
International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

665

 Abstract—Neural cryptography is based on synchronization

of tree parity machines by mutual learning. We extend
previous key-exchange protocols by replacing random inputs
with queries depending on the current state of the neural
networks. The results show that queries restore the security
against attackers. We further restrict amount information
available to an attacker by keeping seed of pseudo random
number generator private.

Index Terms—Neural cryptography, query, mutual learning,

tree parity machine, neural synchronization,
encryption/decryption.

I. INTRODUCTION
In case of neural cryptography, two identical dynamic

systems (neural network), starting from different initial
condition receive an identical input vector, generate an
output bit and are trained based on the out bit. In this case
two parties A and B do not have to share common secret but
use their identical weights as secret key needed for
encryption. The dynamics of two networks and their weight
vectors found exhibit a novel phenomenon, where network
synchronize to a state with identical time dependent weights.
This concept of synchronization by mutual learning can be
applied to secret key exchange protocol over a public
channel has been studied and generated key is used for
encryption and decryption given message. This method of
symmetric key exchange method based on the fast
synchronization of two identically structured Tree Parity
Machines (TPMs) was proposed by Kanter and Kinzel [3].
The algorithm does not operate on large numbers and
methods from number theory [9]. Two parties involved are
allowed to perform the cryptographic process of (entity)
authentication. In the area of cryptography, authentication is
an important step still before key exchange or even the
encryption/decryption of information with generated secret
key [8].

The security of neural cryptography is still being debated.
Since the method is based on a stochastic process, there is a
small chance that an attacker synchronizes to the key, as
well. However, it has been found that the model parameter L
determines the security of the system [8, 1].

Use of query is in this work to enhance the security.
Query: input vectors which are correlated with the present
weight vector wk (t). The random inputs are replaced by
queries, which A and B choose alternatively according to
their own weight vectors. At odd (even) time steps the
partner A (B) is generating an input vector which has a
certain overlap to its weights wA (wB). It turns out that

Pravin Revankar and W. Z. Gandhare are with the Government College
of Engineering,Aurangabad, India. (email: prevankar@gmail.com,
wz_gandhare@yahoo.com).

Dilip Rathod is with the Dept. of Information Technology, P. E. S.
College of Engineering, Aurangabad, India(email: rathod.dt@gmail.com).

queries improve the security of the system.

II. ARTIFICIAL NEURAL NETWORK
Artificial Neural Networks (ANN) is the system of

elements interacting by adaptive couplings which are trained
from a set of examples. After training they function as
content addressable associative memory, as classifiers or as
prediction algorithms. A general form of an ANN is shown
in fig1. It consists of three layers. One or more hidden layers
might be used in the structure. Neurons in the input layer
can be treated as buffer and distribute xi input signal to
neurons in hidden layer. Output of each neuron j in the
hidden layer is obtained from sum of multiplication of all
input signals xkj and weights wkj that follows all these input
signals. The sum can be calculated as a function of yj and
can be expressed as:

∑=)xwf(jjiky (1)

where f can be a simple threshold function, sigmoid
function or any another function suitable to the problem
under consideration. The outputs of the neurons in other
layers are calculated with the same way. ANNs might be
trained with many different learning algorithms. The
weights are adopted according to the error occurred in the
calculation with the help of a learning algorithm.

Figure 1. General form of ANN

W11 W1N
W2N WKN = {-L, L}

σ1 σ2 σ3 = {-1, 1}

τ= {-1, 1}

X11 X12 X13 X14 X21 X22 X23 X24 X31 X32 X33 X34

∏

Figure 2. Tree parity machine with L=[-4,4], K=3 and N=4

Private Inputs to Tree Parity Machine
Pravin Revankar, W. Z. Gandhare and Dilip Rathod

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

666

Figure 3. Outputs on commonly given inputs are exchanged between
parties A and B for adaptation of their preliminary key.

Artificial neural networks have been applied to solve
many problems. Learning, generalization, less data
requirement, fast computation, ease of implementation, and
software and hardware availability features have made ANNs
very attractive for the applications. These fascinating features
have also made them popular in cryptography as well.

• Neural cryptography presents a new approach based
on artificial neural networks (ANNs) for data
security in electronic communication.

• Neural cryptography is much simpler than the
commonly used algorithms which are mainly based
on number theory and have small time and memory
complexities.

• Neural cryptographic algorithms are simple and fast
to implement.

