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 Abstract—Neural cryptography is based on synchronization 

of tree parity machines by mutual learning. We extend 
previous key-exchange protocols by replacing random inputs 
with queries depending on the current state of the neural 
networks. The results show that queries restore the security 
against attackers. We further restrict amount information 
available to an attacker by keeping seed of pseudo random 
number generator private.  

 
Index Terms—Neural cryptography, query, mutual learning, 

tree parity machine, neural synchronization, 
encryption/decryption.  

 

I.  INTRODUCTION 
In case of neural cryptography, two identical dynamic 

systems (neural network), starting from different initial 
condition receive an identical input vector, generate an 
output bit and are trained based on the out bit. In this case 
two parties A and B do not have to share common secret but 
use their identical weights as secret key needed for 
encryption. The dynamics of two networks and their weight 
vectors found exhibit a novel phenomenon, where network 
synchronize to a state with identical time dependent weights. 
This concept of synchronization by mutual learning can be 
applied to secret key exchange protocol over a public 
channel has been studied and generated key is used for 
encryption and decryption given message. This method of 
symmetric key exchange method based on the fast 
synchronization of two identically structured Tree Parity 
Machines (TPMs) was proposed by Kanter and Kinzel [3]. 
The algorithm does not operate on large numbers and 
methods from number theory [9]. Two parties involved are 
allowed to perform the cryptographic process of (entity) 
authentication. In the area of cryptography, authentication is 
an important step still before key exchange or even the 
encryption/decryption of information with generated secret 
key [8].  

The security of neural cryptography is still being debated. 
Since the method is based on a stochastic process, there is a 
small chance that an attacker synchronizes to the key, as 
well. However, it has been found that the model parameter L 
determines the security of the system [8, 1]. 

Use of query is in this work to enhance the security. 
Query: input vectors which are correlated with the present 
weight vector wk (t). The random inputs are replaced by 
queries, which A and B choose alternatively according to 
their own weight vectors. At odd (even) time steps the 
partner A (B) is generating an input vector which has a 
certain overlap to its weights wA (wB). It turns out that 
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queries improve the security of the system. 

II. ARTIFICIAL NEURAL NETWORK 
Artificial Neural Networks (ANN) is the system of 

elements interacting by adaptive couplings which are trained 
from a set of examples. After training they function as 
content addressable associative memory, as classifiers or as 
prediction algorithms. A general form of an ANN is shown 
in fig1. It consists of three layers. One or more hidden layers 
might be used in the structure. Neurons in the input layer 
can be treated as buffer and distribute xi input signal to 
neurons in hidden layer. Output of each neuron j in the 
hidden layer is obtained from sum of multiplication of all 
input signals xkj and weights wkj that follows all these input 
signals. The sum can be calculated as a function of yj and 
can be expressed as:  

∑= )xwf( jjiky                          (1) 

where f can be a simple threshold function, sigmoid 
function or any another function suitable to the problem 
under consideration. The outputs of the neurons in other 
layers are calculated with the same way. ANNs might be 
trained with many different learning algorithms. The 
weights are adopted according to the error occurred in the 
calculation with the help of a learning algorithm. 

 
Figure 1.  General form of ANN 
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Figure 2.  Tree parity machine with L=[-4,4], K=3 and N=4 

Private Inputs to Tree Parity Machine 
Pravin Revankar, W. Z. Gandhare and Dilip Rathod  



International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010 
1793-8201 

 

 

666

 

Figure 3.  Outputs on commonly given inputs are exchanged between 
parties A and B for adaptation of their preliminary key. 

Artificial neural networks have been applied to solve 
many problems. Learning, generalization, less data 
requirement, fast computation, ease of implementation, and 
software and hardware availability features have made ANNs 
very attractive for the applications. These fascinating features 
have also made them popular in cryptography as well. 

• Neural cryptography presents a new approach based 
on artificial neural networks   (ANNs) for data 
security in electronic communication.  

•  Neural cryptography is much simpler than the 
commonly used algorithms which    are mainly based 
on number theory and have small time and memory 
complexities. 

• Neural cryptographic algorithms are simple and fast 
to implement. 

III. TREE PARITY MACHINE 
A multilayer feed forward newral network so called as 

Tree Parity Machine (TPM) as shown in fig. 2. The TPM 
has k hidden units (1 ≤ k ≤ K). Each hidden receives N 
different inputs (1 ≤ j ≤ N) leading to an input of size K×N. 
Each input take binary values, xkj = ±1 and weight 
associated with inputs wkj bounded by [L, -L]. The binary 
hidden units are denoted by σ1, σ2,....σK and the output bit τ 
is the product of the state of the hidden units. 

IV. GENERATION OF QUERIES 
A query is based on input vector generated based on local 

field of weight vectors. The queries are generated 
alternatively by A & B and exchanged. The query replaces 
public input generated using pseudo random number 
generator, as used in basic neural cryptography algorithm 
[1]. 

