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 Abstract—Interpolation methods play an important role in 

many fields such as industrial, geological and military fields for 
prediction. However, it is quite difficult to predict the unknown 
information only by some sparse hard data in the process of 
simulation based on current popular interpolation methods. 
Accuracy of simulated images can be improved by using soft 
data and hard data. Multiple-point geostatistics (MPS) 
originates from geostatistical fields and allows extracting 
multiple-point structures from training images, after that MPS 
can copy these structures to the regions to be predicted. To 
simulate or predict information accurately, an interpolation 
method using soft data and hard data in MPS is proposed. 
Dimension reduction is made by filters to reduce the CPU time 
and memory demand. All similar training patterns fall into a 
cell in the filter score space, which is created by filters. Finally, 
a training pattern is randomly drawn from a cell, and then is 
pasted back onto the unknown region to be predicted. The 
variogram curves of the simulated images are compared, 
showing that the structural characteristics of the image 
simulated by using both soft data and hard data are most 
similar to those of the training image. 

 
Index Terms—interpolation; multiple-point geostatistics; 

soft data; hard data; filter 

I. INTRODUCTION 
Interpolation methods for prediction are quite important 

and significant to the development of many scientific fields, 
which is also widely used in various fields such as medical, 
military, geological, meteorologic and mining fields. 
Although a number of interpolation methods were 
introduced, the accurate information prediction was still 
difficult to be realized, especially only with sparse 
conditional data. When conditional data are not quite 
available or even there are no conditional data, the ideas of 
indefinite interpolation can be applied [1]. Interpolation 
methods are mainly two types: “definite” methods and 
“indefinite” methods. The “definite” here means that the 
forms, parameters and results of interpolation functions are 
mostly definite. “Definite” methods include the inverse 
distance weighting method, the triangular mesh method, the 
basis function method, etc. The “indefinite” means that the 
forms of interpolation functions are indefinite and the 
selection of parameters in interpolation functions depends 
on the principles of statistics [1, 2]. The main “indefinite” 
interpolation methods are kriging and stochastic simulation 
in geostatistics. Kriging and stochastic simulation, both 
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based on variogram which only describes the relations 
between two points in space and cannot reconstruct complex 
patterns such as curvilinear shapes, are called two-point 
geostatistics [3]. Because of the disadvantages of traditional 
two-point geostatistics, a new interpolation method called 
multiple-point geostatistics (MPS) was recently proposed to 
reproduce complex structures as well as to keep the 
flexibility of data conditioning. By reproducing high-order 
statistics, MPS allows capturing structures from a training 
image, then anchoring them to the specific model data. A 
training image is a numerical prior model which contains the 
structures and relationship existing in realistic models [4]. 

Originally, MPS can only simulate discretized variables, 
which really has limited its application fields and only is 
suitable to predict the information with few kinds of states. 
But in the studies of real information prediction, continuous 
variables with multiple states are widely existent. 

In many fields, there are two types of data: hard data and 
soft data. It is often considered that hard data are results 
based on the measurement and observation of objective 
articles and phenomena, but soft data are statistical data 
subjectively or vaguely judged by people or equipment. For 
example, in reservoir characterization, in addition to hard 
well data, other types of soft data such as seismic data are 
available. Soft data typically provide an extensive coverage 
of the field under study although with low resolution. It is 
necessary to condition the simulated models to all these 
different types of data to improve the accuracy [3, 4]. 

Zhang [5, 6] proposed a method based on filters to simulate 
continuous variables. According to the theories from Zhang, 
we propose a novel interpolation method based on 
continuous MPS integrating soft data with hard data. Using 
soft data and hard data as conditional data, the accuracy of 
predicted information is improved. Experimental results 
show that our method is practical and effective. 

