
International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

851

Abstract—Successes of multimedia applications demand

on-line transmission of image data. This in turn demands
on-line compression/decompression of image data files. This
paper reports a pipelined architecture that can support on-line
applications of image data. Spatial redundancy of an image data
file are detected and removed with a simple and elegant scheme
that can be easily implemented on a pipelined hardware. The
scheme provides the user with the facility of trading off the
image quality with the compression ratio. The basic theory of
byte error correcting code (ECC) is employed in this work to
compress a pixel row with reference to its adjacent row. A
simple scheme is developed to encode pixel rows of a
monochrome image.

Index Terms—Image Compression, Check Byte, Augmented
Image Creation, Partition Size, Error Encoder.

I. INTRODUCTION
An image is a two dimensional object that provides visual

information such as colour, depth, and contrast and so on to
the human eyes. A digital image is obtained by sampling the
information at regular intervals in either direction to
discretize the information. Each sample point is referred to as
a pixel. The information of bits in each pixel is stored
numerically in the binary base. Higher the precision value,
better would be the picture quality [1,7,8,11].

Consider an image of size 512 by 512. Assuming that each
pixel is stored as one byte, then the size of the picture is
almost 256Kb.The time required to send such an image at the
rate of 9600 bit/sec would be approximately 3 min. If we
assume a data transfer rate of 1.2 megabit/sec, the transfer
time would be 1.66 sec. Even this time lag is not acceptable
for on line computation/communication. Reduction of this
time lag would be possible only if the image can be
compressed. Further, in the context of growing demand of
multimedia applications, user community look for the
support of speed transmission of image data files over a
communication link. With the introduction of high speed
communication network, the bottleneck lies in the throughput
of the compression and decompression blocks. For the sake
of concreteness let us assume that there exists a scheme that
has the throughput of T Kb/sec with 80% compression ratio
–that is, an image of size S Kb becomes .2S Kb, Transmission
of this file over the network takes .2S/T sec. Data
transmission rate of this network is assumed to be greater
than or equal to xT (x>1). Let there be another scheme with
throughput (say) xT Kb/sec with 70% compression ratio. To
transmit the corresponding compressed image file, it
needs .3S/xT sec. By increasing the value of x the

transmission time can be reduced substantially. So to meet
the current demand it is worthwhile to look for image
compression scheme having high throughput along with
reasonable good compression ratio and acceptable image
quality. The work presented in this paper precisely aim to
achieve this goal.

Digital images very often have extremely high redundancy
due to lesser variation of adjacent pixel values. This sort of
redundancy is known as spatial redundancy. Similarity can
also be noticed in certain components or bit planes of the
image. For instance, let us consider an RGB (Red, Green,
Blue) image of a scene lighted by red light. In this case
though the red component may show good variation of
brightness, the green and blue components may have
extremely high similarity. This similarity is due to the
spectral redundancy in the image [6,12,14]. The efficiency of
the image compression algorithm depends on how fast and
how best we can exploit this spectral and spatial redundancy
to encode an image file.

We have developed an elegant and simple scheme to
identify the spatial redundancy of image data file without
sacrificing the quality. The basic concept for designing this
scheme came from the discipline of Error Correcting Code
[2,9] employed for reliable communication of digital data.
Even though the concepts of differential (error) encoding
[2,9] is not new, the implementation proposed in this paper
differs significantly from the earlier works. Further, the
major trust of the present work is to develop parallel image
compression algorithm that can be conveniently implemented
in hardware while achieving significantly higher throughput.

The basic scheme is reported in Section 2. Monochrome
image compression scheme has been detailed in Sections 3
along with the pipelined architecture that can achieve the
desired throughput for on line compression/ decompression
of image files [13].

II. BASIC SCHEME OF IMAGE COMPRESSION
In an image there is usually a likelihood of high correlation

between neighbouring pixels. Such correlations between
pixels or a block of pixels are exploited to achieve image
compression. Let us consider an image of m × n resolution -
that is, there are m numbers of rows, each row containing n
number of pixels in the digitally coded image. The basic
approach we have formulated for compressing image has
been derived from the concept of error correcting code
(Reed-Solomon Code [3,9]) where the information bytes are
encoded along with check bytes. At the receiving end the
check bytes are recomputed to derive the syndrome; the
non-zero syndrome is next used to locate and correct the error

On-line Image Compression based on Pipelined
Architecture

 Subarna Bhattacharjee, Dipak Kumar Kole and Amiya Halder

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

852

in the encoded information. Analogously, we have
formulated our compression scheme as follows under the
assumption that there is likelihood of high correlation of
pixel values in a column on two adjacent rows. A pixel is
viewed as an information byte. A row referred to as R0
(Reference Row) is viewed as the information sent with all
0's check byte and the R1 (adjacent to R0) is viewed as the
information received with some errors. While R0 is stored as
it is in the compressed file, R1 is encoded and stored as a set
of check bytes only. The syndrome in this case is nothing but
the check bytes of R1 that can be used in conjunction with R0
to restore R1 at the decompression stage.

