
International Journal of Computer Theory and Engineering, Vol. 2, No. 5, October, 2010
1793-8201

701

Abstract—Middleware for parallel computing systems

incorporate checkpointing to achieve fault tolerance. Most
traditional checkpointing approaches tend to be less dynamic in
large scale parallel computing environments. Hence, there
arises a need for an adaptive and dynamic approach. The work
reported in this paper, proposes a multi-agent based approach
for fault tolerance. Five resources namely, the executed
problem, parallel computing platform, middleware, hardware
abstraction and agents that contribute towards the
infrastructure of the proposed approach is considered. The
approach is implemented on a computer cluster and
experimental results are presented to validate the feasibility of
the approach and its contribution towards enhancing fault
tolerance.

Index Terms—middleware approach, multi-agent, fault
tolerance, parallel computing systems.

I. INTRODUCTION
Research in fault tolerance for parallel computing systems

has led to implementations of fault tolerant approaches in
three categories, namely the hardware approach, the software
approach and the middleware approach [1]. The hardware
approach, though expensive to implement, aims to achieve
fault free processor networks and is implemented in specific
application domains such as space robotic applications or
industrial automation machinery.

The software approach, otherwise also referred to as the
robust algorithm approach, aims to design algorithms and
programs that can run on faulty networks without banking on
hardware. The middleware approach on the other hand, aims
to add an additional interface or a sandwich layer between
hardware and software layers so as to contribute towards
fault tolerance. The software and middleware approach are
usually adopted in traditional fault tolerance mechanisms.

Middleware approaches are beneficial over other
approaches considered above due to three reasons. Firstly,
though an additional layer is added to the system topology,
fault tolerance is achieved by minimal changes in the

Gerard McKee is Senior Lecturer in Networked Robotics, School of

Systems Engineering, University of Reading, Whiteknights Campus,
Reading, Berkshire, United Kingdom, RG6 6AY, email:
g.t.mckee@reading.ac.uk.

Blesson Varghese is a PhD candidate with the Active Robotics
Laboratory, School of Systems Engineering, University of Reading,
Whiteknights Campus, Reading, Berkshire, United Kingdom, RG6 6AY,
email: b.varghese@student.reading.ac.uk.

Vassil Alexandrov is Professor in Computational Science, School of
Systems Engineering, University of Reading, Whiteknights Campus,
Reading, Berkshire, United Kingdom, RG6 6AY, email:
v.n.alexandrov@reading.ac.uk.

hardware and software layers. Secondly, with the existing
system topology, middleware layers can draw maximum
benefit. Hence, migration to newer platforms will not be
frequently required.

One such middleware layer is the Message Passing
Interface (MPI), a middleware layer for message-passing
designed for massively parallel machines and workstation
clusters [2]. MPI implements traditional checkpointing as a
strategy for fault tolerance. However, to improve efficiency
of checkpointing, variant strategies have been adopted in
MPI based research.

Martin & Gonpalves introduces the concept of automatic
checkpointing in LAM/MPI middleware [3]. The strategy
records the context of an application periodically, identifies
failed nodes and restarts MPI processes only on failed nodes,
hence allowing continuity of the executing application by
taking advantage of the computing done previously.

Yeh proposes DREAM (Dynamic Robust
Embedding/Allocation Middleware) based on Robust MPI
(R-MPI) as a library component [1]. Chen & Dongarra
address challenges in diskless checkpointing by introducing
algorithm-based fault tolerance (ABFT) using Fault Tolerant
MPI (FT-MPI) [4]. Recovery from failure in the middle of
computations is performed by maintaining a checksum
relationship.

Walters & Chaudhary address the scalability issue of
checkpointing in MPI applications by introducing an
asynchronous replication strategy that distributes replication
overhead over all participating nodes in the computation [5].

Selvakumar et al tests parallel weather model using fault
tolerant MPI comprising a replicated system controller, a
node controller and checkpoint server [6]. The fault tolerant
version is designed to address single point failures, ensure
consistency of checkpoint files and robustness of fault
detection hierarchy.

Mourino et al propose two approaches for checkpoint
based fault tolerance in computationally intensive
applications using MPI [7]. Firstly, segment-level solution,
an extension of a checkpoint library for sequential codes.
Secondly, variable level solution, a manual solution
determined by the programmer that inserts safe points and
specifies data to be stored during checkpointing into program
code.

