
International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

892

Abstract— The Generalized Travelling Salesman Problem

(GTSP) is a special instance of the well-known travelling
salesman problem which belongs to NP-hard class of problems.
In the GTSP problem which is being addressed in this research
we split the set of nodes (e.g. cities) into non-overlapping subsets;
where the optimal solution is a minimum cost tour visiting
exactly one node from each subset. In this paper a genetic
algorithm with new and innovative way of generating initial
population is presented. Concepts like cluster segmentation,
partially greedy crossover, greedy insert mutation and
enhanced swap mechanisms are also introduced. An initial
analysis of the proposed algorithm shows enhanced results in
terms of optimality and computational time as compared to
existing approaches.

Index Terms— Generalized travelling salesman problem,

genetic algorithms, greedy insert mutation, partially greedy
crossover.

I. INTRODUCTION
The well known travelling salesman problem (TSP) is a

problem to find the minimum cost tour of ‘n’ cities or nodes
where each city must be visited exactly once. It is established
that the TSP is one of the top ten problems addressed by
researchers [1]. Generalized travelling salesman problem
(GTSP) is a variant of classical TSP having a number of real
world applications e.g. postal and vehicle routing [2],
computer file sequencing [3], scheduling clients through
welfare agencies [4].

The GTSP can be stated as: Given a set of clusters, where
distances between them is known, calculate the minimum
cost -tour starting from a given node in a cluster, passing
through all the other clusters and returning to the first cluster.
Note here that each cluster is comprised of several nodes and
only one node is visited from each cluster.

Formally GTSP can be defined as [5, 6]: A domain of cities
C = {c1, c2…cn} partitioned into ‘m’ subsets {s1, s2…sm} such

that s1 ∪ s2… ∪ sm = C and si
∩ sj =

φ where i ≠ j. The round
tour ‘T’ must contain exactly one city from each subset where
the sum of Euclidean distances (∑ d) are minimised. For
example the Euclidean distance ‘d’ between two points ‘p1’

and ‘p2’ located in two dimensional space with coordinate (x1,
y1) and (x2, y2) respectively, can be computed by (1):

Manuscript received March 03, 2010.
Z. Ahmed has completed his MS from University Institute of Information

Technoloty, University of Arid Agriculture Rawalpindi, Pakistan (phone:
+92-345-5990300; e-mail: zaheed1@hotmail.com).

I. Younas is full Professor at HITEC University Taxila Cantt., Taxila,
Pakistan. (e-mail: iyounas101@gmail.com).

M. Zahoor obtained the degree of MS in Computer Science from UIIT,
Arid Agriculture University, Rawalpindi, Pakistan. (e-mail:
zahoor_51@yahoo.com).

2
21

2
21)()(yyxxd −+−=

 (1)
The TSP is categorised as a NP-hard problem and so is the

GTSP. In addressing NP-hard class of problems many
approaches have been considered, such as Simulated
Annealing and Tabu Search, but Genetic Algorithms (GAs)
have shown to be amongst the best approaches as the whole
search space need not be traversed in obtaining the global
minimum.

A number of genetic algorithms are available in literature
for TSP like problems [1], [5], [6], [8]-[12]. Unlike some
Meta-heuristics approaches where a single candidate solution
is maintained and all efforts are deployed to improve the
solution quality in an efficient manner, the GA maintains a
solution set of size ‘N’ and puts less effort on individual
solutions. Furthermore on each generation/iteration local
improvement heuristics and genetic operators i.e.
reproduction, crossover and mutation are applied to improve
the solution set quality.

In GTSP, natural selection method is known as roulette
wheel [1] which transforms the superior individuals from one
generation to the next. Note that genetic operators and local
improvement heuristics for TSP and GTSP are uniformly
applied on both types of problems with slight modifications.
For TSP and GTSP some standard crossover operators are:
partially mapped crossover (PMX), random crossover (RX),
cyclic crossover (CX), the ordered crossover (OX) [13],
modified ordered crossover (MOX) [1] and modified
rotational ordered crossover (mrOX) [8]. Among the well
known mutation operators worth mentioning are: Simple
inversion mutation (SIM) and insertion mutation (ISM) [14].
To enhance the power of GA, local improvement heuristics
i.e. well-known ‘2-opt’, integrated local search [12],
knowledge based multiple inversion and ‘swap’ procedures
[1], [5] are also applied. Numerous variations have been cited
in literature on the basis of the conventional GTSP [8].

