

Abstract—In this paper, we define a relay placement problem

to cover a large number of sensors according to multiple

purposes using a minimal number of relays. Finding the best

solution requires exponential run time that takes years in large

networks. Therefore, we divide the main problem into

sub-problems and design a polynomial-time algorithm for

finding an approximate solution. We developed a software tool

for running the algorithm and graphical representation of

placement. Using this tool, our evaluation experiments show the

performance of the polynomial-time algorithm in comparison

with the best solution.

Index Terms—Wireless sensor network, placement, coverage,

clusterhead, relay.

I. INTRODUCTION

Wireless sensor networks are suitable for many

applications, including national security, military operations,

and environment monitoring. Node placement is an

important area in these networks that studies where to place

sensor or relay nodes to improve network performance and

reduce energy consumption.

Node placement may be either random or deterministic [1].

In this paper, we consider deterministic placement in which

nodes are placed at exact desired locations. We consider the

network model (Fig. 1) in which sensor monitors the

environment and sends the sensed information to the base

station through relay nodes.

In a wireless sensor network (WSN), if a small set of

special nodes, whose main function is packet forwarding, are

deployed, the management and network operations in the

network is simplified. These nodes are called relay nodes or

clusterheads [2]. As shown in Fig. 1, each clusterhead covers

a number of sensors determined by a virtual circle around it.

A fundamental problem [1] which arises when establishing

such a network is where to deploy those relay nodes to

achieve the required grade of service, while meeting the

system constraints.

Fig. 2 demonstrates an example of clustering affect on

communication energy consumption. In this figure, two

sample clustering options, namely A-B and C-D have been

shown. The total square of distances between clusterheads

and sensors in clustering A-B is 65 units, while it is 117 units

for clustering C-D. Considering the relation of energy

Manuscript received October 1, 2011; revised October 16, 2011.

Ravanbakhsh Akhlaghinia is with the Department of Engineering, Azad

University of Gachsaran, Gachsaran, Iran (e-mail:

akhlaghinia.r@gmail.com).

Azadeh Kavianfar is with Guilan University, Rasht, Iran (e-mail:

azadeh_kaviyanfar@yahoo.com).

Mohamad Javad Rostami is with the Department of Computer

Engineering, Bahonar University, Kerman, Iran (e-mail:

mjrostamy@yahoo.com).

dissipation and this simplified metric (total square of

distances), Fig. 2 highlights the effect of clustering quality on

network's total energy dissipation.

The placement algorithm computes number of required

relays considering the fact that a relay may simultaneously

cover two or more neighbor sensors and less number of

relays is used in this way. Optimal placement is achieved

when all the sensors are covered with the minimum number

of relays.

The Divide-and-Conquer approach is a practical way to

divide the problem space and search in it for a good fast

solution. Based on this approach, we design an algorithm that

divides the physical area into small sub areas, places

clusterheads in each sub area, and then combines the

solutions of the sub areas. The algorithm tries to use the

lowest number of clusterheads in each sub area. When two

sub areas are combined, the result should also contain the

minimum number of clusterheads.

The rest of this paper is organized as follows. Section II

reviews the existing work on clusterhead placement. In

Section III, we define a novel placement problem. In Section

IV, we design an approximate algorithm to solve the problem

by breaking the problem into sub-problems. Section V

introduces an algorithm to solve a sub-problem. Section VI

contains the numerical experiments and results. Section VII

finally concludes the paper.

Fig. 1. A clustered wireless sensor network

Fig. 2. Two examples of clustering

II. RELATED WORK

We review the prior work related to relay placement. The

transmission ranges for relays and ordinary sensors are

denoted R and r, respectively.