Shwe & Aye propose an extension to MPI that consists of
two steps to achieve fault tolerance [8]. Firstly, failure
diagnosis, a step for detecting the location of a failed
component. Secondly, failure recovery, a step towards
reassigning tasks of a failed component to fully functional
system nodes.

A Transition from Traditional Checkpointing
towards Multi-Agent based Approaches

Gerard McKee, Blesson Varghese and Vassil Alexandrov

International Journal of Computer Theory and Engineering, Vol. 2, No. 5, October, 2010
1793-8201

702

Fig. 1. Illustration of the Parallel Summation Algorithm

However, checkpointing is challenged by three drawbacks.
Firstly, server based checkpointing strategies are subject to
single point of failure that tend to be less scalable on complex
and heterogeneous environments [5]. Secondly, an attempt to
checkpoint a large process involves large overheads and
greater time to write the checkpoint to a stable storage system
[4][6]. Thirdly, most checkpoint strategies require a cold
restart, that is to say, a complete reload of all processes
associated with the parallel job [9]. In this case, processors
that did not fail might also require a reload of the process
executing on it.

Hence, it is apparent that there is a need for an adaptive and
dynamic approach for fault tolerance. Multi-agent
technology in the context of fault tolerance is favourable for
achieving dynamic fault tolerance due to three reasons.
Firstly, an agent can be aware of the environment it is situated
in. Secondly, an agent can sense hazards that will impair its
functioning. Thirdly, an agent can traverse from one location
to another if necessary. These three capabilities of agents in a
computing environment can be utilized for fault tolerance.

The work reported in this paper aims to incorporate
multiagent technology for fault tolerance in parallel
computing systems. The agents in the proposed approach
demonstrate intelligence within the computing environment.
A task to be executed on a computer cluster is decomposed
into sub-tasks and mapped onto agents that carry these tasks
onto nodes or cores for execution. Resources that come into
play in implementing the approach are also considered.

The remainder of the paper is organised as follows.
Section 2 considers the five resources that are required as an
infrastructure for the approach. Section 3 deals with the
implementation details of the proposed approach. Section 4
presents statistic results obtained and calculated from
experiments. Section 5 concludes the paper.

II. RESOURCES
To implement the multi-agent fault tolerant approach

proposed in this paper five fundamental resources, namely
the executed problem, parallel computing platform,
middleware, hardware abstraction, intelligent agents that
contribute towards the approach need to be considered.

A. Executed Problem
Firstly, the problem to be executed on a parallel computing

system needs to be considered. Parallel reduction algorithms,
which implement the bottom-up approach of binary trees, are
of interest in the context of fault tolerance for multi-agent
systems due to two main reasons. Firstly, the computing
nodes of a parallel reduction algorithm tend to be critical. The
execution of the algorithm stalls or produces an incorrect
solution if any node information is lost. Secondly, parallel
reduction algorithms are employed in critical applications
such as space applications. These applications require fault
tolerant distributed systems.

In this paper, parallel summation, an example of parallel
reduction is considered. Figure 1 is an illustration of the
parallel summation algorithm that will be considered in a
later section. The problem of addition is sub-divided between
nodes as shown in the diagram, thereby generating

sub-problems. These sub-problems are executed on nodes in
parallel for a given level, but executed in a sequential manner
on nodes between different levels.

B. Parallel Computing Platform

Secondly, the computing platform needs to be considered.
A computer cluster is chosen as a platform for implementing
the multi-agent approach for two reasons. Firstly, a cluster is
often characterized by three basic elements, namely a
collection of nodes, a network connecting these nodes and a
facility to access and share information between the nodes
[10], which are comparatively simpler elements to handle
when compared to other parallel computing infrastructures.
Secondly, existing middleware for clusters, namely Message
Passing Interface (MPI) [2] provide standard and portable
programming interfaces.

The cluster used for the research reported in this paper is
one among the high performance computing resources
available at the Centre for Advanced Computing and
Emerging Technologies (ACET), University of Reading,
United Kingdom [11][12]. The cluster is primarily used for
the purpose of teaching and performing multi-disciplinary
research. The cluster consists of a head node and 33 compute
nodes. All nodes in the cluster are Intel Pentium 4 CPUs
connected via a Gigabit ethernet switch and communicate via
the standard TCP protocol.