III. TREE PARITY MACHINE
A multilayer feed forward newral network so called as

Tree Parity Machine (TPM) as shown in fig. 2. The TPM
has k hidden units (1 ≤ k ≤ K). Each hidden receives N
different inputs (1 ≤ j ≤ N) leading to an input of size K×N.
Each input take binary values, xkj = ±1 and weight
associated with inputs wkj bounded by [L, -L]. The binary
hidden units are denoted by σ1, σ2,....σK and the output bit τ
is the product of the state of the hidden units.

IV. GENERATION OF QUERIES
A query is based on input vector generated based on local

field of weight vectors. The queries are generated
alternatively by A & B and exchanged. The query replaces
public input generated using pseudo random number
generator, as used in basic neural cryptography algorithm
[1].

With inclusion of query, the synchronization process now
depends not only on the synaptic dept of TPM, but also on
queries.

The query generation procedure is described as follows.
As both weights wk,j and inputs xk,j are discrete, there are
only 2L+1 possibilities for wk,j · xk,j. Therefore we can
describe the solution by counting the number ck,l of products
with wk,j · xk,j = l. Then the local field is given by:

∑
=

−−=
L

l
lklkk cc

N
h

1
,,)(1

 (2)

In our simulations we use the following algorithm to
generate the queries. First the output σk of the hidden unit is
chosen randomly. Therefore the set value of the local field is
given by hk =σkH. Then we use either

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

+
= ∑

+=

)2(
2
1

2
1

,
1

,
,

, jk

L

lj
jkk

lk
lk ncjNH

l
n

c σ (3)

or

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

−
= ∑

+=

)2(
2
1

2
1

,
1

,
,

, jk

L

lj
jkk

lk
lk ncjNH

l
n

c σ (4)

to compute the values of ck,L, ck,L-1, . . . , ck,1. In each
calculation one of the two equations is selected randomly
with equal probability, so that rounding errors do not
influence the average result. Additionally, we have to take
into account that 0 ≤ ck,l ≤ nk,l. Therefore we set ck,l to the
nearest boundary value, if (3) or (4) yield a result outside
this range.

Afterward the input vector xk is generated. Inputs
associated with zero weights are chosen randomly, because
they do not influence the local field. The other input bits xk,j
are divided into L groups according to the absolute value l =
|wk,j| of their corresponding weight. In each group, ck,l inputs
are selected randomly and set to xk,j = sgn(wkj). The
remaining nk,l − ck,l input bits are set to xk,j = −sgn(wk,j).

In order to achieve a secure key exchange with queries
the partners have to choose the parameter H in such a way
that they synchronize quickly, while an attacker is not
successful. Fortunately, this is possible for all known attacks
[8]. Then one finds the same scaling laws again, which
parameter H one can reach a higher level of security for the
neural key-exchange protocol without increasing the
average synchronization time.

V. NEURAL KEY EXCHANGE ALGORITHM WITH QUERY
The only change in basic neural key exchange algorithm

is public random input are replaced with query which is
based on their weight vector. Algorithm is given below:
1. Each party selects a random initial weight vector A

kw
and B

kw at time t = 0.
2. At each training step, the output each hidden unit is

calculated as
),(xwsign A

i
A
i =σ

),(xwsign B
i

B
i =σ (5)

The hidden unit output bits combined to an output bit τ
for both the networks A & B.

 ∏
=

=
K

i
i

1

στ (6)

3. If the output bits are different, OA≠ OB, nothing is
changed.

4. If BA ττ = only the hidden units are trained which have
an output bit identical to the common output.

BABA // στ =
5. The weights are adjusted during training using Hebbian

rule as given below
)()()1(txtwtw i

A
i

A
i +=+ (7)

If any component wk moves out of the interval [-L, L] it
is replaced by sign (wk)L. Using this algorithm the two
neural networks synchronize to a common time dependent
secret key)()(twtw BA = . Surprisingly synchronization is

TPM B

TPM A

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

667

fast.

VI. KEEPING INPUTS PRIVATE
In the original key exchange protocol, the structure of the

network, output of the TPM (6), the adaptation-rule (7) and
the common inputs xk,j are public. The only secrets
involved are the different initial weights wk,j of the two
parties. If they were not secret, the resulting keys could
simply be calculated, because all further computations are
completely deterministic.

With use of query we proposed following solution to the
basic algorithm. It is divided into two rounds.
Round I

• In first neural key exchange algorithm with query is
applied till two networks are fully synchronized.

• The inputs (query) are visible to an attacker, but he
cannot predict what will be TPM query (input)
generated by either party as it is based on weights
which are never exposed.

Round II
• After synchronization, identical weight vectors are

used as seed for pseudo random number generator.
• Queries are not exchanged; rather inputs to neural

network (TPM) are obtained from pseudo random
generator.

• TPM can now be used to generate secret key which
is used for encryption/decryption of plain text using
Advanced Encryption Standard (AES).

