
International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

23

Abstract—XML has become the de facto standard for

representing and interchanging data in web-based applications.
And XML view, a virtual window for specified users, has been
widely applied. In practical system, users encounter the
so-called view update problem when they need update source
data through the view. For a long time, the view update
problem is an open question in database community. With the
development of various data models, the corresponding view
update problem has been widely researched. In this paper, we
introduce the conception of view update problem. We survey
and compare previous approaches. Especially, we emphasize
the role of semantics. Focusing on the problem in XML context,
we give a discussion and propose a framework, which collects
the semantic information at view definition time. Some related
techniques for implementing this framework are further
introduced.

Index Terms—database, semantics, view updates, XML

I. INTRODUCTION
XML has become the de facto standard for representing

and interchanging data in web-based applications. Major
commercial database systems provide the ability to export
relational data to materialized XML views. Since more and
more XML documents have emerged, native XML database
has been designed and developed. The World Wide Web
Consortium publishes XQuery, which is a standardized
language for combining documents, databases, Web pages
and almost anything else. And the XML Query Working
Group is developing an update facility for XQuery (XQuery
Update Facility), this lets users write Query expressions that
change documents and perhaps save the result.

From another point of view, wide application of XML
makes managing and maintaining users’ access inevitable.
Various methods, such as access control, XML view, have
been employed for resolving it. View is the virtual data for
users, which can separate application logic from data source
and provide application-specific data. View has been
successful in relational database community. The ability to
create views over XML source data, not only secures the
source data, but also provides an application-specific view of
the source data.

While providing view, the system should give users the

Manuscript received December 20, 2009. This work was supported by

Beijing Municipal Natural Science Foundation (No. 4082003).
Haitao Chen is with College of Computer Sciences, Beijing University of

Technology, Beijing, 100124 China (corresponding author to provide phone:
86-10-67392987; fax: 86-10-67391745; e-mail:
chenheyuzhi@emails.bjut.edu.cn).

Husheng Liao is with College of Computer Sciences, Beijing University
of Technology, Beijing, 100124 China.

ability to access view, including query and update. It is
comparatively simple to query the view. View update,
however, is an open problem, which means to translate an
update on view to an update sequence on source data, i.e. to
make view update persistent. The key problem is there is not
a one-to-one correspondence between database state and
view state. Existed researches have proven not only the
organized structure of data, but also the context of
application can affect the view update problem [1], that is,
view update is a problem involving semantic information.
Typically, data semantic information is expressed by
defining various constraints. Obviously, view, which is
defined only by query language (XQuery, SQL), do not
contain sufficient semantic information.

In this paper, we first introduce the conception of view
update problem. We then survey and compare previous
researches. In particular we emphasize the importance of
semantic information. Finally, we discuss the problem and
show a framework to resolve it. This framework collects the
semantic information at view definition time. Some related
techniques for implementing this framework are further
introduced.

The rest of this paper is organized as follows. Section 2
provides preliminary terminology and introduces the view
update problem. Section 3 surveys and compare the previous
work. Section 4 discusses the problem and presents the
framework, with further introducing some related techniques.
Section 5 concludes the paper with a brief outlook on the
future work.

II. VIEW UPDATE PROBLEM
In 1974, Codd first reports the view update problem [2].

Then the problem has been researched widely and deeply in
database community. The definition of the problem can be
found from the early literature [1] [3]. In this section, we
introduce the preliminary terminology and notations in XML
context. We then give the conception of view update
problem.

A. Preliminary Terminology and Notations
XML document can be regarded as a node-labeled tree. An

XML document often combines one or more XML Schema
Documents, Which include type information and semantic
constraints.

Let d be an XML document, X' be a set of XML Schema
documents associate with d. We shall use the notation d←X'
to denote d conforms to X'. This paper only gives notations,
the detail can be found from corresponding specifications.

Definition 1: XML database is a set of XML Schema,
which is denoted by X.

A Survey to View Update Problem
Haitao Chen and Husheng Liao

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

24

Definition 2: A state of XML database X is a set of XML
document instances, which is denoted by s.
And ）（， XX'X'd ⊆∃∈∀ s , d←X'.

Definition 3: XML View is a XML database. And there is
a mapping f, given a database state s, we can get a view state
f(s), f is called view definition mapping. The set of view
states is denoted by f(S)={f(s)| s∈S}, S is the set of database
states.

Definition 4: us：S→S denotes update operations on XML
database. The set of update operations on XML database is
denoted by Us.

Definition 5: uf：f(S)→f(S) denotes update operations on
view. The set of update operations on view is denoted by Uf.

B. The Definition of View Update Problem
View updates are the update operations that occur on the

view. Since the view is only an uninstantiated window onto
the database, any updates specified against the database view
must be translated into updates against the underlying
database. We employ a classic figure to describe the problem
more vivid.

Fig. 1 shows the process. The initial database state, s, is
mapped by means of the view, f, into view state f(s). A view
update u∈Uf against this view state to obtain new view state
u(f(s)). The view update, u, must be translated into a database
update sequence to make update persistent. The database
update sequence, denoted by T(u) and T(u) ⊆ Us, is
performed on the database state to obtain a new database state
T(U)(s). This new database state is denoted by s'. By the same
mapping f, we can obtain the view state f(s').