II. IDEAS AND METHODS  

A. Data Templates and Data Events 
A training image is scanned by using a data template τn 

that comprises n locations uα and a central location u. The uα 
is defined as: uα=u+hα(α=1,2,…,n), where hα is the vectors 
describing the data template. For example, in Fig. 1(a), hα is 
the 80 vectors in the square 9×9 template. In Fig. 1(b), hα is 
the 26 vectors in the cubic 3×3×3 template with a blue 
center u. 

Consider an attribute S that has K possible states {sk; k 
=1,2,…,K}. A data event dn of size n, centered at location u, 
constituted by n vectors uα in τn is defined as [4]: 

dn={S(uα)= ks
α

; α=1,2,…,n}                   (1) 
where S(uα) is the state at the location of uα within the 

A Novel Interpolation Method Using Soft Data 
and Hard Data 

Yi Du1 and Ting Zhang2 



 

 

674

template. dn actually means that n values S(u1)…S(un) are 
jointly in the respective states 

1ks …
nks . Fig. 2 illustrates 

the procedure of capturing a data event with a 5×5 template. 
Fig. 3 illustrates two data events captured by the data 
templates displayed in Fig. 1(a) and Fig. 1(b) respectively. 
The different colors in Fig. 3 mean different states of an 
attribute. 

              
(a)                                     (b) 

Figure 1.  Data templates.(a)a 2D data template;(b)a 3D data template. 

 
(a)                         (b)                         (c) 

Figure 2.  Procedure of a data event captured by a 5×5 data template. (a) a 
5×5 data template;(b) a 15×15 training image;(c)a data event. 

                  
(a)                                          (b) 

Figure 3.  Data events captured by the data templates displayed in Fig.1. (a) 
captured by a 2D data template;(b) captured by a 3D data template. 

B. Training Images 
A training image is considered as a lot of repetitive 

information with some special characteristics that are 
supposed to be existent in the fields to be predicted. They 
are purely conceptual assemblages of patterns, which 
possibly are not quite accurate, and don’t need to honor any 
conditioning data. A training image can be viewed as prior 
structural models that show how information should be 
linked together. Training images can be acquired through 
many ways such as images of remote sensing, hand-drawn 
sketches, pictures of geological outcrops, etc [6]. There are 
two types of training images: discretized images and 
continuous images. Fig. 4(a) is a discretized 3D training 
image composed of three kinds of states, which are 
illustrated by yellow, gray and red. Fig. 4(b) is a continuous 
2D training image composed of a continuous variable, 
whose value varies from 0 to 1, as shown in the state bar in 
Fig. 4(b). 

          

(a)                                                          (b) 

Figure 4.  Training images.(a) a discretized training image;(b) a 
continuous training image. 

C. Filters and Filter Scores 
Continuous MPS simulation uses a few filters to classify 

different patterns in a training image to realize dimension 
reduction. A filter is defined like a data template centered at 
u but with a set of weights attached to each node in the 
locations of the filter. When scanning the training image 
using a filter, we can put a filter over a local pattern, and 
then apply this filter to the pattern to obtain a value of 
combining the filter weights and the state values of the 
training pattern below the filter. The value is called “filter 
score”, and each score is considered to be a summary of a 
pattern, resulting in a tremendous dimension reduction [6, 7]. 

Fig. 5 illustrates the process of obtaining a filter score 
with a specific 2D filter [6]. Fig. 5(a) is a 2D filter with 
15×15 nodes and different weights. The state values in the 
filter are shown in different colors. This filter is used to scan 
the pattern shown in Fig. 5(b) and a filter score is obtained 
finally, as shown in Fig. 5(c). It is seen that the 15×15 nodes 
are represented by a value (the red node in Fig. 5(c)), 
resulting in a dimension reduction from 15×15 to 1×1. 

 
(a)                                     (b)                                     (c) 

Figure 5.  Illustration of obtaining a filter score of a training pattern. (a) a 
filter; (b) a training pattern; (c) a filter score. 