With inclusion of query, the synchronization process now 
depends not only on the synaptic dept of TPM, but also on 
queries. 

The query generation procedure is described as follows. 
As both weights wk,j and inputs xk,j are discrete, there are 
only 2L+1 possibilities for wk,j · xk,j. Therefore we can 
describe the solution by counting the number ck,l of products 
with wk,j · xk,j = l. Then the local field is given by:  
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In our simulations we use the following algorithm to 
generate the queries. First the output σk of the hidden unit is 
chosen randomly. Therefore the set value of the local field is 
given by hk =σkH. Then we use either  
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to compute the values of ck,L, ck,L-1, . . . , ck,1. In each 
calculation one of the two equations is selected randomly 
with equal probability, so that rounding errors do not 
influence the average result. Additionally, we have to take 
into account that 0 ≤ ck,l ≤ nk,l. Therefore we set ck,l to the 
nearest boundary value, if (3) or (4) yield a result outside 
this range.  

Afterward the input vector xk is generated. Inputs 
associated with zero weights are chosen randomly, because 
they do not influence the local field. The other input bits xk,j 
are divided into L groups according to the absolute value l = 
|wk,j| of their corresponding weight. In each group, ck,l inputs 
are selected randomly and set to xk,j = sgn(wkj ). The 
remaining nk,l − ck,l input bits are set to xk,j = −sgn(wk,j ). 

In order to achieve a secure key exchange with queries 
the partners have to choose the parameter H in such a way 
that they synchronize quickly, while an attacker is not 
successful. Fortunately, this is possible for all known attacks 
[8]. Then one finds the same scaling laws again, which 
parameter H one can reach a higher level of security for the 
neural key-exchange protocol without increasing the 
average synchronization time. 

 

V. NEURAL KEY EXCHANGE ALGORITHM WITH QUERY 
The only change in basic neural key exchange algorithm 

is public random input are replaced with query which is 
based on their weight vector. Algorithm is given below: 
1. Each party selects a random initial weight vector A

kw  
and B

kw  at time t = 0. 
2. At each training step, the output each hidden unit is 

calculated as  
),( xwsign A

i
A
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The hidden unit output bits combined to an output bit τ 
for both the networks A & B. 

  ∏
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3. If the output bits are different, OA≠ OB, nothing is 
changed. 

4. If BA ττ = only the hidden units are trained which have 
an output bit identical to the common output. 

BABA // στ =   
5. The weights are adjusted during training using Hebbian 

rule as given below 
)()()1(   txtwtw i

A
i

A
i +=+                       (7) 

If any component wk moves out of the interval [-L, L] it 
is replaced by sign (wk)L. Using this algorithm the two 
neural networks synchronize to a common time dependent 
secret key )()( twtw BA = . Surprisingly synchronization is 
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fast. 

VI. KEEPING INPUTS PRIVATE 
In the original key exchange protocol, the structure of the 

network, output of the TPM (6), the adaptation-rule (7) and 
the common inputs xk,j are public. The only secrets 
involved are the different initial weights wk,j of the two 
parties. If they were not secret, the resulting keys could 
simply be calculated, because all further computations are 
completely deterministic. 

With use of query we proposed following solution to the 
basic algorithm. It is divided into two rounds. 
Round I 

• In first neural key exchange algorithm with query is 
applied till two networks are fully synchronized. 

• The inputs (query) are visible to an attacker, but he 
cannot predict what will be TPM query (input) 
generated by either party as it is based on weights 
which are never exposed. 

Round II 
• After synchronization, identical weight vectors are 

used as seed for pseudo random number generator. 
• Queries are not exchanged; rather inputs to neural 

network (TPM) are obtained from pseudo random 
generator. 

• TPM can now be used to generate secret key which 
is used for encryption/decryption of plain text using 
Advanced Encryption Standard (AES). 

The seed of pseudo random generator are not exchanged 
over network, attacker cannot anticipate random generators 
output though its algorithm is public. Hence one more 
parameter is now unknown (so private) to attacker. 

VII. ATTACK ON CRYPTOSYSTEM 
In every attack it is considered, that the attacker E can 

eavesdrop messages between the parties A and B, but does 
not have an opportunity to change them. 

a) Brute force 
To provide a brute force attack, an attacker has to test all 

possible keys (all possible values of weights wkj). By K 
hidden neurons, K*N input neurons and boundary of 
weights L, this gives (2L+1)KN possibilities. For example, 
the configuration K = 3, L = 3 and N = 100 gives us 3*10253 
key possibilities, making the attack impossible with today’s 
computer power. 

b) Learning with own tree parity machine 
One of the basic attacks can be provided by an attacker, 

who owns the same tree parity machine as the parties A and 
B. He wants to synchronize his tree parity machine with 
these two parties. In each step there are three situations 
possible: 

• Output (A) ≠ Output (B): None of the parties updates 
its weights.  