Figure 1. View Update

Definition 6: The above T is called update translator.
Definition 7: T has no side effects if u(f(s))=f(s').
View update problem is to find a translator that can

translate view update reasonably under some conditions.
Traditionally, T should have no side effects.

III. PREVIOUS RESEARCHES
With the development of various data models (relational

data model, object-oriented data model, deductive data model,
XML data model), view update problem has been studied
widely and deeply. In particular, Researches in relational
database community have far-reaching effect. We then
survey previous researches on view update in terms of the
methods they employ.

A. Constant Complement
“Constant Complement” is a classic theory about view

update problem. Bancilhon and Spyratos [4] explain this
theory in detail. Intuitively, the complement of view
describes the information that can not be found in the view.

The complement of one view definition mapping is another
view definition mapping. The view constructed by these two
mappings has the same amount of information as the view
constructed by the identity mapping, i.e. the view constructed
by these two mappings contains all information of source
data. Given view definition mapping f and view update u, if g
is the complement of f, there is only one view update
translation under constant complement, and a theoretical
formula is introduced in [4]. Since a view can have many
different complements, the choice of a complement
determines an update policy. Less complement permits more
updates on view. Therefore, it is better to find a smaller
complement.

Translating view update under constant complement is a
well-known theoretical method for resolving view update
problem, which has far-reaching effect on follow-up work,
such as Hegner [5] [6] and Lechtenbörger [7]. In xml context,
reference [8] tackles the XQuery view update problem by
applying the constant complement theory, which focuses on
the round-trip XML view update problem. The XML data is
loaded into relational database. A view that is the same as the
original xml data is extract from the relational database by
XQuery. This view query is called extraction query, and this
special view is called twin-view. Reference [8] shows the
round-trip XML view is updatable in terms of constant
complement theory and implements a decomposition-based
update strategy in Rainbow system.

Although constant complement gives a pretty resolution to
view update problem, there are still some inherent problems:

First of all, it makes a strict restriction. Reference [9] gives
an example to show there is reasonable view update
translation which is not translated under constant
complement. Reference [10] can deal with a larger class of
views, we review it later.

Secondly, it is difficult to compute the complement of
view in practical application. There are lots of researches to
study how to compute the complement efficiently [11-13].

Finally, this method is at schema level, which does not
consider the data semantics and application semantics.
However, as showed in [1], semantics is very important to
resolve the ambiguity of translation.

B. “Clean Source”
Dayal and Bernstein [3] put forward the “clean source”

theory to explore the conditions of translating view update
reasonably. Source denotes some part of source data that is
needed to construct the corresponding part of view data. A
“clean source” is a source and fulfills the following condition:
any other part of the view can obtain the source from the
source data that do not contain the “clean source”. In order to
express the relationship between view data and source data, a
view-trace graph is introduced in [3]. And a
view-dependency graph is employed to describe the
functional dependencies in data. As a whole, reference [3]
explores syntactic translation procedures, and derives the
conditions that are easy to check.

To deal with view update of xml views over relational
databases, Braganholo et al [14-17] make use of “clean
source” method. The key idea is to map XML views into
relational views, then existing work on updating relational

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

25

views can be employed to determine the updatability of the
relational views, in particular, the “clean source” method is
adopted.

Reference [18] studies the updatability of XML views that
wrap the relational data. A “clean extended-source” is
presented, which extends “clean source” by taking into
account foreign keys. A view update is classified as either
un-translatable, conditionally or unconditionally translatable.
To classify a given update into one of the three categories,
reference [18] also gives a graph-based algorithm, which is
similar with [3]. Reference [19] is the follow-up work of [18],
which improves on the previous algorithm and proves the
algorithm by “clean extended-source” theory.

The “clean source” theory is a syntactic approach. But the
assumptions and conditions make it too restricted. And it also
has no sufficient semantics. Although reference [3] devises
view-dependency graph for functional dependencies and [18]
extends “clean source” by considering foreign keys, we think
there are still much semantic information is significant for
resolving the problem, such as application semantics, which
is discussed by Keller [1] [20] [21].

C. Consistent Views
Gottlob et al [10] considers consistent view, which has the

following property: If the effect of a view update program on
a view state is determined, the effect of the corresponding
database update is unambiguously determined. View
consistency is an important property, which makes database
systems (with views) accessible to formal specification and
verification techniques. And consistent views have
interesting properties with respect to the concurrent
execution of transactions. It is shown that if concurrent
transactions on the view are translated to the database level,
then properties such as serializability and noninterference are
preserved.

It is also shown that the class of views treated by constant
complement is a subclass of the consistent views. In fact, the
method in [10] is a generalization of [4]. To deal with the
much larger class of consistent views, the notion of
complement is still used. However, the complement does not
need to remain invariant. The complement is allowed to
decrease according to suitable partial order instead.

Although the class of consistent views is an important
super class of the views discussed in [4], there are reasonable
views that are not consistent. It also lacks of adequate
efficient algorithms to make the method more practical. And
more importantly, it only considers the syntactic effects.