In the 2D condition, the filter score is defined as: 

( , ) ( , ) ( , ), 1,...,6 (2)
m m

k k
y m x m

S i j f x y T i x j y k
=− =−

= + + =∑ ∑  

where ( , )kS i j  is the filter score; (i, j) is the coordinate of 
the central node u in the data template; fk(x, y) is k-th filter; x 
and y vary from –m to m; T(i+x,j+y) is the value of a local 
pattern located at (i+x,j+y) in the training image; 2m+1 is 
the number of nodes in the X and Y directions respectively. 
In the 3D condition, there are totally 9 filters. Each filter is 
defined to characterize different aspects of the local training 
pattern. The corresponding filter score is defined as: 

2 1 1

2 1 1

( , , ) ( , , ) ( , , ), 1,...,9 (3)
m m m

r r
z m y m x m

S i j k f x y z T i x j y k z r
=− =− =−

= + + + =∑ ∑ ∑
where 2m2+1 is the number of nodes in the Z direction; 
fr(x,y,z) is the r-th filter defined over the 3D template 
withthe size of n=(2m1+1)2(2m2+1) locations. 

The following are nine filters defined in the 3D condition 
[6]: 
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1 1 1
1

| |( , , ) 1 [0,1], ,..., (4)yf x y z y m m
m

= − ∈ = − +  

2 1 1
1

| |( , , ) 1 [0,1], ,..., (5)xf x y z x m m
m

= − ∈ = − +  

3 2 2
2

| |( , , ) 1 [0,1], ,..., (6)zf x y z z m m
m

= − ∈ = − +  

4 1 1 1( , , ) / [ 1,1], ,..., (7)f x y z y m y m m= ∈ − = − +  

5 1 1 1( , , ) / [ 1,1], ,..., (8)f x y z x m x m m= ∈ − = − +  

6 2 2 2( , , ) / [ 1,1], ,..., (9)f x y z z m z m m= ∈ − = − +  

7 1 1
1

2 | |( , , ) 1 [ 1,1], ,..., (10)yf x y z y m m
m

= − ∈ − = − +
 

8 1 1
1

2 | |( , , ) 1 [ 1,1], ,..., (11)xf x y z x m m
m

= − ∈ − = − +
 

9 2 2
2

2 | |( , , ) 1 [ 1,1], ,..., (12)zf x y z z m m
m

= − ∈ − = − +
 

The f1~f3 filters are respectively used to characterize the 
average structures in the North-South, East-West and Top-
Bottom directions. The f4~f6 filters are used for gradient in 
the North-South, East-West and Top-Bottom directions. The 
last three filters f7~f9 characterize the curvature also in the 
three directions. 

D. Process of Simulation Using Soft Data and Hard Data 
The 3D nine filters will be applied one by one to scan a 

3D training image. A local training pattern captured by the 
nine filters will be characterized by nine filter scores. 
Finally, a nine-dimensional filter score space is created and 
each score in the filter score space corresponds to a local 
training pattern. 

Similar patterns in the training image are stored in the 
same groups. These groups are called “cells”, which include 
all the patterns with close filter scores. The patterns in the 
same cell are averaged to generate a value, which is called a 
“prototype” and can represent the patterns in the cell. 
Normally, a filter score space will be partitioned for two 
times to create cells and sub-cells. Fig. 6 illustrates a two-
step partition of a two-dimensional filter score space. The 
first step is to partition the space with solid lines to create 9 
cells. S1 and S2 are respectively the maximal filter scores in 
the two dimensions. The blue dashed lines mean the second 
partition of the score space, which partition the current cells 
to create sub-cells. Each black point in a cell corresponds to 
a training pattern. During the simulation, we can define a 
random visiting path of all unsampled nodes. For each node 
to be simulated, we can acquire the filter score of the current 
data events by filters. After comparing the filter score from 
the region to be simulated and that from the training pattern, 
a training pattern closest to the current conditioning data is 
drawn and pasted back onto the region to be simulated. 
Loop until all the nodes in the visiting path are simulated. 

 

Figure 6.  Illustration of partition for a two-dimensional filter score space. 