Relay Placement Based on Divide-and-Conquer

Ravanbakhsh Akhlaghinia, Azadeh Kavianfar, and Mohamad Javad Rostami, Member, IACSIT

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

71

The setting that both relay nodes and sensors can perform

the packet forwarding is known as the single-tiered

infrastructure. Cheng et al. [3] developed algorithms to place

the minimum number of relay nodes and maintain the

connectivity of a single-tiered WSN, under the assumption

that R = r. The problem was modeled by the Steiner

Minimum Tree with Minimum Number of Steiner Points and

Bounded Edge Length (SMT-MSP) problem, which arose in

the study of amplifier deployment in optical networks, and

was proved to be NP-hard [4]. Based on a minimum spanning

tree, Lin and Xue [4] developed an algorithm to solve the

SMT-MST problem. They proved it to have an

approximation ratio of 5, which Chen et al. [5] tightened to 4.

In the same paper, a 3-approximation algorithm was also

proposed. Based on Lin and Xue’s algorithm, Cheng et al. [3]

proposed a different 3-approximation algorithm and a

randomized 2:5-approximation algorithm.

In order to provide fault-tolerance, Kashyap et al. [6]

studied how to place minimum number of relays such that the

resulted WSN is 2-connected, when R = r. Zhang et al. [7]

improved the results of Kashyap et al. by developing

algorithms to compute the optimal node placement for

networks to achieve 2-connectivity, under the more general

condition that rR . These algorithms aimed to minimize

the number of relay nodes while providing fault-tolerance.

The setting that only relay nodes can perform the packet

forwarding is known as the two-tiered infrastructure. Pan et

al. [8] first investigated the two-tiered infrastructure for

optimal node placement. Further studies considering an i.i.d.

uniformly distributed sensor location with rR 4 were

given in [9] and [10]. Lloyd and Xue [11] developed

algorithms to find optimal placement of relay nodes for the

more general relationship rR , under single-tiered and

two-tiered infrastructures.

III. THE MPCHP PLACEMENT PROBLEM

First, we define an optimization problem called MinCHP

(Minimum ClusterHead Placement) that determines the

minimum number of clusterheads which are required to

satisfy a number of purposes. Then, we define a relay

placement problem called MPCHP (Multi-Purpose

ClusterHead Placement) in wireless sensor networks that

places the minimum number of clusterheads determined by

MinCHP in the network while considering more purposes.

We design a polynomial-time algorithm called solveMPCHP

to find an approximate solution to MPCHP. solveMPCHP is

flexible in a way that it can consider more purposes.

A. Problem Definition

In this section, we define and formulate the placement

problem. In the next sections, we refer to the conditions

defined in this problem.

Problem MinCHP: Given a number of sensors randomly

located in two dimensional area A. Find the minimum

number minn of cluster heads which are required to be

placed in A such that the following conditions are satisfied:

Condition 1: For each sensor s, there is at least one

clusterhead c such that rcscedis),(tan .

Condition 2: No convex sub-area 'A exists in A such that

there are more than M sensors per clusterhead in 'A .

Condition 3: Each clusterhead c has two disjoint paths to

the base.

Two cluster heads are able to directly communicate if their

distance is not more than R. In other words, two clusterheads

are able to directly communicate if they are located on the

border or inside of the communication circle of each other. A

clusterhead and a sensor are able to directly communicate if

their distance is not more than r.

Clusterhead c has two disjoint paths to the base, if at least

two clusterheads are placed on the border or inside of the

communication circle of c. If the number of sensors around c

is high, then more than two clusterheads may be required

within the communication range of c to cover the sensors and

c may get more than two disjoint paths to the base.

Now, we want to extend MinCHP to a placement problem

that also considers the following two purposes.

 Purpose 1: Clusterheads are placed as close as

possible to sensors.

 Purpose 2: There exist similar numbers of sensors

around clusterheads.

We define two parameters called t and u for a deployed

wireless sensor network containing n clusterheads

nccc ,...,, 21 . Let us assume that the network is clustered in a

way that in sensors
iniii sss ,2,1, ,...,, are members of

clusterhead ic , for ni ,...,2,1 . id equals the summation of

distances between ic and its sensors for ni ,...,2,1 . We

define

n

i
in

n
e

1

1
 (1)

Then, we define

n

i
id

n
u

1

1
 and

n

i
i en

n
t

1

2)(
1

 (2)

Parameter u quantifies Purpose 1 and parameter t

quantifies Purpose 2 in a case of node placement. Now, we

are able to define the MPCHP problem.