D. Collecting Semantic Information at View Definition or
Update Time
Masunaga [22] presents a semantic approach to design a

view update translator for relational database systems.
Masunaga [22] argues that because of the ambiguity of
translation, semantic information is necessary to solve it. But
the semantics captured at view definition time is not
sufficient, and it may involve the end-users at runtime, i.e. at
view update time.

Keller [20] presents the problem of view update in
relational context, and the view involves selections,
projections and joins. Firstly, five criteria are given to

describe the translations that are regard as reasonable. Then
all translators satisfied these criteria are enumerated. The
main novelty is Keller shows an insert or delete operation on
the view may be translated into modify operation in specific
application context. Keller argues extra semantics is needed
to choose from all translators. Reference [1] and [21] present
the role of semantics in translating view updates in detail.
Keller proposes a resolution, which collecting semantic
information at view definition time. That is to interact with
DBA and obtain necessary semantics. Then the semantics can
make a choice among translators that enumerated by [20].

Larson and Sheth [23] is influenced by [22] and [20],
which makes use of syntactic and semantic knowledge to
choose from different translators. It concludes the categories
of knowledge that is useful in dealing with view update
problem. It interacts with the DBA at view definition time to
capture semantics. It also interacts with the end-user at view
update time to capture additional application semantics and
database semantics.

Choi et al [24] explores the view update problem for XML
views published from relational data. Because there are
subtree instances that can be shared, reference [24] focused
on the side effects that are brought by view updates. The
difference from previous works is it does not reject the side
effects, but consults with end-users to obtain a more
reasonable result. That is, it allows end-users to determine
whether or not the side effects are reasonable. It can be
regarded as capturing necessary semantics at view update
time.

Lots of practical examples have showed the importance of
semantics to view update problem. All of the above works
have taken note of it and attempted to collect semantics at
view definition or update time. We believe that it is vital to
take into account semantics. And both database semantics
and application semantics are required. Some semantics can
be captured at view definition time, but the remaining
semantics have to be collected at view update time. It is
acceptable to interact with DBA at view definition time, but it
burdens end-users to consult with them at view update time.
It also conflicts with the original intention of view. Thus, it is
important to maximize semantic information that can be
gathered at view definition time and minimize semantic
information that have to be collected at view update time,
which deserves to be studied further.

E. Identity Preservation
In object-oriented database, objects have an identity. If the

query language can preserve objects’ identities, view object
can find the corresponding source object by its identity.
Therefore, view update problem becomes simple in this
context at syntactic level. Scholl et al [25] presents this key
idea and introduces object preserving operator semantics.
Query language, however, usually contains identity-updating
operator, which restricts this method in practical applications.
And it also ignores the role of semantics in translating view
update.

It deserves special attention in XML context. XQuery Data
Model specifies nodes of XML document have node identity,
which is similar to object identity. Thus, node identity can be
used to build the correspondence between view node and

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

26

source data node. And most of XQuery expressions are
identity-preserving.

F. V-R Model
Pan and Yang [26] proposes an object model at the

conceptual level, which is called the view class and
real-world object model (V-R model). The major goal of the
V-R model is to support updatable views efficiently for the
object-oriented database systems. In the real world, people
always observe an entity form different viewpoints. In the
V-R model, people, viewpoints, and entities correspond to
users, view classes, and real-world objects, respectively.
Then we review the formal conception in detail.

A real world object (RO) is an entity, either concrete or
logical. A RO is represented as a tuple <I, D>, where I
denotes the unique real world object identifier (RID), D
denotes the stored data. A view class C is represented as a
tuple <S,N,T,E>, where S denotes the superclass of C, N
denotes the class name, T denotes the intension, which is a set
of attributes, E denotes the extension, which is a set of
conceptual objects (CO). A CO is represented as a tuple <r,
vf>, where r is an RID, vf is the view function. A view C is
represented as a tuple <N,T,Q,E>, where N denotes the view
name, T denotes the intension, Q is the instance population,
which is a query, and E denotes the extension, which is a set
of conceptual objects.

The V-R model is closed against basic query operations
(Restriction, Projection, and Union, etc). There always exist a
one-to-one mapping between each CO of the view and a
corresponding set of Cos of operands on which the view is
defined. This property makes the view updatable in syntactic
level.

To clarify the semantics of view class updates, object
evolution is introduced, which means an RO may change the
amount of its stored data. The fundamental semantics for
view updates is to establish or to break the association
between the ROs in a CO. Base on above semantics, the view
update translation is proposed.

The major idea of this approach is to use object identifier
and keep the mapping pairs of operands’ Cos in the
corresponding CO of the resulting view. However, it is also a
syntactic level method. When there are ambiguities, to
choose a reasonable translation is the users’ responsibility,
which is similar to [23]. And the V-R model is tightly
coupled with object-oriented data model, which makes it
difficult to apply to other models.

G. Data Abstraction
Paolini and Pelagatti [27] thinks database as an abstract

object, users can access this object by a set of operations.
Reference [28] and [29] model database and view as data
abstraction. Then many researches employ data abstraction to
deal with view update problem [30-32].