C. Middleware
When you submit your final version, after your paper has

been accepted, prepare it in two-column format, including
figures and tables. Thirdly, the middleware appropriate for
the approach needs to be considered. The cluster-based
implementations reported in this paper are based on MPI, a
standard application programming interface used for parallel
and/or distributed computing. Open MPI [13][14] version
1.3.3, an open source implementation of MPI 2.0 is employed
on the cluster. An important feature of MPI 2.0, dynamic
process creation and management, is of potential for
exploration in the context of swarm-array computing.

International Journal of Computer Theory and Engineering, Vol. 2, No. 5, October, 2010
1793-8201

703

The MPI dynamic process model permits the creation and
management of a set of processes both when an MPI
application begins and after the application has started. The
management of newly created processes includes cooperative
termination of a process, communication between newly
created processes and existing MPI application, and
establishing communication between two independent
processes. MPI_COMM_SPAWN is used to create a new
MPI process and establish communication from an existing
MPI application. On the other hand, MPI_COMM_ACCEPT
and MPI_COMM_CONNECT can be used to establish
communication between two independent processes. More
information on the dynamic process model of MPI can be
obtained from [2][15].

Since MPI gives control over the process being executed
rather than the processor on which a process is being
executed, it is appropriate to implement the multi-agent based
approach using MPI.

D. Hardware Abstraction
When you submit your final version, after your paper has

been accepted, prepare it in two-column format, including
figures and tables.

Fourthly, an abstraction of the hardware resource needs to
be considered. The hardware resource layer comprises
physical nodes of the cluster and is connected via a switch,
thereby forming a fully connected mesh topology. However,
the abstracted layer is obtained when the physical nodes are
abstracted as logical nodes. This is possible by implementing
rules/policies. The policies are such that a process executing
a sub-task of a problem can only communicate with a
vertically, horizontally or diagonally adjacent process,
effectively leading to a grid topology on the abstracted layer.
For example, nine nodes of a computer cluster forming a
fully connected mesh topology in figure 2 is abstracted to a
grid topology in the abstraction layer.

E. Agents
Fifthly, agents that contribute towards fault tolerance need

to be considered. The parallel summation task to be executed
on the cluster is decomposed into sub-tasks and mapped onto
agents that carry these tasks onto nodes or cores for execution.
The agent and the sub-problem are independent of each other;
in other words, the agents only carry the sub-tasks or act as a
wrapper around the sub-task independent of the operations
performed by the task.

The agents in the proposed approach demonstrate
intelligence within the computing environment in four
different ways. Firstly, an agent is aware of its environment
comprising nodes or cores on which it can carry a task onto,
other agents in its vicinity and agents with which it interacts
or shares information. Secondly, an agent can situate itself on
a node or core that may not fail soon and can provide
necessary and sufficient consistency in executing the task.
Thirdly, an agent can predict core failures by consistent
monitoring (for example, power consumption and heat
dissipation of the cores can be used to predict failures).
Fourthly, an agent is capable of gracefully shifting from one
core to another, without causing interruption to the state of
execution, and notifying other interacting agents in the

system when a core on which a subtask being executed is
predicted to fail.

Fig. 2. Mapping hardware nodes to logical nodes

III. IMPLEMENTATION
The parallel summation algorithm as shown in figure 1

works in four sequential levels. The first level comprising
nodes N1 – N8 receives a live input feed of data. The second
level comprising nodes N9 – N12 receives data from the first
level, adds the data received and yields the result to the third
level nodes N13 and N14. The fourth level, adds data received
from the third level nodes and produces the final result.

For a given time step, every node in a level operates in
parallel. Each node is characterized by input dependencies
(process or processor a node is dependent on for receiving an
input), output dependencies (process or processor a node
yields data to as output) and data contained in the node. The
first level nodes have one input dependency and one output
dependency. For instance, node N1 has one input dependency
I1 and node N9 as its output dependency. However, the
second, third and fourth levels have two input dependencies
and one output dependency. For instance, node N13 of the
third level has nodes N9 and N10 as input dependencies and
node N15 as output dependency. The data contained in a node
is either the input data for the first level nodes or a calculated
value (sum of two values in the case of a parallel summation
algorithm) stored within a node.