This study presumes symmetric variant that means
distance from city ‘ci’ to city ‘cj’ and vice versa are equal. It is
further required that the solution contains exactly one city
from each cluster. The remaining paper is organized as
follows: section II discusses the related work; and proposed
innovative GA for GTSP is presented in Section III. Section
IV contains the cost-benefit analysis and discussions. Finally
concluding remarks with future directions are summarized in
section V.

II. RELATED WORK
Since the invention of the genetic approach by John

Holland and his students in 1970s [15], the classical TSP is
attempted by many researchers utilizing GA in a number of
ways [1], [5]. However, to the best of our knowledge and

A Novel Genetic Algorithm for GTSP
Zaheed Ahmed, Irfan Younas and Muhammad Zahoor

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

893

according to Tasgetiren, Suganthan, Pan and Liang [12],
evolutionary algorithms are rarely employed to address
GTSP. So far the best performing evolutionary algorithms for
GTSP available in literature are: random key GA for GTSP
by Snyder & Daskin [5], mrOX GA by Silberholz & Golden
[8] and a GA for GTSP by Tasgetiren, Suganthan, Pan and
Liang [12].

A random key GA [5] provides a solution for GTSP that
overcomes the problem of traditional key methods. Sometime
traditional encoding method can produce infeasible offspring
due to integer string crossover. Random keys are utilized to
encode the solution and this encoded solution guarantees the
feasibility of the offspring. Initial population in this
algorithm is generated on the basis of random selection of
genes from each cluster. Here “Level-1” improvement
heuristic is applied on each solution in the population. A
somewhat new concept of immigration is used rather than
traditional mutation, where the concept of generating new
chromosome from scratch rather than mutating the genes of
existing chromosomes.

In the mroX [8] a traditional GA encoding scheme for TSP
is applied, and two local improvement operations are used i.e.
famous ‘2-opt’ and ‘swap procedure’ which operates similar
to random key GA [2]. Initial population of 50 chromosomes
is generated by uniformly selecting one node from each
cluster. It is to be noted that in [8] the classical TSP Ordered
Crossover (OX) operator has been slightly modified
according to GTSP requirements. Here a rotational
component is added to modify ordered crossover (rOX). The
rOX rotates the genes selected from second parent and
thereafter all possible permutations are evaluated to find the
best fitting permutation in combination with genes already
selected from first parent. Furthermore, rOX is modified
(mrOX) by adding another rotational component for side
genes only. The mrOX increases the computational time but
it is useful in generating diversity in the population.

Another best performing GA for GTSP has been
developed by Tasgetiren, Suganthan, Pan and Liang [12].
Permutations of clusters and corresponding node from each
cluster with Euclidean distance between adjacent nodes are
used as part of the encoding scheme. Here the so-called
‘Two-cut PTL crossover’ operator is used which always
produces a distinct child. The mutation operation is fairly
simple where a randomly selected node is replaced with
another node of its own cluster. The insertion method is
similar to the random-key GA [5]. Operations such as
Two-opt and iterated local search (ILS) are applied for the
purpose of local improvement heuristics. Traditional ILS is
modified in a way that search counter is re-initiated every
time a better result is found.

All the optimal and efficient evolutionary algorithms
discussed in this section have a common problem of
generating the initial population randomly. A randomly
generated chromosome requires more computation time to
converge to desired level of solution optimality. In addition
the whole cluster is considered for mutation and two-opt
swapping procedures, both of which increase the search
space and consequently the CPU time.

III. PROPOSED GA USING CLUSTER SEGMENTATION
In this research we propose a new technique where the

domain in divided into natural clusters and furthermore each
cluster is subdivided into a number of segments containing
nodes. Only nodes from active segments will be used for tour
generation as explained below.