The raw image format stores the pixels in the form of a two
dimensional array in row major order. Thus pixels on the
same row are stored in contiguous locations. Also the
precision of the input image file (the number of bits per pixel)
is taken to be eight. This restriction is not really very severe
as most image formats use precision of eight. Besides, the
compression algorithm is itself independent of the precision
that we use.

Two basic steps for encoding pixel rows are noted below
• For two consecutive rows we have implemented

an averaging scheme which results in an
augmented image.

Small changes in adjacent pixel values would go unnoticed
by the human eye. Also for most applications, small
difference in pixel values would not have much importance.
Hence when the pixel values on two successive rows change
by a small amount, the difference may be neglected without
noticeable degradation of image quality. Another redundancy
that we have exploited is the spatial redundancy of the image
file. As the pixel values of consecutive points have a high
correlation we can replace each group of four pixels by their
average value. Of course this would lead to loss in sharpness
of the picture. To take care of this situation, the actual pixel
value is noted if its value differs appreciably from the average
value.

• In the next phase, it is necessary to identify the
difference in pixel values between a reference
row R0 and its adjacent row R1 in the augmented
image. Both the rows are divided into partitions
of identical sizes.

R0 = R01 ,R02, ….and R1 = R11, R12, ….
Each Rij (i = 0,1,….., j = 1, 2,…….) consists of a set of

pixels, each of say 8 bits. Each partition R1j is encoded as the
check bytes only that depend on the difference in pixel values
of R0j and R1j. While scanning the pixel rows, we evaluate the
difference in pixel values and so the errors (that is differences)
and their locations get identified. Hence the check bytes for
R1j are noted as shown in Figure1 – half of the bytes represent
error positions while other half specifies the correct pixel
values for the error positions. Thus unlike error correcting
code where syndrome is processed to locate and correct the
errors, these information (the error position and correct pixel
value) itself are used as check bytes in the present situation.
The size of R1j depends on the number of differences between
the (average) pixel values of two successive rows - the
difference is viewed as error. Analogous to t byte error
correcting code [2, 3, 9] that employs 2t check bytes to locate

and correct t number of errors, the partition size is so adjusted
that no more than t errors can exist in R1j. For the proposed
image compression, the value of t is fixed as 4 after
exhaustive experimentation.

On exploiting the above two issues related to image data

files, excellent compression ratio with a very high throughput
has been achieved without sacrificing the quality. The
conventional terminologies used to evaluate image quality
are noted below.

In evaluating the reconstructed image quality, we make
use of root-mean-square error (RMSE) and peak signal
to-(reconstruction) noise (PSNR) as error metrics.

Definition 1: Denoting the original N × N images by f and

the compressed-decompressed by f̂ , RMSE is given by

2

11
)],(ˆ),([1 ∑∑ ==

−= N

j

N

i
jifjif

N
RMSE

and represents the standard deviation of the error image.

Definition 2: The related measure of PSNR (in dB) is
 computed using

 RMSE
PSNR 255log20=

for an image with 8 bit (0 to255) pixels.

A. The Averaging Scheme
The aim of the averaging scheme (Figure 2) is to exploit

the correlation between neighbouring pixels. The entire
image is divided into blocks having four pixels each (Figure
2(b)). Then the augmented image (Figure 2(c)) is created as
follows where corresponding to each block of four pixels
there exists 5 pixels.

The actual image is divided into blocks of four pixels
marked 1, 2, 3, 4. Each of the pixels of a four pixel block is
kept in the corresponding segment shown in Figure 2(c). For
example segment I contains pixel 1 of all the blocks. The
segment II contains pixel 2 of all the blocks and so on. Thus
the Figure 2(a) gets transformed augmented image as noted
in Figure 2(c). The four pixels in each block are averaged and
the very first pixel of the (Figure 2(c)) of the augmented
image stores the average of the four pixel value. The other
four pixels are now either filled with zero or the actual value
of the corresponding pixels if the pixel value is significantly
different from the average. If the difference is less than a
specific threshold, it is put as zero, otherwise the actual pixel
value is stored. To ensure that the output image quality can be
adjusted as per the user's choice, the quality of threshold (QT)
is set adaptively. The scheme of setting QT works as follows.