The seed of pseudo random generator are not exchanged
over network, attacker cannot anticipate random generators
output though its algorithm is public. Hence one more
parameter is now unknown (so private) to attacker.

VII. ATTACK ON CRYPTOSYSTEM
In every attack it is considered, that the attacker E can

eavesdrop messages between the parties A and B, but does
not have an opportunity to change them.

a) Brute force
To provide a brute force attack, an attacker has to test all

possible keys (all possible values of weights wkj). By K
hidden neurons, K*N input neurons and boundary of
weights L, this gives (2L+1)KN possibilities. For example,
the configuration K = 3, L = 3 and N = 100 gives us 3*10253
key possibilities, making the attack impossible with today’s
computer power.

b) Learning with own tree parity machine
One of the basic attacks can be provided by an attacker,

who owns the same tree parity machine as the parties A and
B. He wants to synchronize his tree parity machine with
these two parties. In each step there are three situations
possible:

• Output (A) ≠ Output (B): None of the parties updates
its weights.

• Output (A) = Output (B) = Output (E): All the three
parties update weights in their tree parity machines.

Output (A) = Output (B) ≠ Output (E): Parties A and B
update their tree parity machines, but the attacker cannot do
that. Because of this situation his learning is slower than the
synchronization of parties A and B.

It has been proven, that the synchronization of two parties
is faster than learning of an attacker. It can be improved by

increasing of the synaptic depth L of the neural network.
That gives this protocol enough security and an attacker can
find out the key only with small probability. Changing this
parameter increases the cost of a successful attack
exponentially, while the effort for the users grows
polynomially. Therefore, breaking the security of neural key
exchange belongs to the complexity class NP.

There are other more sophisticated attacks against this
protocol (e.g. geometric, majority, genetic attack). The most
successful is majority attack. So far, none of the known
attacks could break security of the neural key exchange
protocol with queries.

VIII. RESULTS
The neural key exchange algorithm with query is

implemented in software on Fedora 9, using gcc. The well
known Advanced Encryption Standard algorithm is used for
encryption/decryption [14]. The round I & II given section
VI are implemented, only partial output is given below. The
entire implementation takes about 100KB and execution
time is in nanoseconds. The actual output and result as are
as below:

===================================
TREE PARITY MACHINE B
===================================

Note: Parity with TPM B encrypts cipher with Advanced
Encryption Standard

/* Round I */
INITIAL WEIGHT VECTORS
Wb[][]=
2 -1 3 0 4 -4 -3 -2 2 0
-3 -3 1 1 4 -1 -3 -4 1 -2
-4 3 -1 -2 -3 -4 -2 1 -1 1
TPM A & TPM B are exchanging outputs for mutual

learning
Iteration: 0

Query received
1 -1 1 -1 1 1 1 -1 -1 -1
1 -1 -1 1 1 1 -1 1 1 1
1 -1 -1 1 1 1 -1 -1 1 1
Iteration: 1

Query send
1 -1 1 -1 1 -1 -1 -1 1 1
-1 1 1 1 -1 -1 1 -1 1 1
1 -1 -1 1 1 -1 1 1 1 -1
/* The query exchange continues till synchronization

(output truncated here)*/
/* Round II */
WEIGHT VECTORS AFTER SYNCHRONIZATION
Wb[][]=
4 3 2 1 2 -3 -3 -4 -2 3
3 4 -1 3 1 -4 0 3 -1 2
1 0 1 4 3 0 -2 -2 0 3
/*Wb[][] is used as seed for random number generater*/
No. of iterations TPMs has taken for synchronization: 439
Plaintext:
0 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
Ciphertext:
c4 fd 5c fc cd 5e a8 1c 5a b0 28 8e e0 17 19 4

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

668

Key:
e6 79 d1 84 8a e9 96 f 7e 85 e8 ad f1 82 91 e5
Hash: 11E87945

0
1000

2000
3000

0

100

200

300

400

500

600

Synchronization Time(t)

Pr
ob

ab
ili

ty
(T

=t
)

Figure 4. Distribution of Synchronization Time tsync for N=100 for two

Tree Parity Machines with K = 3, L = 4. The histogram shows the relative
frequency of occurrence observed in 10000 runs.

50 70 90 110 130 150 170 190 210
0

50

100

150

200

250

300

350

H=0.5 H=1.5 H=2.5 H=3.5

No. of Inputs

N
o.

 o
f I

te
ra

tio
ns

Figure 5. Difference in behavior of Tree Parity Machine with query for

local field H=0.5 to H=3.5.