Figure 1: Cluster representation with active/inactive segments.

A. Cluster Division and Segments Classification Method
To generate the initial population we propose to split each

cluster into four segments. Each segment is quarter portion of
the cluster having ID range 1-4 as depicted in fig. 1 (cluster
1). This cluster segmentation decreases the search space
during GA operations. Each segment is either active or
inactive depending on the location of cluster in domain. This
classification is accomplished by an algorithm given in this
section. If any of the active segments is empty then both of its
adjacent segments are marked as active. Adjacent segment
can be either top/bottom or left/right but diagonal segment is
not considered as an adjacent.

B. Encoding/Decoding Scheme
One of the key elements of the GA is solution

representation. In classical TSP the traditional encoding
scheme is to represent the solution with integer permutations.
An integer can be assigned to each of the node as {1, 2 … n}.
This scheme is fairly simple but having problem of infeasible

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

894

children during one and two point crossover. Infeasibility
problem can be handled in many different ways i.e. via
special repair algorithms or random key encoding scheme.
However, in this research infeasible child problem is out of
question due to the nature of our partially greedy crossover
operator (section 3.4). The encoding scheme suggested by
Tasgetiren, Suganthan, Pan and Liang [15] is used as the base
of the solution representation in this GA. To handle the GTSP
solutions correctly we have used both the cluster number and
corresponding node as well. Clusters are represented as Ci
where ‘i’ is an integer from 1 to number of clusters (n) and all
the nodes in a cluster are assigned an unsigned integer from 1
to number of nodes in that cluster (m). For example consider
a chromosome as:

C1.2→C4.1→C3.3→C2.2→C5.4
This chromosome contains the information that the cluster

tour sequence is: C1, C4, C3, C2, C5 and return to C1 again. In
cluster C1 and C2 the 2nd node is visited while 3rd node from
C3, 1st node from C4 and 4th node from cluster C5 respectively
will be visited.

C. Initial Population Generation
In this section we introduce a novel strategy to generate the

initial population. Each cluster is divided into four segments
as shown in fig. 1. We have already presented an algorithm
(see section III-A) to mark each active segment of the cluster
as shaded segment (see fig. 1). Then we consider each cluster
as a node in the 2-D space. Initial population will be
generated in 3 simple steps:

1) Assume each cluster as a node and find two distinct and

best sequences of clusters to visit by using classical TSP
algorithm.

2) Substitute each cluster sequence with its own node
corresponding to the active segment and maintain two
pools A and B corresponding to both of the sequences
produced in step 1.

3) Generate initial population by applying (2) iteratively
until population size N.

D. Genetic Operators
The chromosome population for the GA is set to N=50

chromosomes. N can however vary depending on size and
complexity of the problem. In each pool A and B, 25
chromosomes are maintained in every generation constituted
as follows: 60 percent is produced by applying the crossover
operator, 25 percent are maintained through reproduction
while remaining 15 percent are generated by immigration.
Greedy Insert Mutation operator is applied to generate
diversity in population. Enhanced swapping procedure is
applied on each chromosome as a source of local
improvement heuristics which is explained in next section.
1) Reproduction

For reproduction purposes, proposed method selects the
superior chromosomes. Here fitness function F, in (2), is the
sum of distance among each pair of cluster nodes in a
sequence:

nnc

C

i
ncnc mkj

ddtF .1,.