Only hard data will be used in the above process. 
However, to improve the accuracy of simulation, soft data 
can be involved in the simulation. The following notations 
are used: 

• A denotes a set of hard local data within a 
neighborhood defined by a template τn centered at 
location u. The conditioning data set A includes both 
the original hard data and simulated values at 
previously visited nodes. 

• B denotes the soft data. 
The following procedure is used when simulating each 

unknown node in the visiting path [5, 6]: 
Step 1. Acquire the data event A within the template τn. If 

there are no conditional data in A, search the prototype that 
is closest to the soft data B and then paste it to the region to 
be simulated.  

Step 2. If A is not empty, the soft data B is used to fill in 
the unknown nodes or pixels in the data template. Then 
search for the closest prototype to the full data event and 
paste it to the region to be simulated.  

Step 3. Loop step 1 and step 2 until all the nodes in the 
visiting path are simulated. Then one stochastic image has 
been generated. 

The above procedure involves the soft data and hard data 
simultaneously, which will improve the simulation accuracy. 

III. EXPERIMENTAL RESULTS AND ANALYSES 

A. Comparison with Predicted Results Using Hard Data 
only and Unconditional Simulation 

Fig. 7 shows the training image (80×80×40 voxels), 
whose value varies from 0.5 to 1.6. Fig. 7(a) and (b) are 
respectively the exterior and cross-sections (X=40, Y=40, 
Z=20) of the training image. The average of the training 
image is 0.6121, and the variance is 0.041. The training 
image provides reference data for us to evaluate the 
simulated results. As shown in Fig. 8(a), 0.5% sample points 
used as hard data for continuous MPS simulation are 
randomly extracted from the training image, whose average 
is 0.6335. The soft data with the size of 80×80×40 voxels 
are shown in Fig. 8(b). 

Then our proposed MPS method is tested. The simulated 
results (80×80×40 voxels) using both soft data and hard data 
are shown in Fig. 9. It is seen that the simulated image has 
similar structure with the training image. 

 
(a)                                   (b) 

Figure 7.  The training image. (a) exterior; (b) cross-sections (X=40, Y=40, 
Z=20). 

 

(a)                                   (b) 

Figure 8.  Hard data and soft data. (a) hard data extracted from the training 
image; (b) soft data. 



 

 

676

 
(a)                                   (b) 

Figure 9.  Simulated results using soft data and hard data. (a) exterior; (b) 
cross-sections (X=40, Y=40, Z=20). 

Using MPS, one realization (80×80×40 voxels) of 
unconditional simulation and one realization (80×80×40 
voxels) of simulation using hard data only were generated. 
The simulated results are shown respectively in Fig. 10 and 
Fig. 11, in which the structures existing in the training 
image are well reproduced. 

 
(a)                                    (b) 

Figure 10.  Simulated results of unconditional simulation. (a) exterior; (b) 
cross-sections (X=40, Y=40, Z=20). 

 
(a)                                    (b) 

Figure 11.  Simulated results using hard data only. (a) exterior; (b) cross-
sections (X=40, Y=40, Z=20). 

The histograms of the training image, the image using 
soft data and hard data, the image using hard data only and 
the image of unconditional simulation are shown in Fig. 12, 
respectively. It is seen that the distribution of simulated 
values is quite similar between all the simulated images and 
the training image. 

 
(a) training image   

 
(b) using soft data and hard data 

 
(c) using hard data only 

 
(d) unconditional simulation 

Figure 12.  The histograms of the training image, the image using soft data 
and hard data, the image using hard data only and the image of 

unconditional simulation. 

The memory demand, CPU time, average and variance of 
the simulated results are shown in TABLE I (we used a 
computer with a 2G Athlon CPU, 2G DDR memory and a 
Windows Server 2003 OS). It is seen that the memory 
demand and CPU time in the condition of using soft data 
and hard data are obviously less than those of two other 
conditions. Besides, the average and variance of the image 
simulated by using hard data and soft data are closest to 
those of the training image (Recall that the average and 
variance of the training image are 0.6121 and 0.041). 