Problem MPCHP: Given a number of sensors randomly

located in two dimensional area A. Place the minimum

number minn of clusterheads determined by MinCHP in A in

a way to maximize

u

u

t

t)min()min(
 (3)

such that the following conditions are satisfied:

Condition 1: For each sensor s, there is at least one

clusterhead c such that rcscedis),(tan .

Condition 2: No convex sub-area 'A exists in A such that

there are more than M sensors per clusterhead in 'A .

Condition 3: Each clusterhead c has two disjoint paths to

the base.

where t and u are the parameters of the placement defined in

(2), and min(t) and min(u) are the minimum values for t and u

among possible cases of placement.

IV. AN APPROXIMATED SOLUTION TO MPCHP

In this section, we break MPCHP into smaller

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

72

sub-problems and design an algorithm to find an

approximated solution to it.

A. Dividing the Problem

Finding the best solution requires exponential execution

time and is impossible if number of sensors is large and the

network area is huge. To solve the problem, we use a

divide-and-conquer approach to design an algorithm with

polynomial time complexity. To do this, the main problem is

divided into smaller sub-problems and each sub-problem is

solved separately. The combination of the solutions of the

sub-problems is an approximate solution to the main

problem.

We define the sub-problem of MPCHP called SubMPCHP

to be something like MPCHP but try to optimize sensor

coverage in the area limited by the communication circle of a

single clusterhead. Then, SubMPCHP will be much simpler

than MPCHP to solve.

First we define a problem called SubMinCHP to determine

the minimum number of clusterheads in a sub-problem as

follows.

Problem SubMinCHP: Given a number of sensors

randomly located in two dimensional area A. A number of

clusterheads are placed in A. Consider the placed clusterhead

C. Find the minimum number minsubn of clusterheads which

are required to be placed on the border or inside the

communication circle of C such that the following conditions

are satisfied:

Condition 4: For each sensor s located on the border or

inside the communication circle of C, there is at least one

clusterhead c such that rcscedis),(tan .

Condition 5: No convex sub-area 'A exists in the

communication circle of C such that there are more than M

sensors per clusterhead in 'A .

Condition 6: Clusterhead C finds two disjoint paths to the

base.

Let us consider the sub-problem of clusterhead C in the

sensor network depicted in Fig. 3. We can achieve the

followings by placing two clusterheads at the two locations

shown in Fig. 3.

 C finds two paths.

 All the sensors on the border or inside the

communication circle of C are covered.

 Some neighbor sensors outside the communication

circle of C are covered.

Problem SubMPCHP: Given a number of sensors

randomly located in two dimensional area A. A number of

clusterheads are placed in A. Consider the placed clusterhead

C. Place the minimum number minsubn of clusterheads

determined by SubMinCHP on the border or inside the

communication circle of C in a way to maximize

u

u

t

t)min()min(
 (4)

Such that the following conditions are satisfied:

Condition 4: For each sensor s located on the border or

inside the communication circle of C, there is at least one

clusterhead c such that rcscedis),(tan .

Condition 5: No convex sub-area 'A exists in the

communication circle of C such that there are more than M

sensors per cluster head in 'A .

Condition 6: Clusterhead C finds two disjoint paths to the

base.

where t and u are the parameters of the placement defined in

(2), and min(t) and min(u) are the minimum values for t and u

among possible cases of placement.

B. Solution

Based on the definition of SubMPCHP, we propose

algorithm solveMPCHP to solve the MPCHP problem.

Algorithm. solveMPCHP

While there are still uncovered sensors in the network do

1) Place a clusterhead at a point in the network where it

covers the highest number of uncovered sensors.

2) While there is unvisited clusterhead C in the network do

 Make a SubMPCHP problem for C.

 Solve the SubMPCHP problem.

 Mark C as visited.

End.

V. SOLVING THE SUBMPCHP PROBLEM

In this section, we propose an algorithm to solve the

SubMPCHP problem.

According to the solveMPCHP algorithm, we place

clusterheads one by one to reduce algorithmic complexity.