1

1
.,.)(+=∑

−

= (2)

Where t, d, c, and n are tour, Euclidean distance, cluster
number and node number respectively. This strategy carries
over the best chromosomes to the subsequent generation
which ensures that every new generation converges towards
the desired solution
2) Partially Greedy Crossover

Generally, crossover, mutation and local improvement
heuristics (stated in section 1) are applied discretely to
increase population diversity and speedup the process of its
convergence toward the desired solution. The Partially
Greedy Crossover (PGC) operator picks two best solutions
from parent generation and produces a child that inherits
genetic material from both parents in the following way: First
gene of the child can be inherited from either of the parents
with 0.5 probabilities each. Remaining genes of the solution
are chosen greedily i.e. the genes can belong to any of the
parents having minimum cost with respect to the gene picked
previously.
3) Greedy Insert Mutation

Insert mutation (ISM) operator [12] is one of the superior
performers that can be used to enhance the population
diversity. ISM operator selects a gene randomly in a
chromosome and replaces it with a gene belonging to same
cluster. However in the Greedy Insert Mutation (GISM)
method proposed in this study the substitution of a gene with
another gene of the same cluster as well as the replacement
will only take place if that minimizes the overall cost of the
tour. Well-known 2-opt improvement can also be applied
separately in level-I and level-II improvements as in [5] but
to some extent this functionality is automatically achieved
using GISM.
4) Immigration

Immigration is achieved by producing a new chromosome
by applying the technique explained in section 3.3 (Step 2, 3).

E. Enhanced Swapping Procedure
Local improvement heuristics, swap and 2-opt are applied

widely on each solution in population to improve the GA
performance. We have included the greed in knowledge
based neighborhood swapping (KBNS) operator encoded by
Ray, Bandyopadhyay and Pal [1]. Although good results
were produced by the KBNS, however there is major
drawback in its swapping procedure. In fact KBNS is
partially knowledge based because there is chance that a
swap may produce a child having more cost than the parent.
During swapping process only swapped position is
considered to reduce the cost while swapping position may
increase the cost of the solution.

The swap procedure presented here is applied on each
chromosome for each generation but if swap does not occur
during two consecutive generations then it will be disabled
for all successive generations.

The Enhanced swapping procedure works in two steps:
Step 1: Calculate the cost ‘d’ for node or city ‘c’ as (3):

() () ()
() () ()
() () ()
() () ()1,,1'

1,,1'

1,,1
1,,1

2

1

2

1

++−=
++−=

++−=
++−=

ijdijdcd
ijdjidcd

jjdjjdcd
iidiidcd

j

i

j

i

 (3)

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

895

Step 2: Pick the pair of cities or nodes that reduces the

overall cost of the tour on the basis of the following condition
given in (4):

() () () ()jiji cdcdcdcd 21

'
2

'
1 +<+ (4)

If this condition holds then swap both cities indexed ‘i’ &

‘j’ for example as given below.
A tour t: 2→4→1→5→3→6, having Euclidean distances

among each pair of cities are given in table I. Since we are
dealing with symmetric distance that is why only the upper
half of table I needs to be populated.

TABLE 1: SYMMETRIC DISTANCES AMONG DIFFERENT CITIES
City 1 2 3 4 5 6
1 0 18 20 20 16 22
2 - 0 10 15 9 13
3 - - 0 19 24 11
4 - - - 0 16 12
5 - - - - 0 27
6 - - - - - 0

Following indexes are selected as ‘i’ and ‘j’:

i-1 i i+1 j-1 j j+1
2 4 1 5 3 6

()
()
()
() 281216'

302010'

351124
352015

2

1

1

1

=+=
=+=

=+=
=+=

j

i

j

i

cd
cd

cd
cd

After this calculation step-2 will be applied as:
30+28 < 35+35
This condition is true so swap will occur and resultant tour

will be as:

i-1 i i+1 j-1 j j+1
2 3 1 5 4 6

The final novel genetic algorithm (nGA) for GTSP is

illustrated by a flow diagram depicted in fig. 2. Input to the
nGA are clusters having nodes information e.g. town
containing information about the location of houses in it.
Each cluster is divided into four segments and initially all
segments are inactivated. The segment activation algorithm
marks the required segments as active and leaves all others as
inactive one. Classical TSP algorithm is utilized to find two
optimal cluster sequences for population pools A and B (See
section III-C for details). Each of the cluster sequences is
substituted by a node from its active segments and the
substituted sequence is known as a chromosome or solution.
Both pools are generated in this fashion. The next step is to
evaluate each chromosome against a fitness function and
check for exit criteria. If the exit criteria is not fulfilled then
reproduction and immigration are applied which transform
and generate the individuals respectively. Remaining
population is created by utilizing (Partially Greedy Crossover)

PGC. When population pools become equal to the population
size ’N’ then each individual will pass through the GISM and
enhanced swap procedure. Finally, the fitness function is
again evaluated and checked against exit criteria. The process
from fitness evaluation to enhanced swap procedure
application falls under the loop until exit criteria is met.