Kozankiewicz [33] explores the updatable XML view. The
key idea is to contain the information about intents of updates
in view definitions. View definitions are regarded as complex
entities, which is similar to the spirit of data abstraction. The
information content of virtual objects is defined together with
all the required view updating operations. That is, all update
operations that are allowed on the view are specified by view

definition.
This approach combines specific procedures with the view.

These procedures show how to access the source data. It can
be considered as capturing the semantic information at view
definition time. It describes how to perform updates, and
reflects the users’ real intents. But it is awkward since it can
not be changed with different contexts.

H. Constraint Satisfaction
In order to obtain a reasonable translation, Shu [34] shows

the information is needed to describe the expected updates on
the base relations. There may be syntactic information, which
explains how to extract the view from the base relations.
Also，There may be semantic information, which specifies
integrity constraints and application requirements. In
particular, semantic information can be collected at view
definition or view update time. But how many constraints are
adequate has no answer so far. Therefore, it is useful if
constraints can be incrementally added.

A novel approach is presented in [34], which transforms a
view update problem into constraint satisfaction problems
(CSPs) by using conditional tables to represent relational
views. Given a view and a view-update request, the CSPs can
be constructed. It separates problem formalization and
problem solving. The constraints can be added incrementally
to restrict the number of solutions to the CSPs without the
underlying constraint satisfaction algorithm being changed.
At the same time, it is possible to apply the rich results of the
CSP research to more efficiently solve the view update
problem. It also shows how to treat with view modification
and null value.

This approach is dependent of the instances of the database
and the view and is to be applied at view update time. It can
be a complement of other approaches. The critical problem is
what constraints should be captured and how to capture them.

I. Bi-directional Transformation
Breenwald et al [35] introduces the idea of bi-directional

tree transformations, which is implemented in a universal
synchronization framework for tree-structured data. View
has an important role in this framework: in order to
synchronize disparate data formats, a single common abstract
view is defined and a set of lenses that transform each
concrete format into the abstract view are proposed. Lens is a
vivid name, which is a pair of functions. One is called get, the
other is called put. Intuitively, get denotes mapping concrete
data into abstract data, and put denotes mapping the updated
abstract data and the original concrete data into new concrete
data. Reference [35] proposes two laws, PUTGET and
GETPUT, to make sure the put function is injective. That is,
abstract view and the original concrete view can determine
one and only the current concrete view state. This
disambiguates the translation of view update. Lenses are
called well-behaved lenses, if they satisfy the above two laws.
And very-well-behaved lenses are well-behave lenses that
satisfy another law, PUTPUT. Interestingly, Pierce et al [36]
shows the set of very-well-behaved lenses is isomorphic to
the set of translators under constant complement [4], and the
set of well-behaved lenses is isomorphic to the set of dynamic
views [10]. Foster et al [37] introduces the design of lenses

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

27

and how to resolve the view update problem of
tree-structured data by bi-directional transformation.

The University of Tokyo also studies this topic intensively
[38-41]. Reference [38] presents a point-free functional
language, Inv, in which all functions definable are injective.
This language, with relational semantics, has the same
computational power with Bennett’s reversible Turning
machines. It is shown that for all possibly non-injective
functions f: A→B, we can automatically derive an injective
function f’: A→ (B, H), where H records the history of
computation. Therefore, every program described by Inv is
trivially invertible. Reference [39] extends Inv and develops
a formalization of bi-directional updating that can deal with
duplication and structural changes like insertion and deletion.
For making tree transformations bidirectional, reference [40]
proposes a new general transformation, called
bidirectionalization. For a case study, it is shown any tree
transformation in HaXML can be made bidirectional.
Reference [41] develops an XML data update system which
can update remote XML data through XML views. This
architecture combines view updating and standard Web
service technology. And it makes full use of bidirectional
transformation to implement view updating.

Bi-directional transformation is a linguistic method, which
has attracted wide attention in programming and database
community. The key idea of bi-directional transformation
stems from Reversible Computing, which reduces “heat”
dissipation. It is sound to apply bi-directional transformation
to resolve view update problem. The keystone of this method
is to design a bi-directional transformation language, which
can describe the relation between view and source data. This
language should also include some necessary information,
such as constraints. It can be thought inclusion of semantics
in the design of language. Semantics, however, should be
studied further when this method is applied.

J. Conclusion of previous methods
The difficult of view update problem is how to obtain a

reasonable translator. We think that “reasonable” means the
translation of view update can reflect users’ intents. Thus, we
believe semantics is necessary to resolve the problem. As
shown in table 1, we make a summarization of these nine
methods, in particular, we focus on semantic features.

In Table 1, we compare the above methods. To save space,
we show the first three methods in the same column, since
they have the similar properties. “Level” means the level at
which the method resolves the problem, in particular,
syntactic or semantic. We think abstract data and
bi-directional transformation are at semantic level, since they
contain semantics in abstract data type and bi-directional
transformation language respectively. “Means” denotes the
methods they employ. “Emphasize semantics” presents
whether or not the method emphasizes the importance of
semantics. “How to provide semantic information” shows
how to capture the semantics.