TABLE I.  THE MEMORY DEMAND, CPU TIME, AVERAGE AND 
VARIANCE OF IMAGES SIMULATED IN THREE CONDITIONS 

 using soft 
data and 
hard data  

using hard 
data only 

unconditional 
simulation 

maximum 
memory(M)

425 522 643 

CPU time 
(second) 

1321 1676 1981 

average 0.6330 0.6564 0.6887 

variance 0.045 0.055 0.067 

B. Comparison with two-point geostatistics 
For comparison, two two-point geostatistical methods, 

which are one of the stochastic simulation methods called 
SGSIM (sequential Gaussian simulation) and SK (simple 
kriging), are used to simulate the images. Sample points 
shown in Fig. 8(a) are used as conditional data for two-point 
geostatistical simulation. The exterior and cross-sections 
(X=40, Y=40, Z=20) of simulated results using SGSIM and 
SK are shown in Fig. 13 and Fig. 14. The histograms of the 
SGSIM-simulated image and the SK-simulated image are 
shown in Fig. 15, respectively. It is seen that the distribution 
of simulated values is quite different from that of the 
training image. The average and variance of the simulated 
results using SGSIM and SK are respectively shown in 
TABLE II, obviously differing from those of the training 
image. 

C. Comparison of Variogram 
Variogram can reflect the relativity and variability of a 

spatial variable in certain directions, which is used as the 
evaluation method for MPS simulation. If an attribute of two 
images has the similar variogram curves in the same 
direction, then the structures of this attribute are similar in 
this direction; otherwise, the structures of this attribute in 
the two images are different [8]. 

Suppose that the distances between two neighboring 
nodes are all one, and then the distances between two 
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computing nodes in the directions of X, Y and Z are 
respectively 79, 79 and 39. Figure 16 shows the variogram 
curves of the training image, the image using soft data and 
hard data, the image using hard data only, the image of 
unconditional simulation, the SGSIM-simulated image and 
the SK-simulated image in the directions of X, Y and Z. In 
Figure 16, the variogram of the training image is most 
similar to that of the simulated image using soft data and 
hard data, demonstrating that the simulated structures using 
soft data and hard data are closest to those of the training 
image. 

 
(a)                                    (b) 

Figure 13.  Simulated results using SGSIM. (a) exterior; (b) cross-sections 
(X=40, Y=40, Z=20). 

 
(a)                                    (b) 

Figure 14.  Simulated results using SK. (a) exterior; (b) cross-sections 
(X=40, Y=40, Z=20). 

 

(a) SGSIM                              (b) SK 

Figure 15.  The histograms of the SGSIM-simulated image and the SK-
simulated image. 

TABLE II.  THE AVERAGE AND VARIANCE OF THE SGSIM-SIMULATED 
IMAGE AND THE SK-SIMULATED IMAGE 

 SGSIM SK 

average 1.0632 1.0856 

variance 0.056 0.064 

IV. CONCLUSIONS 
A novel interpolation method based on continuous MPS 

using soft data and hard data is proposed to realize the 
continuous simulation of unknown information. Nine filters 
are used to characterize the average, gradient and curvature 
of a pattern respectively, by which the dimensions can also 
be largely reduced. Soft data and hard data are both used as 

conditional data during simulation to improve the accuracy 
of information prediction. Experimental results show that 
the structures simulated by using soft data and hard data are 
most similar to those of the training image. Although the 
soft data and hard data are integrated, memory demand and 
CPU time will be less than those using hard data only and 
those of unconditional simulation. The experimental results 
also prove that the performance of our method is better than 
that of two-point geostatistics in predicting the unknown 
information. 

 
(a) X direction 

 
(b) Y direction 

 
(c) Z direction 

Figure 16.  Variogram curves of the training image, the image using soft 
data and hard data, the image using hard data only, the image of 

unconditional simulation, the SGSIM-simulated image and the SK-
simulated image. 
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