The agents on the abstracted layer are created such that
they carry input and output dependencies and data. Since,
parallel summation is relatively less complex when compared
to other computational algorithms; the agents carry little
information and have only few dependencies.

Each process executing on a node also gathers some
sensory information to predict whether a node is likely to fail,
on similar lines to proactive fault tolerance. In the
implementation presented in this paper node temperatures are
simulated. When the temperature of a node rises beyond a
threshold, the process executing on that node predicts a
failure and hence spawns a process on an adjacent core in the
abstracted layer. The agent on the abstracted core expected to
fail shifts to the adjacent core on which the new process was
spawned. The dependency information carried by the agent
that was shifted to the new core is employed to reinstate the
state of execution of the algorithm. The data for summation
contained in the agent, either obtained from a previous level
or a calculated value to be yielded to the next level, ensures
that information is not lost and does not affect the final
solution in critical applications.

Though a preliminary implementation model was achieved,

International Journal of Computer Theory and Engineering, Vol. 2, No. 5, October, 2010
1793-8201

704

it was observed that MPI was not the most appropriate
middleware for implementing the multi-agent approach.
When an agent predicted a node failure, a new process had to
be dynamically created on an adjacent node that was not
predicted to fail, hence allowing the agent on the node
predicted to fail to transfer control onto the agent on the
newly created process. For this, MPI_Comm_spawn,
MPI_Comm_connect and MPI_Comm_accept were required.
Since some of these functionalities provided unstable results
on the cluster used for implementation, a workaround had to
be sought. Hence the process on the new node onto which the
agent transferred was created during the initialization of the
program and ran on the cluster as a dummy process until it
came to play.

IV. RESULTS
A few tests were carried out to note TNn, the time taken by

an agent to transfer from a node Nn predicted to fail onto an
adjacent node in the abstracted layer and re-establish all
process dependencies for seamless execution. Nodes N9 –
N15 as shown in figure 1 are the computational nodes of the
parallel summation algorithm, and hence only considered for
the calculation of TNn. Six different trial runs were performed
to gather the statistic.

Further, MTNn, the mean time of TNn for a particular node
was calculated. This metric yields information on the mean
time taken by an agent to transfer from a node Nn predicted to
fail onto an adjacent node in the abstracted layer and
re-establish all process dependencies for seamless execution.
MTNn is calculated as follows:

MTNn 15...9,6T
6

1
n =⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑

=

n
TR

 (1)

MTLp , the mean time of an agent transfer for all nodes

predicted to fail in a level of the parallel summation
algorithm onto an adjacent node in the abstracted layer was
calculated. Nodes N9 and N12 are used in level 2, while N13

and N14 in level 3 and N15 in level 4. MTLp is calculated as
follows:

MTL2 4MT
12

9
Nn ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑

=n

 (2)

MTL3 2MT
14

13
Nn ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑

=n

 (3)

MTL4 = MTN15 (4)

MTNN, the mean time of agent transfer for all

computational nodes in the parallel summation algorithm
onto an adjacent node in the abstracted layer was calculated.
This value can be calculated as the mean time of all MTNn of
the computational nodes or the mean time of all MTLp of the
computational levels. MTNN is calculated as follows:

MTNN 7MT
15

9
Nn ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑

=n

 (5)

or

MTNN 3MT
4

2
Lp
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= ∑

=p

 (6)

Table 1 shows the statistics of the metrics considered

above for each computational node (N9 – N15). Each row in
the table is for a specific computational node, Nn, n = 9…15.
The time TNn obtained from the experiments and MTLp are
calculated and shown in the table.

The mean time of all the computational nodes MTNN is
calculated as 0.349 sec. This statistic reveals that the time
taken for reinstating execution is negligibly small. However,
if traditional methods for fault tolerance were used it is more
likely that the time taken for reinstating execution would
have been greater when compared to the values obtained in
the multi-agent approach.

Hence, the preliminary results obtained through simple
experiments are promising that the multi-agent approach
proposed in this paper can be effectively implemented in
parallel computing systems for fault tolerance.