We introduce a taxonomy of semantics that may be useful
when tackling view update problem. As shown in Fig. 2,
Semantic information includes data semantics and
application semantics.

Figure 2. Taxonomy of Semantics Useful When Tackling View Update

Problem

Data semantics contains intension and extension. Intension
includes structure and constraints. Structure represents the
semantic containing in the relation between data, such as
order of data. Constraints express data semantic constraints
(e.g., functional dependencies, integrity constraints).
Extension shows what data are valid. Typically, it is
characterized by some predicates. Application Semantics
captures the intents of data from some aspects when we use
them. As explained in [1], an insert statement on view may be
translated into a modify statement on source data. Thus, we
need update intents to instruct the translation. And securities
tell us how to use the data in security. Typically, it may
contain access control policies.

IV. DISCUSSION AND A FRAMEWORK

A. Discussion
1) Update Semantics of Views

To resolve view update problem, it is necessary to know
what the reasonable translation is, that is, what the update
semantics of views is. There have been lots of researches
about it in relational community. Traditionally, it is believed
that translation that is consistent and has no side effects is
reasonable. A stricter semantics is enunciated in [4], which
requires all information missing from the view must be
included in the complement. However, if there are some
constraints on view data, e.g. functional dependencies A→B,
side effects may be inevitable in order to maintain data
consistency when A is modified. Thus, the updates on those
data have to be rejected. But is it the users’ intents? It need
capture the real users’ intents, which may expect to perform
updates, and the side effects are tackled by system
automatically. Therefore, to reject side effects is unilateral.
2) The Importance of Data and Application Semantics

Data semantics and application semantics are also useful
for considering this problem [1] [23]. Data semantics is
critical to describe the relationship between data, which can
instruct how to use and maintain data reasonably. For
example, we have to maintain integrity constraints when we
update the view or the database. And many researches
assume the update operation always is translated into the
same kind of update operation, e.g. an insert operation is
translated into another insert operation, which is call update
monotony. However, even updating the same view with the
same operation, the update monotony may not be satisfied,
because an insert or delete operation against a view may be
translated into a modify operation against the source data,

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

28

which depends on the application context. It is necessary to
capture the application semantics to resolve ambiguity.
3) No One-to-one Mapping

As presented above, the major problem is there is no
one-to-one mapping between update on the view and
sequence of updates on the source data. Under given view
update semantics, for update on the view, there are three
cases: a) there is no translation; b) there is only one
translation; c) there are many translations. Obviously, the
second case is expected result.

For the first case, the simplest way is to reject the update.
Another way is to restrict the view or the updates on the view
to avoid these invalid updates. For instance, we can provide a
set of primitives for manipulating views, which can
guarantee there always exists the valid translation. Similarly,
we also can provide a set of operations for view construction
to make sure no invalid update can occur against the view.

For the third cases, we can provide additional rules or
constraints to limit valid translations, e.g. we require the
translation produces produce the shortest update sequence.
Also, we can add order information to all possible
translations to obtain an optimal one, that is, a partial
ordering relation may be introduced. Finally, we can interact
with users to choose a translation that can reflect users’
intents exactly.
4) Time for Collecting Semantic Information

As shown in Fig. 2, there are many kinds of semantic
information. As emphasized above, Semantic information is
very important to resolve ambiguities, which is the inherent
property of view update problem.

Some semantic information, such as integrity constraints,
can be captured at view definition time. Typically, DBA can
use a tool to define a view, which is not only a stored query,
but also some schema information.

But the semantic information collected at view definition
time may be insufficient [22]. System can interact with users
at view update time to obtain semantic information [22] [23].
Obviously, capturing semantics at run-time can find users’
real intents, but it burdens end-users. And exposing these
details is in contradiction to the original intents of the view.
5) The Role of Constraints

The constraints on data (both view and source data) make
it indispensable to maintain consistency when the data is
updated. In the context of XML, How to specify various
semantic constraints has been studied intensively recently. In
particular, as summarized in Fig. 3, XML data semantic
constraints mainly include: unique, key, foreign key,
functional dependency, inclusion dependency, inversion
constraint and multi-value dependency. As relational
database, these constraints play a critical role in
normalization and maintaining consistency. XML Schema, a
standard schema language propose by W3C, has mechanism
to support unique, key and foreign key. Since XML is
hierarchical nested structure, how to define traditional data
semantic constraints is not a trivial problem. To satisfy
various data semantic constraints and maintain data
consistency make performing view update more complicated.

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

− DependencyvalueMulti
ConstraintInversion

DependencyInclusion
DependencyFunctional

KeyForeign
Key

Unique

XMLfor
sConstraint

SemanticData

Figure 3. Data Semantic Constraints for XML

6) Traditional Database or XML Database
XML is often used as a representation of other data

formats. Therefore, XML view update, typically, is to
translate update on XML view published over relational
database. The simple approach is to transform the problem
into traditional context. Then previous researches can be used.
It seems reasonable, since the differences between two data
models are resolved naturally.