 Scheme to Set QT value

Figure1: Error encoding of a partition R1j check bytes

Position of Error Actual pixel values of
 the error position

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

853

 We set a desired MSE (Mean Square Error) according to
the quality value needed. Initially some large value is

assigned to QT. After a pair of image rows is processed with
the Averaging Scheme, we find the MSE of the pair of rows
processed. Then we compare this MSE with the desired MSE.
If the actual MSE value is greater than the desired MSE, the
QT is lowered otherwise we raise the QT. This is repeated for
all the rows in the augmented image to arrive at an
appropriate QT value for the image file of a particular class.

The resulting image (Figure 2(c)) that we have after the
above transformation is what we will refer to future as the
augmented image since an image of size m × n now becomes
1.25 × m × n. If the number of edges in the image is quite low
then the number of zeros in the last four segments (Figure
2(c)) would be quite high in the augmented image. This
would improve the correlation between successive rows.
Though we have increased the size of the image by twenty
five percent, we can look forward to significant compression
as there would be very high correlation between two
consecutive rows of the augmented image.

B. Adaptive Partition Size
First let us define what we mean by the partition size. We

have set the allowable number of errors (that is difference
between a reference row and the adjacent row being encoded
with check bytes) as 4. When we are encoding a row with
check bytes, we can only encode for upto four differences in
two successive rows. Thus when we are sending a byte string
it would always be best to send a string of bytes such that
exactly four of those bytes differ from the corresponding
bytes on the reference row. This would lead to optimum use
of the check bytes used to encode a partition. The length of
the byte string being encoded that maintains this constraint of
4 errors is referred to as partition size.

From the above discussions it is evident that to get the best
compression we should make the partition size adaptive, that
is the number of bytes being encoded should be variable to
allow optimal use of the check bytes. The first consideration
is to decide on how fine a granularity to choose for the
partition sizes while maintaining the above constraint. If we
make the possible partition sizes too large in number then we
risk a large overhead in terms of the number of bits (to
indicate partition size) that we would have to include. For too

little granularity in partition sizes, the problem to be faced is
the inefficient use of the error correcting code. Hence it is
essential to strike a balance where the overhead of the

partition size does not neutralize the advantages of efficient
use of the error correcting code. After exhaustive
experimentation we found partition sizes as multiples of eight
to be most effective.

C. Encoding of Augmented Image
After the augmented image has been constructed, the rows

of augmented image are encoded. Let us denote the reference
row by R0 and the current row to be encoded as R1. Now we
will have to encode R1 in terms of the differences of R1 from
R0.

First we divide the pixel rows R0 and R1 into partitions and
then encode each of the partitions of R1. For sending each
partition, one of the three following cases may arise:

1. No Change bytes: If the bytes in the corresponding
partition of both rows R0 and R1 are the same, then
we encode the partition of R1 using a flag to indicate
that the same bytes as in R0 partition should be
substituted.

2. Partial Change Bytes: If the bytes differ in less
than or equal to four positions then we can encode
the partition by sending the check bytes.

3. Full Change Bytes: If the bytes differ in more than
4, then the actual bytes of R1 partition have to be
provided to the decoder to allow it to reconstruct the
partition.

It is obvious that the first situation is the most efficient that
leads to maximum compression.

The tuple for Case 1 is < Flag and Partition Size> -this is
the compressed data for the partition.

Since most of the pixels for the Case 2 do not change, the
best way to encode the differences is to give location and the
actual value of the pixel. As the number of differences may
vary from partition to partition, the number of differences is
also encoded. Hence the tuple is constructed as follows:

< Flag, Partition size, Number of errors, Location and
Actual pixel value>. The size of the last field is variable and
depends on the number of differences. Maximum size of the
tuple is 2 + 5 + 2 + (16 × 4) = 73 bits. The total bit count

x

y

(a) Actual Image

1

3

2

4

(b) Average Scheme

Average

I

II

III y/2

5x/2

IV

(c) Augmented Image

Figure2: Averaging Scheme

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

854

includes 2 bits for flag, 5 bits for partition size(since
multiples of 8 upto a maximum of 256 pixels are allowed), 2
bits for number of errors and atmost 16 bits per difference. Of
these 16 bits, eight are required to store correct pixel value
and atmost eight bits for its location in a block of maximum
256 pixels. Exhaustive experimentation shows that the

number of bits required to encode a partition is usually much
less than the worst case value of 73 bits.