V. CONCLUSIONS
In this paper, a multi-agent fault tolerance approach for

parallel computing systems has been proposed. This
approach opens new avenues of research and aims to address

TABLE I OBTAINED & CALCULATED VALUES OF TIME FOR THE MULTI-AGENT APPROACH

Nn
TR

TNn (sec) MTNn
(sec) MTLp (sec)

1 2 3 4 5 6
n=9 0.346 0.325 0.378 0.314 0.328 0.346 0.340

p=2 0.345 n=10 0.365 0.369 0.346 0.325 0.369 0.328 0.350
n=11 0.368 0.334 0.368 0.345 0.355 0.335 0.351
n=12 0.315 0.368 0.339 0.324 0.368 0.324 0.340
n=13 0.365 0.346 0.328 0.365 0.336 0.353 0.349 p=3 0.343 n=14 0.342 0.346 0.314 0.346 0.342 0.328 0.336
n=15 0.336 0.365 0.346 0.387 0.365 0.346 0.358 p=4 0.358

International Journal of Computer Theory and Engineering, Vol. 2, No. 5, October, 2010
1793-8201

705

challenges posed by traditional checkpointing strategies.
Five fundamental resources, namely the executed problem,
parallel computing platform, middleware, hardware
abstraction and agents that contribute towards realizing the
approach are considered. The method aims to map subtasks
decomposed from a task to be executed onto agents that carry
these subtasks onto nodes or cores for execution. The agents
in the proposed approach demonstrate intelligence within the
computing environment. Preliminary results indicate that the
approach is prospective for achieving fault tolerance.

Future work will aim to analyse the proposed approach
using other metrics. The approach will also be implemented
to extend it for multi-node failure as against single node
failure implemented in this paper. Efforts will also be made to
explore other middleware libraries that will prove useful for
implementing the multi-agent approach.

REFERENCES
[1] C. -H. Yeh, “The Robust Middleware Approach for Transparent and

Systematic Fault Tolerance in parallel and Distributed Systems” in the
Proceedings of the International Conference on Parallel Processing,
2003, pp. 61-68.

[2] W. Gropp, E. Lusk and A. Skjullum, “Using MPI-2: Advanced
Features of the Message Passing Interface” MIT Press, 1999.

[3] A. S. Martins and R. A. L Gonpalves, “Implementing and Evaluating
Automatic Checkpointing” in the Proceedings of the IEEE
International Symposium on Parallel and Distributed Processing, 2007,
pp. 1-8.

[4] Z. Chen and J. Dongarra, “Algorithm-based Fault Tolerance for
Fail-Stop Failures” in the IEEE Transactions on Parallel and
Distributed Systems, Vol. 19, Issue 12, December 2008, pp.
1628-1641.

[5] J. P. Walters and V. Chaudhary, “Replication-Based Fault Tolerance
for MPI Applications” in the IEEE Transactions on Parallel and
Distributed Systems, Vol. 20, No. 7, July 2009, pp. 997-1010.

[6] A. D. Selvakumar, P. M. Sobha, G. C. Ravindra and R. Pitchiah,
“Design, implementation and Performance of Fault-Tolerant Message
Passing Interface (MPI)” in the Proceedings of the 7th International
Conference on High Performance Computing and Grid in Asia Pacific
Region, 2004, pp. 120-129.

[7] J. C. Mourino, M. J. Martin, P. Gonzalez and R. Doallo,
“Fault-Tolerant solutions for a MPI compute Intensive application” in
the Proceedings of the 15th EUROMICRO International Conference
on Parallel, Distributed and Network-Based Processing, 2007, pp.
246-253.

[8] T. Shwe and W. Aye, “A Fault Tolerant Approach in Cluster
Computing System” in the Proceedings of the 5th international
Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology, 2008, pp. 149-152.

[9] X. Yang, Y. Du, P. Wang, H. Fu and J. Jia, “FTPA: Supporting
Fault-Tolerant Parallel Computing through Parallel Recomputing” in
the IEEE Transactions on Parallel and Distributed Systems, Vol. 20,
Issue 10, October 2009, pp. 1471-1486.

[10] J. D. Sloan, “High Performance Linux Cluster with OSCAR, Rocks,
openMosix & MPI” O’Reilly, 2005.