However, with the development of native XML database,
translating update on XML view published over XML source
data is certain to be an important research area. Related
techniques of XML are developing. Thus, it is difficult to
study view update problem in XML context. For example,
XML Schema can not describe functional dependency and
there is no standard and mature XML update language
(XQuery Update Facility is developing and may be a
standard XML update language). But there are also some
features of XML that may be useful when we study view
update problem. For example, node identity gives the chance
to track the data between view and database. Document order
also provides the information of relative position between
nodes.

B. A Framework and Critical Techniques
1) A Framework for Solving View Updates

We believe semantic information is vital. So we need a
mechanism to describe necessary information. To extend
XML Schema serves this target. We can add components to
XML Schema to describe data semantics and application
semantics. Then we can capture semantic information at view
definition time by interacting with DBA. The information is
stored by extended XML Schema. Under assistance of
semantics, an algorithm is applied to translate update on view
into a sequence of updates on source data. To facilitate view
definition, we employ a conceptual schema to show the data
we tackle, which can show the data in graphical notations and
make it easier to use. Notably, we only collect semantic
information at view definition time. It may be more
reasonable to capture some semantic information at view
update time. However, we should endeavor to avoid
burdening end-users.

As shown in Fig. 4, the framework consists of view
building client, view access client, view building/access
server and data source. View building/access server includes
model extractor, view definition analyzer, view update
manager and view query processor. View building client
obtains the conceptual schema of source data by model
extractor. Then DBA can build expected view by
manipulating conceptual schema. View definition analyzer
translates view definition in conceptual schema format into

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

29

extended XML Schema and XQuery statements. End-users
obtain the view data by invoking view query processor.
When end-users update view data, view update manager
analyzes the updatability and perform the valid and expected
translation if there is. The model to describe conceptual
schema of the view, the strategies discussed above and the
view update algorithm employed in framework determine the
practicability and efficiency of the framework.

Figure 4. A Framework for Resolving View Update Problem

2) Some Related Techniques
a) Constraints for XML
Constraints, especially the integrity constraint, play a

fundamental role in database design. With the development
of native XML database, How to define constraints for XML
has been studied widely. For the framework, we need to store
constraints at logical level, which, typically, is implemented
by a language. As shown in Fig. 3, various kinds of
constraints can be specified for XML. However, there is no
standard method.

XML Schema supports unique, key and foreign key. The
constraints are declared in the element, which is the scope of
the constraints. A selector element is used to choose the
nodes that are affected by the constants. Properties involved
in the constraints are denoted by one or more field element. A
subset of XPath is used for locating elements and attributes.
That means we can call the approach adopted by XML
Schema is based on path.

Functional dependencies have been relatively more
intensively studied than other constraints. Most of them are
based on path, either absolute paths or more general paths
[42]. There are also researches for other constraints [43] [44].
We do not go into detail here.

Since XML Schema is employed to record the constraints,
we extend the syntax of XML Schema to support functional
dependencies, multi-value dependencies etc, which is similar
to the existed mechanism. However, informally speaking, a
recursive style definition is introduced to emphasize the
layers of different elements and attributes that are present in
the constraint. And we believe the definition of value equality
in [42] is not reasonable, since the content model of XML
Schema has rich expressive power, especially the semantics
of choice group. Therefore, we propose a new definition of
value equality, which can capture the semantics of sequence
group and choice group, even nested choice and sequence

group. The algorithms for checking value equality and the
satisfaction of constraints have been implemented by
extending XML Schema Validator, which is supported by
W3C. It is beyond the scope of this paper to present the
details.

b) XML Conceptual Modeling
XML Schema can be regarded as the logical schema of

XML model. We also need a conceptual schema of XML
model to facilitate the users (DBA) to define views. To
construct the view at conceptual level make the view
definition can be achieved more efficiently and shared with
other people.

Reference [45] proposes a methodology for defining view,
which has three different levels of abstraction, that is,
conceptual level, logical or schema level, and document or
instance level. Our Framework accords with this
methodology. The conceptual level can be modeled using
UML, XSemantic Net [46], EER, etc. We may need to extend
some well-established modeling language to serve XML
conceptual modeling. There are also some new languages for
XML conceptual modeling, e.g. XTM [47], ORA-SS [48].

In our framework, we employ a new modeling language
that is developing by us. XML data sources are translated into
the instances of this model. The users can manipulate these
instances by a set of well-defined operations to construct the
view. The model provides the mechanism to record semantic
information.

c) How to Use Semantic Information
When the semantic information is collected at view

definition time, we can use them to instruct view update
translation. The semantic information can be classified into
two kinds: one is the data semantic constraints, the other is
the application semantics, which determines whether one
update should be translated into another the same kind update.
When the data are updated, we should check the application
semantics to make sure whether to preserve the kind of
update. Then we should check whether the involved data are
constrained by data semantic constraints. If they are, we
should update related data automatically to maintain data
consistency, which produces update side-effects.

V. CONCLUSION
This paper introduces the view update problem. We survey

and compare previous researches on view update in terms of
the methods they employ. In particular, we emphasize the
importance of semantics. After making a brief analysis, we
present a framework for resolving the problem, which
captures semantics at view definition time and is developing
by us. For implementing this framework, we also further
introduce some related techniques for implementing the
framework.

