this algorithm inherits its
correctness, together with the optimality property of the
constructed matching from the student-oriented algorithm of
SPA with preference list over student.

IV. DATA STRUCTURES FOR AN INSTANCE OF SPA-(S, P)
The data structure we use is a linked list embedded in an

array. We call that array the main array. Each entity in that
array consists of a place of data ((student, project) pair), also
has six pointers, three next pointers and three previous
pointers. These pointers are divided on student, project and
lecturer. For each pair ൫ݏ, ൯ in the array, has pointer (next
pointer for student) holds the index of the entity that contains
the pairሺݏ, is the successor of the ሻ, where the project
project in the student s୧ preference list, also there is
another pointer (previous pointer for student) holds the index
of the pairሺݏ, is the successor of the ௩ሻ, where the project
project ௩ in the student s୧ preference list. For each student ݏ
there are another two pointers the first one points to the entity
that hold the first project in his list, and the another pointer
points to the entity that hold the last project in his list. By
these pointers we can travel through the student preference
list. In the same way we use the same way to connect all pairs
that construct the preference list of any lecturer; also we do
the same to present the preference list of each project. In
figure 5, an instance of SPA-(s, p) consists of two students
and two lecturers and five projects.

Students’ preferences Lecturers’ preferences ݏଵ ଶ ݈ଵ ହ ଵ ሺݏଵ, ,ଶݏଵሻ ሺ ,ଵݏଷሻ ሺ ,ଶݏଶሻ ሺ ଶሻ
ଶݏ ଷ ݈ଶ ସ ଶ ሺݏଶ, ,ଵݏସሻ ሺ ହሻ
 ݈ଵ offers ଵ ଶ ଷ ݈ଶ offers ସ ହ

Figure 5: An instance of SPA-(s, p) model.

Figure 6: The lecturers’ preference lists in the main array and with first and
last pointers.

Figure 8 show the data structure that present the given
instance in figure 5. First we scan the lecturers’ preference
lists and put these lists one after another in the main array and
we connect these nodes by the next and previous pointer
which used for lecturers’ lists. When we scan the preference

181

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

list of each lecturer we connect pairs in his preference lists
with pointers (red) as we see in the figure 6, at the end of the
scan of each lecturer’s preference list we store the indexes of
the first pair in his preference list and the last pair in his
preference list to be able to travel though his preference list
by using these pointers. In figure 6 the first pointer for
lecturer ݈ଵ is 1 (first node) the next pair is the second node
and it continue to the last node (fourth node) which its index
is stored in the last pointer for the lecturer ݈ଵ.

While we scan the lecturers’ preference lists we can also
connect the pairs that contain the same project to construct
the projects’ preference lists. As we can see in figure 7, the
project ଶ has preference list contain two nodes the third
node and the fourth node. The first pointer of project ଶ point

Figure 7: The projects’ preference lists in the main array and with first and

last pointers.

Figure 8: The students’ preference lists in the main array and with first and

last pointers.

to the third node and the last pointer point to the fourth node
and by using these pointers (green) we can walk throw the
preference list of project ଶ.

After the scan of all lectures’ preference lists, we scan
preference lists of students to connect the entities in the main
array to create the preference lists of the students. We can use
a temporary two damnations array to store the indexes of the
pairs in the main array when we create the main array during

the scan of the lecturers’ preference lists. This temporary
array will reduce the time of finding the index of any pair in
the main array. After we use the temporary array to connect
the students’ preference lists we delete that temporary array.
After we scan preference list of student ݏଵ we store his first
pointer was the index of the node 1 which hold the first
project in his preference list and the last pointer for student ݏଵ
holds the index of the node 2 which contains the last project
in his preference lists. By using these pointers (blue) we can
travel though the preference list of the student ݏଵ as we see in
figure 8. The time of construction is ܱሺߣሻ, where the ߣ is the
total length of the preference lists. This data structure reduces
the time of deleting or breaking operations, where we only
deal with one array and not with three arrays for each
preference list. The running time of the algorithm will stay ܱሺߣሻ. Also, it reduce the memory space that is needed to
represent the preference lists by 1/k where k > 2.