[11] Center for Advanced Computing and Emerging Technologies (ACET)
website: www.acet.reading.ac.uk

[12] High Performance Computing at ACET website:
http://hpc.acet.rdg.ac.uk/

[13] OpenMPI website: http://www.open-mpi.org/
[14] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. M.

Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, T. S. Woodall, “Open MPI: Goals,
Concept, and Design of a Next Generation MPI Implementation” in the
Proceedings of the 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary, 2004, pp. 97-104.

[15] MPI Tutorial:
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html

Dr. Gerard McKee is Senior Lecturer in Networked Robotics in the School
of Systems Engineering, a Chartered IT Professional (CITP) and Fellow of
the British Computer Society (FBCS). He leads the Active Robotics
Laboratory which conducts research in the areas of space and networked
robotics. His primary research interest is in the area of modular distributed
robot architectures and has included the development of networked, space
and online robot systems incorporating modular distributed components
networked together via a query-based localisation model to create
higher-order functional architectures. His primary teaching is in the area of
robotics and artificial intelligence.

Dr McKee is an international leader in Networked Robotics, having
conducted research and published papers in the area since the early 1990s.
He has been a Visiting Research Scholar with the Man-Machine Systems
Group at the Jet Propulsion Laboratory (JPL), Pasadena, USA, and Visiting
Researcher at the MIT Field Robotics Laboratory, Boston, USA. He has
co-edited a special issue of the Journal of Autonomous Robots (November
2003) on the topic of Internet and Online Robots, and has recently given
key-note presentations on networked robotics at the International Conference
on Informatics in Control, Automation and Robotics (ICINCO-06), the 3rd
Latin American Association Symposium (LARS 2006), and the First
International Conference on Robotics Communication and Coordination
(RoboComm 2007). He has also contributed to workshop, including the
IEEE R&A Conference workshop on Omniscient Space: Robot Control
Architectures Geared toward Adapting to Dynamic Environments (Roma,
Italy, April 2007).

Mr. Blesson Varghese is currently a PhD candidate at the University of
Reading, UK. He was the recipient of the the Felix Scholarship 2007 to
pursue postgraduation studies and received his MSc in Network Centered
Computing from the University of Reading in 2008. He graduated as the gold
medalist in B.Tech Information Technology from Kerala University, India in
2006. He has over 30 publications in journals and conference proceedings.
He has won several awards for his papers and posters at conferences.

His current research spans across disciplines such as swarm robotics,
autonomic computing and Parallel computing that has resulted in a novel
concept for fault tolerance in high performance computing systems referred
to as ’Swarm-Array computing’. Other areas of his research include
multi-agent systems, space robotic applications, distributed algorithms and
distributed computing.

Prof. Vassil Alexandrov is a Professor in Computational Sciences at the
School of Systems Engineering, Director of the Centre for Advanced
Computing and Emerging Technologies and Head of Research of PEDAL
Laboratory at the University of Reading, UK. He has obtained his MSc in
Applied Mathematics from Moscow State University in 1984 and his PhD in
parallel computing from the Institute for Parallel Processing at the Bulgarian
Academy of Sciences in 1995.

His main interests are in the area of simulation and modelling of complex
systems, parallel scalable algorithms, Collaborative, Cluster and Grid
computing and using the advances in the above mentioned areas for
efficiently solving large scale scientific and industrial problems. He
participates in national and international projects in the area of Collaborative
and Grid Computing and e-learning. He also collaborates with Intel and IBM
in the areas of Collaborative and High End Computing and with Oak Ridge
National Laboratory, Supercomputing Centre in Barcelona, Daresbury
Laboratory, IPP - Sofia, SZTAKI - Budapest, Emory University and
University of Tennessee in the area of Collaborative, Cluster and Grid
computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FangSong_GB2312
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSTK--GBK1-0
 /FZYTK--GBK1-0
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi_GB2312
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LiSu
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MicrosoftYaHei
 /MingLiU
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /STCaiyun
 /Stencil
 /STFangsong
 /STHupo
 /STKaiti
 /STLiti
 /STSong
 /STXihei
 /STXingkai
 /STXinwei
 /STZhongsong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YouYuan
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