The Case 3 is full change encoding where the partition size
is fixed as 8. To encode a partition of size eight pixels, the
number of bits required is 2 + (8 x 8) = 66 bits.

The tuple is < Flag, 8 × (Partition size)>. Thus the third
case gives the worst compression.

To achieve higher compression it is necessary to minimize
the number of pixels encoded in third case. As differences
occur in bursts we usually come across small regions with
large number of errors and large regions with very few errors.
It would be ideal to encode the relatively more error-free
regions using the first two cases. The regions where large
differences occur are encoded by using the third case. Hence
adaptive partition size is chosen. For our implementation we
have selected multiples of eight to be the partition size. To
increase compression ratio, small changes in pixel values
below QT (Quality Threshold) are neglected [7]. This has the
advantage that correlation between rows improves. So we get
higher compression ratio. However, the threshold below
which we neglect changes should not be set to a high value
that would lead to deteriotion of quality. Based on exhaustive
experimentation we have arrived at the adaptive for a specific
image. This has enabled us to provide the user with the
flexibility of trading off the compression ratio with the image
quality for a specific application. The next two subsequent
sections describe the algorithm for monochrome image

compression.

III. MONOCHROME IMAGE COMPRESSION
In monochrome images all the three colour components

i.e., the red, blue and the green components are equal. This
aids in compression as we can eliminate two of the
components and still not lose any information. The block
diagram of the monochrome image scheme is noted in
Figure3.The first block is to construct augmented image.
After the augmented image has been constructed the encoder
block creates the tuples represent the compressed image.
According to our scheme, we first try to encode using no
change bytes, if that is not possible we try partial change
bytes and if this also fails we encode with full change bytes.

In algorithm encode-row, len1 is the number of pixels of
the augmented row which can be encoded using no change
bytes. len2 is the number of pixels which can be encoded
using partial change bytes. According to our scheme, we first
try to encode using no change bytes, if that is not possible we
try partial change bytes and if this also fails we encode with
full change bytes. The sequential steps of encoding are as
follows.

Algorithm 1: Algorithm for Encoding

Input: Image file

Output: Compressed image, each row encoded with a set

of tuples (noted in section II.C)

Step 1. Construct Augmented image as noted in section
 II.C
Step 2. Encode the first row of Augmented image as it is.
Step 3. For all i > 1, encode-row Ri with. respect to R i-1 on
 executing algorithm 2.
Step 4. R i-1 ← Ri
Step 5. Go back to Step 3 till all rows are encoded
Step 6. Stop

Algorithm2 : Algorithm for encode-row

Input: A pair of rows Ri-1 and Ri of augmented

image(Figure 2(c))

Output : Encoded Ri in terms of a set of tuples, each

representing a partition of the row

Step 1. Scan the pair of rows sequentially and identify
 each of the partitions that can be encoded with
 once of three tuples (Case 1, 2 or 3 as noted in
 section II.C);
 Partitionsize ← K × 8, (K=1,2,….)
len1←Maximum Length of string where no error present
len2←Maximum Length of string where four errors

present (Case1)
Step 2. if len1 > 8 then encode Send No Change Bytes
 else if len2 > 8 then encode Send Partial Change
 Bytes (Case2)
 else encode Send Full Change Bytes(Case3)
Step 3. Stop

Input Image File

Encoder

Decoder

Augmented Image
Construction

 Augmented
Image

Error Encoder module

Decoder Module

Image
Reconstruction

Output Image File

Figure 3: Block diagram of Monochrome Image Compression Scheme

Compressed Image (a set
of tuples for each row)

 Augmented
Image

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

855

A. Decoding Scheme
Now we present the image decompression scheme(Figure

3) which does the inverse transformation to the above
compression algorithm.

The first step of image decoding consists of reconstructing
the augmented image from the set of tuples of each row. This
is carried out by reading the tuples and then carryout
necessary inverse action to reconstruct the augmented image
as per the partition size and the ‘Flag’ value of a tuple that
specifies one of the three cases (no change, partial change
and full change as noted in section II.C). The detailed block
diagram of decoder module is noted in Figure 4. Assuming 4
pixels (32 bits) are read and written with memory cycle time
of 40 nsec and 20 nsec clocks, the throughput of the block
can be computed as follows.