Figure 2. Overall novel Genetic Algorithm (nGA)

F. Termination Criterion
Five consecutive populations do not improve or 50

iterations reach then termination condition meets. Exit
criteria parameters can easily be changed according to the
problem nature.

IV. COST-BENEFIT ANALYSIS OF NGA

A. Search Space
In existing literature the superior performing GA for GTSP

[5], [8], [12] considers the whole search space for
chromosome creation, genetic operations and local
improvements. What is different in our approach is the
partitioning of the cluster into segments as depicted in fig. 1
and only the relevant segments are activated for chromosome
generation, application of evolutionary operators and local
search improvements. The Algorithm constructed (See
section III-A) for marking the segment as active/inactive
takes only the O (C2). By using the concept of segmentation
given here we have gained up to 75% decrease in search
space in a cluster and ultimately the CPU time.

B. Initial Population
Conventionally in GA for any problem initial population is

always generated randomly. Randomly generated
chromosome needs much more CPU time to converge onto
the final acceptable solution. In nGA initial population is
generated by substituting the clusters with a node belonging

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

896

to its active segments. Even though it may appear that more
time is consumed to generate the initial population but in
reality this is not the case because available heuristics are
applied on benchmarks [16] having at most 89 clusters
problem [8]. Hence in the presented algorithm we have to run
TSP on at most 89 nodes, and that will find the near optimal
or may be optimal cluster sequence in shorter time.

C. Genetic Operations & Improvements
In this nGA, 40% of the population is constructed via

reproduction and immigration while remaining 60% is
generated by crossover. Although the PGC operation is
taking fair computation time; this operator is integrating the
functionality of ISM operator and ‘2-opt’ local improvement
heuristic as well. Enhanced swapping procedure is only
consuming little CPU time due to the fact that initial
population is generated in an intelligent fashion and there is a
very little chance that swapping can take place. Hence most
probably it will be disabled after 2 - 3 generations (See
section III-E).

V. CONCLUSIONS AND FUTURE DIRECTIONS
A novel genetic approach is presented to solve the

symmetric GTSP. An intelligent mechanism has been
introduced for initial population generation so that the
individual takes less time to converge on acceptable solution.
PGC, GISM and enhanced swap procedures are defined
which looks more promising to produce fairly simple,
efficient and optimal solution. Cost-benefit analysis of the
proposed study show more efficient use of CPU time and the
solution quality is also significantly better. Furthermore it is
quite easy to extend nGA to incorporate the asymmetric class
and to handle the GTSP problem where different numbers of
cities are required to be visited from different clusters.

ACKNOWLEDGMENT
We would like to acknowledge Iftikhar Ahmed, Habiba

Mobeen and Sadaf Khalid Rana for their moral support,
editorial reviews and useful suggestions during this research
work.

REFERENCES
[1] S. S. Ray, S. Bandyopadhyay and S. K. Pal, “New Operators of Genetic

algorithms for Traveling Salesman Problem,” Proc. 17th International
Conference on Pattern Recognition (ICPR-04), 23-26 August 2004,
Cambridge, UK, vol. 2, pp. 497-500.

[2] G. Laporte, A. Asef-Vaziri, and C. Sriskandarajah, “Some applications
of the generalized travelling salesman problem,” Journal of the
operational research society 47 (12), 1996, pp. 1461–1467.

[3] A. Henry-Labordere, “The record balancing problem—A dynamic
programming solution of a generalized travelling salesman problem,”
Revue Francaise D Informatique De Recherche Operationnelle 3
(NB2), 1969, pp. 43–49.