Until all the clusterheads are not placed, we can not guarantee

that every clusterhead finds two disjoint paths to the base. We

should place the minimum number of clusterheads to achieve

this property.

Condition 7: Each clusterhead contains at least two

clusterheads within its communication range which are not

within the communication ranges of each other.

Fig. 3. Placing two clusterheads inside the communication circle of C

(a) C finds two different paths (b) C may find only one path

Fig. 4. Making two paths for clusterhead C

(a) A ring of clusterheads (b) A number of clusterheads without ring

Fig. 5. A number of placed clusterheads

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

73

(a) The virtual grid (b) Four clusterheads are placed in a sub-area

Fig. 6. The virtual grid on the placement area of a sub-problem

If we follow condition 7 while solving SubMPCHP, then it

guarantees that C finds two different paths (Fig. 4(a)).

Otherwise, the case of Fig. 4(b) may happen. In this case, C

has two neighbor clusterheads, but they both lead to one

single clusterhead at the right. In other words, C finds only

one path through two different neighbors.

If we follow condition 7 while solving the sub-problems,

then the resulted network contains rings of clusterheads (such

as the one depicted in Fig. 5(a)). Every clusterhead will be

part of a ring such that we can not have a broken line of

clusterheads (such as the one depicted in Fig. 5(b)).

It is not efficient to check all possible points within the

communication range of C for clusterhead placement. To

reduce number of candidate points, we consider a virtual grid

(Fig. 6(a)) on the communication circle of C. Each grid point

is a candidate for clusterhead placement. The grid makes it

possible to distribute the clusterheads as uniform as possible.

We set the distance between grid points at minimum to keep

number of points small. Considering too few grid points

leads to missing efficient candidate locations. Since the

distance between a clusterhead and a sensor must be no more

than r to communicate, we set the distance on the grid to r.

We may sometimes need to place more clusterheads in a

sub-area than what the grid offers. This case happens only

because of high density of sensors to satisfy Condition 5. In

this case, we place additional clusterheads in sub-areas of the

grid (such as Fig. 6(b)).

Algorithm solveSubMPCHP()

Place a virtual grid GR on the network with a size and

location that satisfies the following two conditions.

1) Grid points are only located within the distance of R

from clusterhead C.

2) The distance between every two neighbor points of GR

is r.

For every rxr square sub-area SA on GR, do

1) While there are more than M sensors per clusterhead in

SA, do

 Place a new clusterhead at a random location in SA.

 Place new clusterheads at all the points of GR.

 Mark all the points of GR as non-visited.

 While there is non-visited points on GR do

2) Select non-visited point gp which its clusterhead covers

the least number of sensors. In the case of a tie, select the

point which is closer to C.

3) Remove the clusterhead at gp if both Condition 4 and

Condition 7 remain satisfied after removing this

clusterhead.

4) Mark gp as visited.

 Set cn equal to the number of clusterheads on GR.

 Remove all the clusterheads on GR.

 Among all the cases of placing cn clusterheads on

GR, select the case that

5) satisfies both Condition 4 and Condition 7

6) and maximizes (4).

 Return the locations of the currently-placed

clusterheads in the network as the solution.

VI. NUMERICAL EVALUATION

In this section, we evaluate the solveMPCHP algorithm

comparing with two other relay placement algorithm and we

review the results. We define the scenario defined in Table I.

In this scenario, number of sensors is changed while network

dimension is fixed.

We evaluate the following three relay placement

algorithms in our experiments.

1) solveMPCHP: presented in this paper

2) findBestMPCHP: the best solution of MPCHP found by

testing all the cases of placement leading to exponential

run time

3) Algorithm2.2: proposed in [10]