For Case1, it involves transfer of data from Ri-1 to
augmented row Ri through the multiplexer controlled by the
output of flag decoder. Case 3 demands direct transfer of data
from Ri (compressed image) to Ri Augmented image. In
addition to these memory read /writes cycles, the Partial
change block modifies 4 pixels to take care of four errors for
Case 2—this can be completed in 4 clock cycles. Thus the
maximum time taken by Case 2 can be computed as follows.

 Two memory R/W = 2 × 40 = 80 nsec
 Four clock cycles = 4 × 20 = 80 nsec
 150% overhead for other circuit = 240 nsec
 delay and associated control logic
 Total = 400 nsec
Hence the Decoder module of Figure 3, 32 bit of data is

processed in 400 nsec resulting in a throughput of 80 Mbps
for the module.

Next step consists of constructing the final image from the

augmented image. In the second step the average values are
first substituted then the other four segments (Figure 2(c)) of
the augmented image are read. The zero pixel value of a
segment is replaced by the average value and non-zero pixel
values are appropriately placed to construct the final image.
That is, in this step Figure 2(a) is generated out of Figure 2(c).
Assuming 4 byte organized memory, the image construction
phase needs 2 memory read cycle (2×40=80 nsec) to read 5
bytes of augmented image, four compare cycles (4×20=80
nsec) and one write cycle (40 nsec). Assuming 100%
overhead, the total time to process 32 bits is 2×(80+80+40) =
400nsec. This again leads to a throughput of 80 Mbps. Thus
the latency in the two pipelined stages of decoder is identical.
The next section deals with the throughput of the encoder
stage (Figure 3).

B. The detail design of encoder
The main advantage of our image compression scheme is

the ease with which it can be implemented efficiently in
hardware. The two basic stages of the compression hardware
 (Figure 3) are:

• Augmented Image Creation
• Error Encoder

To speedup the operation of our algorithm the above stages
are implemented in a two stage pipeline. The basic operation
of

Figure 4: Block diagram of the decoder module

Compressed
Image

Memory

Row Ri

Flag Decoder

Partial Change
Block

Multiplexer

Full change

Partition of an Augmented
Image Row

Buffer

Row Ri-1

Decoded
Augmented Image

Decoded
Augmented Row

Ri

Check for end of
Row

Memory

Flag bits

Partial change
 No change

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

856

the pipeline is explained in Figure 5. To implement the
pipeline we need two buffers for storing the results of the first
stage of the pipeline. Assume that the ith augmented row is
stored in the Augmented Row1 buffer. While the encoder
block is encoding the ith row the Augmented row creation
block generates the (i + 1)th row of the augmented image.
Each of the two stages of the pipeline has been detailed in
subsequent discussion.

Augmented row creation stage

The circuit diagram of the augmented image creation block
is noted in Figure 6. The Row and Coloumn registers store
the address of the pixel values being processed currently. The
four pixels whose average is to be taken addressed using
these two registers with suitable left shifts. To take the
average we need to divide the sum of the values by four. This
can be easily implemented by right shifting the Average
register twice after the sum has been computed.

Once the average has been computed it is compared with
each of the actual pixels. If the difference is greater than the
quality threshold (QT), the appropriate entry of the original
pixel value is made replacing zero in the augmented row.
This is implemented using comparator and the two
multiplexer. The multiplexer is used to determine the position
where the pixel value is to be placed. The variable COLS is
the half the width of the original image. Hence adding 0,
COLS, 2*COLS, 3*COLS, 4*COLS the multiplexer input as
offset, we get the address of the position of the pixel in the
appropriate segment of the image as shown in Figure 2(c).

It will be noted that the formation of the augmented row

requires that each pixel value be read once from the memory.
Hence the number of memory accesses required would be
equal to the size of the monochrome image.

Figure 6: Augmented Image Creation Block

Subtractor

Adder

Adder

Image Data

Row
Shift
Control

 Column
Shift
Control

Augmented Row
Storage

Average Shift
Control

MUX From
Controller

4 Register
Pack

Data
Address

Address Data

M
U
X

0
COLS
2*COLOS
3*COLOS
4*COLOS

Comparator

 To Controller

Quality
Threshold (QT)

Figure 5: Pipelined Architecture for Encoder

Augmented Row
Creation Stage

Augmented
Row

2

Encoding
Stage

Compressed Data

Augmented
Row

1

Stage 1

Stage 2

Image
File

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

857

The time to process a block of four pixels would take four
memory cycles and eleven clock cycles. The eleven cycles
are needed for the following tasks (Figure 6):

• 1 clock cycle for computing average.
• 2 clock cycles (at most) for each pixel of the

augmented row. Since the five values are written
for every four pixels this requires 10 clock cycles.