V. SPA-(S, P) STUDENT-ORIENTED VISUALIZATION
This study set out with the aim of assessing the importance

of an applet program in the student project allocation problem
with preference over pairs. The program starts with a
window divided into two parts as shown in figure 9. The first
part is a visual panel on which preference lists of students or
lecturers are drawn. The second part is utility panel which
consists of four buttons and text filed. File problem button is
used to display an instance of SPA-(s, p) model sorted in text
file. Random problem button is used to create an instance of
SPA-(s, p) not sorted in file. Solve button is used to begin
solving the instance without stopping. One step button is used
to solve one step and stop after that step. In the text area some
sentences are written to clarify the current step.

Figure 9: start window in SPA-(s, p) applet program has four buttons

The Creation of the Instances: In the applet program the

yellow color means that student is free that is, he has no an
assignments with any project that preferred, while the yellow
color means that, the lecturers or the projects are
under-subscribed. The green color is used to represent a
primary assignment between students and projects. When
project or lecturer becomes full or over-subscribed they
colored orange or red respectively. Clicking the file problem
button or the random problem button an instance is drawing
on the visual panel, firstly, the students and the lecturers
appear on the panel without their preference lists, and
projects which are offered by the same lecturer are linked to
him by lines. After that each student creates his preference
list over projects, and lecturers construct their preference lists
over pairs, that lists is displayed on the visual panel.

182

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

Figure 10: An instance of SPA-(s, p) model is displayed on the panel.

For each project p୨ א P୩ a preference list L୩୨ is created
from the preference list of the lecturer l୩ who offers that
project. Figure 10 contains a number of columns, the first,
named student index which contains a list of students, and to
the left there is the second column shows the students'
preference lists, followed by the third column on the right
refers to the current state of the student in terms of whether it
is linked with a project or he is free. The fourth column
contains the index of the lecturers and their offered projects,
that followed by the fifth column contains the lecturers’
preference lists over the student-project pairs. In the far right
there are other three columns, one refers to the provisional
capacity during the execution of the algorithm and the second
refers to the actual capacity of lecturers and projects, the third
column, which stands at the extreme right refers to the
moment state of the projects and the lecturers in terms of
whether they are linked to either one of the students or they
are still free.

The execution trace of the Algorithm:
1) Assignment: In this process the student choose the first

project in his preference list over projects, this choice results
a correlation between student and professor who offered the
project, the choice shows through flashing the boxes of the
student, the project and the lecturer in the panel and the
choice colors these boxes with green color and linking the
student to the project by an edge. The flashing refers to the
provisional assignment. Finally, states and capacities of the
student, the project and the lecturer are updated, see figure
11.

2) Deletion: During the execution of the algorithm, any
lecturer or project may become full capacity. In this case,
entries are possibly deleted from the students’ preference lists,
and from the projected preference lists of lecturers. Let ሺs୴, p୳ሻ is the worst pair assigned to l୩ and the successor

Figure 11: Students apply to projects, these lead to provisional assignments

between students and projects.

pairሺs୧, p୨ሻ is deleted because l୩ becomes full at the same
time, the student s୧ has to delete from the projected
preference list of the lecturer l୩. In this case the applet colors
the box that contains the name of this lecturer or the project
with orange color and deletes all the unwanted pairs or
students from the preference list. In figure 11; the lecturer lଵ
and project pଵ become full so their corresponding names are
colored orange, the pairs ሺsହ, pଶሻ and ሺsଷ, pଶሻ are the
successors to worst pair ሺsଶ, pଵሻ assigned to lecturer lଵ so this
two pairs are deleted from the preference list of lecturer lଵ
and the students sଷ and sହ are deleted from preference list of
project pଶ and at the same time project pଶ is deleted from
preference lists of those students. Figure 12 shows preference
lists after deleting the two pairs ሺsହ, pଶሻ and ሺsଷ, pଶሻ from
the lecturer’s preference list. Also the students sଷ and sହ are
deleted from the preference list of the project pଶ and the
project pଶ is deleted from preference lists of those students.