TABLE I: EVALUATION PARAMETERS

Parameter Value

Network Dimension 500m x 500m

Clusterhead’s Communication Range 50 m

Sensor’s Communication Range 30 m

Number of Sensors variable from 100 to 800

Sensor Distribution in Network Non-uniform

0.1

1

10

100

1000

10000

50 100 200 400 800

Number of Sensors

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

solveMPCHP Algorithm2.2[6] findBestMPCHP

Fig. 7. Execution time versus number of sensors

0

50

100

150

200

50 100 200 400 800

Number of Sensors

N
u

m
b

e
r

o
f

C
lu

s
te

rH
e
a
d

s

solveMPCHP Algorithm2.2[6] findBestMPCHP

Fig. 8. Number of clusterheads versus number of sensors

A. Numerical Results

Execution of solveMPCHP takes a number of seconds

whereas evolutionary placement algorithms such as [12]

typically need tens of minutes to complete. Fig. 7 compares

solveMPCHP in execution time to findBestMPCHP and

Algorithm2.2. According to this chart, solveMPCHP is

averagely 5 times faster than Algorithm2.2 and 3000 times

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

74

faster than findBestMPCHP.

Fig. 8 shows number of required clusterheads to solve

MPCHP versus number of sensors. We expect that by

increasing number of sensors, number of clusterheads goes

up, because an additional sensor may require a new

clusterhead for coverage. But not every sensor requires a

dedicated clusterhead since a clusterhead can simultaneously

cover multiple sensors. So, doubling number in the

horizontal axis, number in the vertical axis is averagely

magnified by 1.1 in the chart. That is, number of sensors has a

slight effect on number of required clusterheads. The solution

of solveMPCHP is close to the best solution. The

performance ratio of solveMPCHP to findBestMPCHP is

averagely 1.06.

B. Implemetation

We developed a graphical environment written in Java to

run and display clusterhead placement and implemented the

proposed algorithm in it. Fig. 9 shows a view of the software.

In the network area, sensors are displayed as blue points.

Clusterhead is displayed as a red point with the

communication circle around it. The software is able to

initially generate sensors at either deterministic or random

locations in the network. After generating sensors, the

placement algorithm is executed.

Part of the graphical environment of the software is

developed in [12]. Now, we look at the internal structure of

the software which is developed as a Java project in Eclipse

[13]. Fig. 10 shows the components of the software and their

relation. Each component is defined as a Java class. The

software is composed of the following classes:

1) Parameter: This class keeps the global parameters of the

evaluation which are configured at the beginning.

2) Sensor: This class defines a sensor node and stores its

location.

3) ClusterHead: This class defines a clusterhead and stores

its location.

4) NetInfo: This class stores network information including

sensors and clusterheads.

5) AreaPanel: This is a class that is displayed as a white

graphical area within the main frame in which sensors

and clusterheads are drawn. Size of AreaPanel is

configured at the beginning as a parameter.

6) ParameterPanel: This is a class that is displayed as a

frame in the left corner of the main frame in which the

Run button and a text box are placed.

7) Placement: The placement algorithm is implemented in

this class that reads network information from the

NetInfo class. It determines locations of clusterheads

and then uses the DrawUtility class for drawing them.

8) DrawUtility: This class contains routines for drawing

sensors and clusterheads on AreaPanel.

9) GenarateSensors: A routine in this class is called at the

beginning of the evaluation to generate a number of

sensors in random/deterministic locations.

10) CoverageFrame: This class is the main frame that

contains an object of the AreaPanel class and an object

of the ParameterPanel class. This class calls routine

runPlacement() from the Placement class to run the

placement algorithm.

Fig. 9. A view of the clusterhead placement software

Fig. 10. Components of the clusterhead placement software

VII. CONCLUSION

In this paper, we define a clusterhead placement problem

called MPCHP to cover a large number of sensors according

to multiple purposes using a minimal number of clusterheads.

Since finding the best solution requires exponential run

time, we divide MPCHP into sub-problems and design a

polynomial-time algorithm called solveMPCHP for finding

an approximate solution to MPCHP. We developed a

software tool for running the algorithm and graphical

representation of placement. Our evaluation experiments

show the performance of the solveMPCHP algorithm in

comparison with the best solution.

REFERENCES

[1] J. Li, L. L. H. Andrew, C. H. Foh, M. Zukerman, and H.-H. Chen,

"Connectivity, Coverage and Placement in Wireless Sensor Networks",

Sensors, vol. 9, no. 10, pp. 7664-7693, 2009.