A 50 MHz clock with 20 nsec clock cycle and 40 nsec
memory cycle is assumed for the circuit. Hence time taken to
process 4 bytes of input data is given by,

t1 = 4 * 40ns + 11 * 20ns = 380 nsec
Assuming 100% overhead, the time to process 32 bits is

750 nsec.
This gives a throughput of the Augmented Row Creation

Stage as 43 Mbps. It should be noted that the estimate is a
pessimistic one as we have assumed that all four pixels values
differ sharply from the threshold value.

Error encoding module
The block diagram of this stage (Figure 3) is presented in

Figure 7. The operation of the stage involves a set of cycles in
which a tuple for a partition is generated. The quality
thresholding (QT) is implemented using the subtractor and
Comparator A. Counter 1 keeps track of the partition size and
Counter 2 keeps track of the number of differences between
the reference row and the row being encoded. Comparator B
compares the of counter 2 with 0 and 4 whereby the (Case 1,
2 or 3) to be employed gets identified. The register bank
shown stores the value of the pixels if full change (Case 3)
encoding is to be used. In case of partial change (Case 2)
encoding is to be used, the register bank stores the four error
locations and the actual pixel values.
It should be noted that for each pixel of the augmented row
being encoded we need two memory cycles. The first is
needed to read in the pixels from the reference and present
augmented row of augmented image storage. The second is
necessary only if the difference between them is above the
threshold and so we need to overwrite the pixel in the
augmented row being encoded currently.

 Adder

Start Address Counter 1

Controller

Compara
-tor B

Decoder Decoder

MUX

From
Controller

No Change

Full Change

Tuples

Subtractor

Comparator A

Counter 2

THRESHOLD

Row Ri-1 Row Ri

Augmented Image
Storage

MUX

0 4

8 Register Bank

Partial Change

Figure 7: Architecture of the error encoder module

Ri-1 : Reference Row
Ri :Row being encoded

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

858

We have assumed that the memory clock cycle is 40 ns and
the clock cycle is of 20 ns duration. We have also assumed
that four clock cycles are necessary for processing each
pixel-one each for subtraction, comparison in Comparator A,
incrementing the counter and again comparison by
Comparator B. The time taken for each pixel of augmented
image creation block is given by,

 t2 = 2 * 40ns + 4 * 20 ns = 160ns
Hence time taken to process five pixels of the augmented

row would be 800 ns. As five pixels of the augmented row
correspond to four in the initial image we have a throughput
of 40 Mbps in terms of the input data stream.

Assuming an overhead of 100% for other circuitry blocks
in Figure 6 and associated control logic structure, the time to
process five pixels of the augmented row to be 1600 nsec.
This results in a throughput of 20 Mbps. Formation of the
tuple depends on processing each pixel exactly once and
therefore the throughput of the encoding scheme can be
assumed as 20 Mbps.

We find that the encoder stage consumes a greater portion
of the time and thus limits the throughput of the compression
scheme. Even a fast 10 Mbps communication link would be
efficiently used by the compression hardware that we have
proposed. Further, with refinement of the design operated
with faster clock, the throughput for the scheme can be easily
pushed up to much higher level to match the higher
bandwidth of the high speed communication networks of
next generation

IV. MONOCHROME IMAGE COMPRESSION RESULTS
The algorithm developed has been simulated using C

Program on a Silicon Graphics workstation. The input image
is considered to be gray scale images [4,5,6,10]. The
precision is assumed to be 8 i.e. the number of bits per pixel is
8. Hence the size of the image may be thought of as the
number of pixels in the image. All the image files that we
have tested are of size 256×256. The compression ratios
obtained are tabulated in Table 1. The compression ratio is
better than JPEG for majority of the images. However, the
major motivation of this work is to design high speed
pipelined hardware architecture for image compression. This
has been achieved with the proposed hardware that achieves
a throughput above 20 Mbps. The Circuit structure is simple
and modular, and can be implemented with VLSI technology.
Quality values (PSNR) for Monochrome images:

In each of the images excepting circle and square the
background shade changes continuously whereby the peak
signal-to-(reconstruction) noise ratio(PSNR), as per our
scheme, drops compared to JPEG results. However, for each
of these images, we could not find any deterioration of the
images quality so far object in the image are concerned. On
the other hand for
images (say circle and square) where the background is more
or less uniform and does not change continuously throughout
the image, our PSNR ratio is better. After exhaustive
experimentation we have set the bottom line of PSNR value
as 25 at which the image quality we found good and
acceptable. Also from experimental observation we confirm

that for fixed background images (amber, rose, mouse) we
get better compression ratio with high PSNR values.