[4] J. P. Saksena, Mathematical model of scheduling clients through
welfare agencies, Journal of the Canadian Operational Research
Society, 1970, 8: 185-200.

[5] L. V. Snyder, and M. S. Daskin, A random-key genetic algorithm for
the generalized traveling salesman problem, European Journal of
Operational Research, 2006, pp. 38-53.

[6] H. Huang, X. Yang, Z. Hao, C. Wu, Y. Liang, and X. Zhao, Hybrid
chromosome genetic algorithm for generalized travelling salesman
problems, Springer-Verlag Berlin Heidelberg, 2005, pp. 137-140.

[7] Y. K. Hwang, and N. Ahuja, Gross motion planning - a survey, ACM
Computing Surveys. 1992, 24(3):219–291.

[8] J. Silberholz, and B. Golden, “The Generalized Traveling Salesman
Problem: a new Genetic Algorithm approach,” Extending the Horizons:
Advances in Computing, Optimization, and Decision Technologies,
2007, pp. 165–181.

[9] D. Chao, C. Ye, and H. Miao, Two-level genetic algorithm for clustered
traveling salesman problem with application in large-scale TSPs.
Tsinghua Science and Technology, 2007, Volume 12, No.4, pp.
459-465.

[10] B. F. Al-Dulaimi and H. A. Ali, “Enhanced Traveling Salesman
Problem Solving by Genetic Algorithm Technique (TSPGA)”,
Proceeding of the world Academy of Science, Engineering and
Technology”, Rome 25th -27th May 2008. pp. 296-302.

[11] V. M. Kureichick, A. N. Melikhov, V. V. Miagkikh, O.V. Savelev, and
A. P. Topchy, “Some new features in genetic solution of the traveling
salesman problem.” Proceedings of ACEDC, 1996.

[12] M.F. Tasgetiren, P.N. Suganthan, Q. Pan, and Y. Liang, "A genetic
algorithm for the generalized traveling salesman problem", in Proc.
IEEE Congress on Evolutionary Computation, 2007, pp. 2382-2389.

[13] J. J. Schneider, and S. Krikpatrick, Stochastic Optimization, Springer
Berlin Heidelberg, 2006, pp. 415-422.

[14] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S.
Dizdarevic, “Genetic algorithms for travelling salesman problem: A
review of representations and operators,” Artificial Intelligence
Review. 1999, 13: 129-170.

[15] M. Melanie, An Introduction to Genetic Algorithms, MIT Press, 1996.
[16] G. Reinelt, TSPLIB—A travelling salesman problem library, ORSA

Journal on Computing, 1996, 4: 134-143.

Z. Ahmed received his BS in Information Technology
from Allama Iqbal Open University, Islamabad,
Pakistan in 2006 and recently he has completed his MS
in Computer Science from University of Arid
Agriculture Rawalpindi, Pakistan. His research
interests are in the areas of evolutionary algorithms,
fuzzy logic, formal methods and software testing.

I.Younas received his Ph.D. in 1997 from
Southampton University, United Kingdom. Prior to
this he obtained MSc and BSc degrees in Electrical
Engineering from the Technical University of
Denmark. After his doctorate degree he served at
universities in the UK. In addition he has been a
consultant for various software houses. His research

interests are in computational modeling and more recently in evolutionary
computation and optimization using neural networks and evolutionary
algorithms.

M. Zahoor has completed his MS (CS) from University
Institue of Information Technology (PMASAAUR).
Before MS he obtained BS degree from Allama Iqbal
Open University, Islamabad, Pakistan. His research
interests include, designing algorithms, application of
fuzzy logic and software testing techniques.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FangSong_GB2312
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSTK--GBK1-0
 /FZYTK--GBK1-0
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi_GB2312
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LiSu
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MicrosoftYaHei
 /MingLiU
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /STCaiyun
 /Stencil
 /STFangsong
 /STHupo
 /STKaiti
 /STLiti
 /STSong
 /STXihei
 /STXingkai
 /STXinwei
 /STZhongsong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YouYuan
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