The average synchronization time tav does not increase
with increasing size N of the system. In the case of the TPM,
the complexity of the encryption/decryption processes scales
linearly with the size of the transmitted message, whereas
the complexity of the synchronization process does not scale
with the size of the network. Hence our construction is a
linear cryptosystem.

From fig 4. it seems to converge to tav � 510 for
infinitely large networks. Surprisingly, in the limit of large
N one needs to exchange only about 500 bits to obtain
agreement between 3N components. However, one should
keep in mind that the two partners do not learn the initial
weights of each other, they just are attracted to a dynamical
state with opposite weight vectors.

The network that operates with query based on local field
of random weight vectors synchronize faster, but execution
time is roughly tree times more compared to network
without query. Additionally performance of network for
different values local field has been studied. It is found that
performance of network good for H=1.5 various values of
input N=10 to 100, as shown fig.5.

IX. CONCLUSION
The TPM that operates with query synchronize faster, but

as amount of information exchanged is more that increases
execution time of algorithm, but queries are only exchanged
till synchronization. After synchronization of TPM inputs to
TPM are taken from random number.

The seed of pseudo random generator are not exchanged
over network, attacker cannot anticipate random generators
output though its algorithm is public. Hence not only weight
vector but also input vector is unknown (so private) to
attacker thereby making his task difficult. The queries along
with private inputs restore the security of neural
cryptography against attackers.

X. FUTURE SCOPE
The TPM that operates with query synchronize faster, but

as amount of information exchanged is more that increases
execution time of algorithm, but queries are only exchanged
till synchronization. After synchronization of TPM inputs to
TPM are taken from random number.

The seed of pseudo random generator are not exchanged
over network, attacker cannot anticipate random generators
output though its algorithm is public. Hence not only weight
vector but also input vector is unknown (so private) to
attacker thereby making his task difficult. The queries along
with private inputs restore the security of neural
cryptography against attackers.

REFERENCES
[1] P. S. Revankar, W. Z. Gandhare, D. T. Rathod, “Neural

synchronization with queries,” ICSAP 10, in press.
[2] Volkmer M., Wallner S.: “Tree parity machine rekeying

architectures”. IEEE Transactions on Computers 54, 2005, pp. 421-
427.

[3] T. Godhavari, N. R. Alainelu and R. Soundararajan, “Cryptography
using neural network”, IEEE Indicon 2005 Conference, Chennai,
India, 11-13 Dec. 2005, pp.258-261.

[4] A. Klimov, A. Mityaguine, and A. Shamir. “Analysis of neural
cryptography”, In Y. Zheng, editor, Advances in Cryptology—
ASIACRYPT 2002, Springer, Heidelberg, pp. 288, 2003.

[5] U. Maurer, “Secret key agreement by public discussion”, IEEE Trans.
Information Theory, vol. 39, pp. 733-742, 1993.

[6] N. Prabhakaran, P. Saravanam, P. Vivekanandan, “Neural
cryptography with multiple transfers functions and multiple learning
rule”, International Journal of Soft Computing 3, pp. 177-181, 2008.

[7] Tieming Chen, and Samuel H.Huang, “Tree parity machine-based
one-time password authentication”, Schemes International Joint
Conference on Neural Networks (IJCNN 2008), 2008, pp.257-261.

[8] Andreas Ruttor, Wolfgang Kinzel and Ido Kanter, “Neural
cryptography with queries”, Journal of Statistical Mechanics: Theory
and Experiment, doi:1088/1742-5468/2005/01/P01009, Jan. 2005.

[9] Wolfgang Kinzel and ldo Kanter, “Interacting neural networks and
cryptography”, Advances in Solid State Physics, Ed. by B. Kramer
(Springer, Berlin. 2002), Vol. 42, pp.383.

[10] M. Rosen-Zvi, E. Klein, 1. Kanter and W. Kinzel, “Mutual learning in
a tree parity machine and its application to cryptography”, Phys. Rev.
E, 2002.

[11] Ido Kanter, Wolfgang Kinzel, and Eran Kanter, “Secure exchange of
information by synchronization”, Euriphysics Letters 57, 2002, pp
141-147 .

[12] Maurer U., “Protocols for secret key agreement by public dicussion
based on common information”, Advances in Cryptology- CRYPTO’
92. Vol. 740 of LNCS, Springer Verlog, 1993, pp. 461-470.

[13] Stajano F., “Security in pervasive computing”, Proceeding of the 1st
International Conference on Security in Pervasive Computing, Vol.
2802 of LNCS, 2003.

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

669

[14] “Advanced Encryption Standard”, Federal Information Processing
Standards Publication 197,November 26, NIST, Computer Security

Division ,2001, pp. 5-30.