TABLE1: COMPRESSION RATIOS FOR MONOCHROME IMAGES

Image

Original
Size
(in bytes)

Proposed
scheme
(size in
bytes)

Proposed
scheme
(compres
sion)

JPEG
(size in
bytes)

JPEG
Compress
ion

camera
circles
goldhill
horiz
slope
squares
amber
mouse
rose

65536
65536
65536
65536
65536
65536
64000
64000
64000

9611
4364
14234
2530
5153
609
7426
5872
4487

0.8534
0.9334
0.7828
0.9614
0.9214
0.9907
0.8839
0.9082
0.9298

11364
5854
14263
3969
5714
1677
8489
6018
6274

0.8266
0.9107
0.7824
0.9394
0.9128
0.9744
0.8673
0.9059
0.9019

V. CONCLUSIONS
An efficient scheme of Image Compression for

monochrome has been introduced. The proposed scheme
employs the concept of error correcting code. Compression
ratio obtained by this new technique has been compared with
JPEG which shows comparable compression ratio with
acceptable quality. The throughput of the design is 20 Mbps
for monochrome image compression scheme, which can
match a high speed communication link and thereby
supporting on-line application.

REFERENCES
[1] M. Rabbani and P. W. Jones, Digital Image Compression Techniques.

SPIE Optical Engineering Press, 1991.
[2] R. Chowdhury, I. S. Gupta, and P. P. Chaudhuri, “CA Based Byte Error

Correcting Code,” IEEE Trans. on Computers, vol. 43, pp. 371-382,
march 1994.

[3] K. Y. Liu, “Arhcitecture design for VLSI design of RS decoders,” IEEE
Trans. on Computers, vol. C-33, February 1984.

[4] W. B. Pennebaker and J. L. Mitchell, “JPEG: Still Image Data
Compression Standard”, Van Nostrand Reinhold, New York, 1993.

[5] G. K. Wallace, “The JPEG still picture compression standard,”
Commun. ACM, vol. 34, pp. 31-44, April 1991.

[6] S. Bhattacharjee, S,. Das, D. Roy Choudhury and P. Pal Chouduri, “A
Pipelined Architecture Algorithm for Image Compression”, Proc. Data
Compression Conference, Saltlake City, USA, March 1997.

[7] Vaseghi, Saeed V. “ Advanced Digital Signal Processing and Noise
Reduction”.

[8] Pratt, William K. “ Digital Image Processing”.
[9] Moon, Toddk “ Error Correcting Coding – Mathematical Methods

and Algorithms” .
[10] Acharya, Tinku/Tsai, Ping-Sing “JPEG 2000 Standard for Image

Compression-Concepts, Algorithms and VLSI Architecture.”
[11] Barrett, Harrison H./Myers, Kyle “Foundations of Image Science”.
[12] H. Sanchez-Cruz and R. M. Rodriquez-Dagnino, “Compression

bilevel images by means of a 3-bit chain code,” SPIE Optical
Engineering 44-9(2005)1-8.

[13] Jorg Ritter and Paul Molitor, “ A pipelined architecture for partitioned
DWT based lossy image compression using FPGA's,” International
Symposium on FPGA, pages 201-206,2001.

[14] Amiya Halder, Dipak Kumar Kole and Subarna Bhattacharjee,”
On-line Colour Image Compression based on Pipelined Achitecture”
ICCEE-2009, 28-30 December,Dubai,UAE.