[2] H. Karl, and A. Willig, Protocols and Architectures for Wireless

Sensor Networks, Chichester, U.K: Wiley, 2005, ch. 10, pp. 274-285.

[3] X. Cheng, D. Du, L. Wang, and B. Xu, "Relay Sensor Placement in

Wireless Sensor Networks", Wirel. Netw., vol. 14, pp. 347–355, 2008.

[4] G. Lin, and G. Xue, "Steiner Tree Problem with Minimum Number of

Steiner Points and Bounded Edge-Length", Inf. Proc. Lett., vol. 69, pp.

53–57, 1999.

[5] D. Chen, D. Du, X. Hu, G. Lin, L. Wang, and G. Xue, “Approximations

for Steiner Trees with Minimum Number of Steiner Points”, J. Glob.

Opt., vol.18, pp.17–33, 2000.

[6] A. Kashyap, S. Khuller, and M. Shayman, "Relay Placement for Higher

Order Connectivity in Wireless Sensor Networks", in Proc. 25th IEEE

International Conference on Computer Communications, Barcelona,

2006, pp. 1-12.

[7] W. Zhang, G. Xue, and S. Misra, "Fault-Tolerant Relay Node

Placement in Wireless Sensor Networks: Problems and Algorithms", in

Proc. 26th IEEE International Conference on Computer

Communications, Anchorage, AK, USA, 2007, pp. 1649–1657.

[8] J. Pan, Y. Hou, L. Cai, Y. Shi, and S. Shen, "Topology control for

Wireless Sensor Networks", in Proc. ACM Mobicom’03, San Diego,

CA, USA, 2003, pp. 286–299.

[9] B. Hao, J. Tang, and G. Xue, "Fault-Tolerant Relay Node Placement in

Wireless Sensor Networks: Formulation and Approximation", in Proc.

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

75

IEEE Workshop High performance switching and routing, U.S.A.,

2004, pp. 246–250.

[10] J. Tang, B. Hao, A. Sen, "Relay Node Placement in Large Scale

Wireless Sensor Networks", Comput. Comm.s, vol. 29, pp. 490–501,

2006.

[11] E. Lloyd, and G. Xue, "Relay Node Placement in Wireless Sensor

Networks", IEEE Trans. Comoput., vol. 56, pp. 134–138, 2007.

[12] K. Yıldırım, T. Kalaycı, A. Uğur, “Optimizing Coverage in a

K-Covered and Connected Sensor Network Using Genetic

Algorithms”, in Proc. 9th WSEAS International Conference on

Evolutionary Computing, Sofia, Bulgaria, 2008.

[13] Eclipse Java Software, Available: http://www.eclipse.org.

Ravanbakhsh Akhlaghinia was born in 1978 in Iran.

Mr. Akhlaghinia received his B.Engr. degree from

Isfahan University Of Technology (IUT) in 2000, and

his M.S. degree from Azad University, Dezfol branch

(Dezfol , Iran) in computer engineering in 2010.

From 2004 to 2011, he is working as a network

professional at National Iranian South Oil Company

(NISOC). He is interested in the area of wireless ad hoc networks.

Azadeh Kavianfar was born in 1981 in Iran. Ms.

Kavianfar received her B.Engr. degree from Azad

University, Lahijan branch (Lahijan, Iran) in 2004 and

her M.S. degree from Sharif University, Kish branch

(Kish, Iran) in IT engineering in 2009 Since 2006, she is

working as a lecturer at Azad University, and as an

administrator of educational system at Guilan

University.She is interested in the area of wireless networks and network

engineering.

Mohammad Javad Rostami was born in 1978 in Iran.

He received his B.Sc in computer engineering from

Bahonar University (Kerman, Iran) in 2001 and M.Sc in

computer engineering from Amirkabir University of

Technology (Tehran, Iran) in 2005. He has been a faculty

member of Bahonar University since 2006. His main

research interests include diverse routing and QoS

routing algorithms, wireless sensor networks, and

heuristic network algorithms Mr. Rostami is a member of International

Association of Computer Science and Information Technology.

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

76