We believe not only relation between view and source data
but also semantic information, such as data semantics and
application semantics, is necessary to solve the problem. The
nature of the problem is the ambiguities arousing by
translating view update. Additional semantics is needed to
eliminate these ambiguities. Semantic information can be
collected at view definition and view update time. We should

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

30

maximize the information collected at view definition time to
avoid burdening end-users.

Because XML and its related techniques are developing, it
is a little difficult to consider this problem in XML context.
However, as we surveyed, there are lots of researches on this
topic, most of them employ old methods, which are
developed in relational context. And some new ideas are
proposed, such as bi-directional transformation. And special
features of XML may be vital and useful.

How to describe, capture and use semantic information,
how to deal with side effects are worthy of being studied
further. And we are currently working on developing this
framework.

REFERENCES
[1] A. M. Keller. The role of semantics in translating view updates. IEEE

Transactions on Computers, v.19 n.1, pp.63-73, Jan. 1986.
[2] E.F. Codd. Recent investigations in relational data base systems. IFIP

Congress, 1974, pp.1017-1021.
[3] U Dayal, PA Bernstein. On the correct translation of update operations

on relational views. ACM Transactions on Database System, v.7 n.3,
pp.381-416, 1982.

[4] F Bancilhon, N Spyratos. Update semantics of relational views. ACM
Transactions on Database System, v.6 n4, pp.557-575, 1981.

[5] S. J. Hegner. Foundations of canonical update support for closed
database views. Proceedings of the third international conference on
database theory on Database theory, pp.422-436, November 1990,
Paris, France.

[6] S. J. Hegner. An order-based theory of updates for closed database
views. Annals of Mathematics and Artificial Intelligence, v.40 n.1-2,
pp.63-125, January 2004.

[7] J. Lechtenbörger. The impact of the constant complement approach
towards view updating. Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pp.49-55, June 09-11, 2003, San Diego, California.

[8] L. Wang, M. Mulchandani and E.A. Rundensteiner. Updating XQuery
views published over relational data: a roundtrip case study. In XML
Database Symposium, 2003, pp. 223–237.

[9] A. M. Keller. Comment on Bancilhon and Spyratos' “Update semantics
and relational views”. ACM Transactions on Database Systems
(TODS), v.12 n.3, pp.521-523, Sept. 1987.

[10] G. Gottlob, P. Paolini and R. Zicari. Properties and update semantics of
consistent views. ACM Transactions on Database Systems (TODS),
v.13 n.4, pp.486-524, Dec. 1988.

[11] S. S. Cosmadakis , C. H. Papadimitriou. Updates of relational views.
Journal of the ACM (JACM), v.31 n.4, pp.742-760, Oct. 1984.

[12] D. Laurent, J. Lechtenbörger, N. Spyratos, G. Vossen. Monotonic
complements for independent data warehouses. The VLDB Journal —
The International Journal on Very Large Data Bases, v.10 n.4,
pp.295-315, December 2001.

[13] J. Lechtenbörger, G. Vossen. On the computation of relational view
complements. In: Proceedings of PODS 2003, pp 142–149, Madison,
Wisconsin, USA.

[14] V.P. Braganholo, S.B. Davidson and C.A. Heuser. Reasoning about the
updatability of XML views over relational databases. Technical Report
MS-CIS-03-13, Department of Computer and Information Science,
University of Pennsylvania, 2003.

[15] V.P. Braganholo, S.B. Davidson and C.A. Heuser. Using XQuery to
build updatable XML views over relational databases. Technical
Report MS-CIS-03-18, Department of Computer and Information
Science, University of Pennsylvania, 2003.

[16] V.P. Braganholo, S.B. Davidson and C.A. Heuser. From XML view
updates to relational view updates: old solution to a new problem. In
VLDB, pp. 276–287, 2004, Toronto, Canada.

[17] V.P. Braganholo, S.B. Davidson and C.A. Heuser. PATAXÓ: A
framework to allow updates through XML views. ACM Transactions
on Database Systems (TODS), v.31 n.3, pp.839-886, September 2006.

[18] L. Wang, E.A. Rundensteiner. On the updatability of XQuery views
published over relational data. LNCS volume: 3288, pp.795-809, 2004.

[19] L. Wang, E.A. Rundensteiner and M Mani. Updating XML views
published over relational databases: towards the existence of a correct
update mapping. DKE Journal volume: 58, issue: 3, pp.263-298, 2006.

[20] A. M. Keller. Algorithms for translating view updates to database
updates for views involving selections, projections and Joins. 4th
PODS, ACM, March 1985.

[21] A. M. Keller. Choosing a view update translator by dialog at view
definition time. Proceedings of the 12th International Conference on
Very Large Data Bases, pp.467-474, August 25-28, 1986.

[22] Y. Masunaga. A relational database view update translation mechanism.
Proceedings of the 10th International Conference on Very Large Data
Bases, pp.309-320, August 27-31, 1984.

[23] A. Sheth, J. Larson and E. Watkins. TAILOR, A tool for updating
views. LNCS v.303, pp.190-213, 1988.