International Journal of Computer Theory and Engineering, Vol.2, No.6, December, 2010
1793-8201

859

Prof. Subarna Bhattacharjee received the
M.S. in Computer Science from the DePaul
University, Chicago, Illinois, USA, in 1991 and
Ph.D. Degrees from the Indian Institute of
Technology, Kharagpur, West Bengal, India, in
1997. In 1990, she was a Programmer in
Institute of Learning Sciences, North Western
University Evanston, Illinois, USA. At present,
she is Head of the Department in Computer
Science & Engineering, St. Thomas’ College of

Engineering & Kolkata, West Bengal, India.During 1994-97, she was a
Junior Project Officer with the Department of Computer Science &
Technology, IIT Kharagpur, India. She has authored or co-authored over 14
journal papers, conference papers. Areas of interest Data, Image and Video
Compression.
S. Bhattacharjee, S. Sinha, S. Chattopadhyay and P. Pal Chaudhuri,
“ Cellular Automata based scheme for Solution of Boolean Equations”, Proc.
IEE-Comput. Digit.Tech, Volume 143, Number 3, May 1996.
S. Bhattacharjee, J. Bhattacharya, U. Raghavenra, D. Saha and P. Pal
Chaudhuri, “ A VLSI Architecture for Cellular Automata based Parallel Data
Compression ”, Proc. VLSI-96 Conference, Bangalore, India, pp. 270-275,
January 1996.
S. Bhattacharjee, S. Das, D. Saha, D. Roy Chaudhury and P. Pal Chaudhuri,
“ A parallel Architecture for Video Compression ”, VLSI-97 Conference,
Hyderabad, India, pp. 247-252, January 1997.

Mr. Dipak Kumar Kole received the B.Sc
degree with Honours in Mathematics and B.
Tech. in Computer Science & Engineering
from the University of Calcutta, West
Bengal, India, in 1998 and 2001,
respectively. He obtained the M.Tech.
degree in Computer Science & Engineering
from the University of Calcutta, West
Bengal, India, in 2003. At present he is

doing his Ph.D. in the field of VLSI degree from Bengal Engineering &
Science University, Shibpur, Howrah.
 Mr. Kole is an Asst. Professor of the Department in Computer Science &
Engineering, St. Thomas’ College of Engineering & Technology, Kolkata,
West Bengal, India. He has authored or co-authored over 11 conference
papers in area of VLSI, Cryptography and Image Processing.
 Dipak K. Kole, Subhadip Basu, “An Automated Group Key
Authentication System Using Secret Image Sharing Scheme” International
conference on Recent Trends in Information System, IRIS 2006. pp.-98-106,
January 6-8, 2006.
H. Rahaman, Dipak K. Kole, Debesh K. Das, Bhargab B. Bhattacharya,
“Optimum Test Set for Bridging Fault Detection in Reversible Circuits", In
Proc. Asian Test Symp.(ATS 07), Bejing, China, pp. 125-128, 2007.
Dipak K. Kole, H. Rahaman, Debesh K. Das, Bhargab B. Bhattacharya, " A
Constructive Algorithm for Synthesis of Reversible Logic Circuits", 12th
International Conference on Information Technology (ICIT,09), 2009.

Mr. Amiya Halder received the B.Sc degree
with Honours in Physics and B. Tech. in
Computer Science & Engineering from the
University of Calcutta, West Bengal, India, in
1998 and 2001, respectively. He obtained the
M.E. degree in Computer Science &
Engineering from the Jadavpur University,
West Bengal, India, in 2003. At present, he is
doing his Ph.D. in the field of Image Processing
from Jadavpur University, Kolkata, West
Bengal.

Mr. Halder is a Sr. Lecturer of the Department in Computer Science &
Engineering, St. Thomas’ College of Engineering & Technology, Kolkata,
West Bengal, India. He has authored or co-authored over 10 conference
papers in area of Image Processing.
Amiya Halder, Dipak Kumar Kole and Subarna Bhattacharjee, “On-line
Colour Image Compression based on Pipelined Architecture,” ICCEE-2009,
Dubai, UAE, pp.533-537, Dec 28 – 30, 2009.
Amiya Halder, Sandeep Shekhar, Shashi Kant, Musheer Ahmed Mubarki
and Anand Pandey “ A New Efficient Adaptive Spatial filter for Image
Enhancement,” ICCEA-2010, pp. 244-46,Bali Island, Indonesi, 26-29 March,
2010.

Amiya Halder, Sourav Dey, Soumyodeep Mukherjee and Ayan Banerjee,
“An Efficient Image Compression Algorithm Based on Block Optimization
and Byte Compression”, ICISA-2010, Chennai, Tamilnadu, India, pp.14-18,
Feb 6, 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FangSong_GB2312
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSTK--GBK1-0
 /FZYTK--GBK1-0
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi_GB2312
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LiSu
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MicrosoftYaHei
 /MingLiU
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /STCaiyun
 /Stencil
 /STFangsong
 /STHupo
 /STKaiti
 /STLiti
 /STSong
 /STXihei
 /STXingkai
 /STXinwei
 /STZhongsong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YouYuan
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