3) Break: A free student is assigned to the first project in
his preference list. This leads to a provisional assignment
between students, projects and lecturers, this assignment can

Figure 12: preference lists after delete pair (5, 2)

183

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

Figure 13: lecturer lଵ and project pଵ are over-subscribed, the worst student sଶ that was assigned to the project pଵ is selected and the edge between them

is flashing.

Figure 14: preference lists after break assignment between the student sଶ

and the project pଵ.

Figure 15: the stable matching.

be broken later when a project or a lecturer becomes
over-subscribed and their boxes are colored red. As figure
13shows, the project pଵ becomes over-subscribed and the
student sଶ is selected to break his assignment to the project

 pଵ at this moment the edge between them is flashing before
breaking the assignment between the student sଶ and the
project pଵ. Figure 14 show the preference lists after breaking
the assignment between the student sଶ and the project pଵ.

Each iteration loop includes a free student applying to the
first project on his/her preference list over the projects. After
a number of iterations bounded by the overall length of the
student preference lists, each student is assigned to at most
one project and the assigned pairs constitute the stable match.
The stable match is displayed as green boxes in the panel, the
stable match is written in the lower part of Figure 15, the
name of the student and the name of the best possible wishes
project in his/her preference list.

VI. CONCLUSION
This paper has given an account of and the reasons for the

efficient use of SPA-(s, p) model compared to previous
models SPA and SPA-p. The present study was designed to
determine the effect of the use of preference lists over pairs.
One of the more significant findings to emerge from this
study is that; SPA-(s, p) gives a larger stable matching. The
second major finding was that the SPA-(s, p) is the senior of
the two student project allocation models SPA and SPA-p.
Part of our results had been published in [11].

REFERENCES
[1] D.J. Abraham. Algorithmics of two-sided matching problems.

Master’s thesis, University of Glasgow, Department of Computing
Science, 2003.

[2] D.F. Manlove and G. O’Malley. Student project allocation with
preferences over projects. In Proceedings of ACID2005:the
1stAlgorithms and Complexity in Durham workshop, volume 4 of
Texts in algorithmics, pages 69- 80. KCL Publications, 2005.

[3] Abraham D.J and Irving R.W. and Manlove D.F. Two algorithms for
the student- project allocation problem. Journal of Discrete Algorithms
5(1):pp. 73-90, 2007.

[4] M. Thorn, A constraint programming approach to the student-project
allocation problem, BSc Honours project report, University of
York,Department of Computer Science, 2003.

[5] C.Y. Teo, D.J. Ho, A systematic approach to the implementation of
final year project in an electrical engineering undergraduate course,
IEEETransactions on Education 41 (1) (1998) 25–30.

[6] J. Mestre, Weighted popular matchings, in Pro. of ICALP 2006, the
33rd Inter-national Colloquium on Automata, Languages and
Programming, vol. 4051 of LNCS, pp 715–726, 2006.

[7] C. Shafer, Heath and J. Yang, "Using the Swan Data Structure
Visualization system for Computer Science Education", Proceedings of
the SIGCSE, ACM Press, 1996, pp. 140-144.

[8] H. Biermann, R. Cole, (1999), “Comic Strips for Algorithm
Visualization”, NYU, New York, NY, Tech. Rep. 1999-778

[9] Charalampos Papamanthou, Konstantinos Paparrizos, and Nikolaos
Samaras. “A Parametric Visualization Software for the Assignment
Problem”. Yugoslav Journal of Operations Research, 15(1):147-158,
2005.

[10] M.D. Byrne, R. Catrambone and J. T. Stasko, “Evaluating animations
as student aids in learning computer algorithm”, Computers and
Education 33 (1999) 253-378.

[11] Mahmoud I. Moussa and Ahmed H. Abu El-Atta, “Student Project
Allocation with Preference Lists over (Student, Project) Pairs”, The
2nd International Conference on Computer and Electrical Engineering
(ICCEE 2009), Dubai, UAE.

184