[24] B. Choi, G. Cong, W. Fan, S.D. Viglas. Updating recursive XML views
of relations. JCST 23(4): pp. 516-537 July 2008.

[25] M. H. Scholl, C. Laasch, C and M. Tresch. Updatable views in
object-oriented databases, in PTOC.2nd DOOD Conf., Germany, Dec.
1991.

[26] Wen-Wei Pan,Wei-Pang Yang. An object model at conceptual level to
support updatable views on object-oriented databases. Information
Sciences,Volume 95, Issues 1-2, November 1996, Pages 29-48.

[27] P. Paolini, G. Pelagatti. Formal definition of mappings in a database.
Proceedings of the 1977 ACM SIGMOD international conference on
Management of data, August 03-05, 1977, Toronto, Ontario, Canada.

[28] P. Paolini. Verification of views and application programs. Proc.
Workshop on Formal Bases for Databases, Toulouse (1979).

[29] P. Paolini, R. Zicari. Properties of views and their implementation.
Advances in Data Base Theory 1982: pp. 353-389.

[30] E. K. Clemons: An external schema facility to support data base update.
JCDKB 1978: pp. 371-.

[31] K. C. Sevcik, A. L. Furtado, Complete and compatible sets of update
operators, Proc. Int. Conf. on Management of Data, ACM, June 1978.

[32] L. A. Rowe, K. A. Shoens, Data abstraction, views and updates in
RIGEL, Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, May 30-June 01, 1979, Boston,
Massachusetts.

[33] H. Kozankiewicz, J. Leszczylowski and K. Subieta. Updatable XML
views. LNCS v.2798, pp.381–399, 2003.

[34] Hua Shu. Using constraint satisfaction for view update. Journal of
Intelligent Information Systems, v.15 n.2, p.147-173, Sept./Oct. 2000.

[35] M. B. Greenwald, J.T. Moore, B.C. Pierce, A. Schmitt. A language for
bi-Directional tree transformations. In the Workshop on Programming
Language Technologies for XML (PLAN-X), 2004.

[36] C. Pierce and A. Schmitt. Lenses and view update translation.
Manuscript, 2003.

[37] J.N. Foster, M.B. Greenwald and J.T. Moore, B.C. Pierce, A. Schmitt.
Combinators for bidirectional tree transformations: a linguistic
approach to the view update problem. ACM Transactions on
Programming Languages and Systems. v.29 n.3, 2007.

[38] S.C. Mu, Z. Hu, and M. Takeichi. An injective language for reversible
computation. In Seventh International Conference on Mathematics of
Program Construction. Springer-Verlag, July 2004.

[39] S.C. Mu, Z. Hu, and M. Takeichi. An algebraic approach to
bi-directional updating. In ASIAN Symposium on Programming
Languages and Systems (APLAS), Nov. 2004.

[40] Zhenjiang Hu, K. Emoto, Shin-cheng Mu, M. Takeichi.
Bidirectionalizing tree transformations. International Workshop on
New Approaches to Software Construction (WNASC 2004), The
University of Tokyo, Komaba, Tokyo, Japan, September 13-14, 2004.
pp.3-22.

[41] Y. Hayashi, Dongxi Liu and K. Emoto et al. A web service architecture
for bidirectional XML updating. LNCS v.4505, pp.721-732, 2007.

[42] JH Wang. A comparative study of functional dependencies for XML.
7th Asia-Pacific Web Conference, LNCS v.3399, pp. 308-319, 2005.

[43] Buneman P, Fan WF, Simeon J, et al: Constraints for semistructured
data and XML. SIGMOD RECORD Volume: 30, Issue: 1, pp.47-54,
MAR 2001.

[44] Vincent MW, Liu JX: Multivalued dependencies in XML. NEW
HORIZONS IN INFORMATION MANAGEMENT LNCS v.2712, pp.
4-18,2003.

International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011
1793-8201

31

TABLE 1. COMPARISON OF THE ABOVE METHODS

 Constant Complement/
“Clean Source”/
Consistent Views

Collecting
Semantic
Information

Identity
Preservation

V-R Model

Abstract

Data

Constraint
Satisfaction

Bi-directional

Transformation

Level Syntactic Semantic Syntactic Syntactic Semantic Semantics Semantic

Means Translation under
constant complement/
Clean Source Theory/
Generalization of
constant complement

Capture
semantics at
view definition
or update time

Build
correspondence
between source and
view data by
identity

A
Conceptual
Model

Regard view
as abstract
data

transforms a
view update
problem into
CSPs

Bi-directional

transformation

language

Emphasize
semantics

No Yes No No No Yes No

How to
provide
semantic
information

No Interact with
DBA or user at
view definition
or update time

No No

Combine

specific

procedures

with view

Regarded
semantic
information as
Constraints

The semantics
of language

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FangSong_GB2312
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSTK--GBK1-0
 /FZYTK--GBK1-0
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi_GB2312
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LiSu
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MicrosoftYaHei
 /MingLiU
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /STCaiyun
 /Stencil
 /STFangsong
 /STHupo
 /STKaiti
 /STLiti
 /STSong
 /STXihei
 /STXingkai
 /STXinwei
 /STZhongsong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YouYuan
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