• Output (A) = Output (B) = Output (E): All the three 
parties update weights in their tree parity machines.  

Output (A) = Output (B) ≠ Output (E): Parties A and B 
update their tree parity machines, but the attacker cannot do 
that. Because of this situation his learning is slower than the 
synchronization of parties A and B.  

It has been proven, that the synchronization of two parties 
is faster than learning of an attacker. It can be improved by 

increasing of the synaptic depth L of the neural network. 
That gives this protocol enough security and an attacker can 
find out the key only with small probability. Changing this 
parameter increases the cost of a successful attack 
exponentially, while the effort for the users grows 
polynomially. Therefore, breaking the security of neural key 
exchange belongs to the complexity class NP. 

There are other more sophisticated attacks against this 
protocol (e.g. geometric, majority, genetic attack). The most 
successful is majority attack. So far, none of the known 
attacks could break security of the neural key exchange 
protocol with queries. 

VIII. RESULTS 
The neural key exchange algorithm with query is 

implemented in software on Fedora 9, using gcc. The well 
known Advanced Encryption Standard algorithm is used for 
encryption/decryption [14]. The round I & II given section 
VI are implemented, only partial output is given below. The 
entire implementation takes about 100KB and execution 
time is in nanoseconds. The actual output and result as are 
as below: 

=================================== 
TREE PARITY MACHINE B  
=================================== 

Note: Parity with TPM B encrypts cipher with Advanced 
Encryption Standard  

/*                      Round I                                       */ 
INITIAL WEIGHT VECTORS  
Wb[ ][ ]=  
2 -1 3 0 4 -4 -3 -2 2 0  
-3 -3 1 1 4 -1 -3 -4 1 -2  
-4 3 -1 -2 -3 -4 -2 1 -1 1  
TPM A & TPM B are exchanging outputs for mutual 

learning  
Iteration: 0 
---------------- 
Query received 
1 -1 1 -1 1 1 1 -1 -1 -1 
1 -1 -1 1 1 1 -1 1 1 1 
1 -1 -1 1 1 1 -1 -1 1 1 
Iteration: 1 
---------------- 
Query send 
1 -1 1 -1 1 -1 -1 -1 1 1 
-1 1 1 1 -1 -1 1 -1 1 1 
1 -1 -1 1 1 -1 1 1 1 -1 
/* The query exchange continues till synchronization 

(output truncated here)*/  
/*                     Round II                                                */ 
WEIGHT VECTORS AFTER SYNCHRONIZATION  
Wb[ ][ ]= 
4 3 2 1 2 -3 -3 -4 -2 3 
3 4 -1 3 1 -4 0 3 -1 2 
1 0 1 4 3 0 -2 -2 0 3 
/*Wb[][] is used as seed for random number generater*/ 
No. of iterations TPMs has taken for synchronization: 439  
Plaintext:  
0 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff  
Ciphertext:  
c4 fd 5c fc cd 5e a8 1c 5a b0 28 8e e0 17 19 4  
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Key:  
e6 79 d1 84 8a e9 96 f 7e 85 e8 ad f1 82 91 e5  
Hash: 11E87945 
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Figure 4.  Distribution of Synchronization Time tsync for N=100 for two 

Tree Parity Machines with K = 3, L = 4. The histogram shows the relative 
frequency of occurrence observed in 10000 runs. 
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Figure 5.  Difference in behavior of Tree Parity Machine with query for 

local field H=0.5 to H=3.5. 

The average synchronization time tav does not increase 
with increasing size N of the system. In the case of the TPM, 
the complexity of the encryption/decryption processes scales 
linearly with the size of the transmitted message, whereas 
the complexity of the synchronization process does not scale 
with the size of the network. Hence our construction is a 
linear cryptosystem. 

From fig 4. it seems to converge to tav � 510 for 
infinitely large networks. Surprisingly, in the limit of large 
N one needs to exchange only about 500 bits to obtain 
agreement between 3N components. However, one should 
keep in mind that the two partners do not learn the initial 
weights of each other, they just are attracted to a dynamical 
state with opposite weight vectors. 

The network that operates with query based on local field 
of random weight vectors synchronize faster, but execution 
time is roughly tree times more compared to network 
without query. Additionally performance of network for 
different values local field has been studied. It is found that 
performance of network good for H=1.5 various values of 
input N=10 to 100, as shown fig.5.  

IX. CONCLUSION 
The TPM that operates with query synchronize faster, but 

as amount of information exchanged is more that increases 
execution time of algorithm, but queries are only exchanged 
till synchronization. After synchronization of TPM inputs to 
TPM are taken from random number. 

The seed of pseudo random generator are not exchanged 
over network, attacker cannot anticipate random generators 
output though its algorithm is public. Hence not only weight 
vector but also input vector is unknown (so private) to 
attacker thereby making his task difficult. The queries along 
with private inputs restore the security of neural 
cryptography against attackers. 

X. FUTURE SCOPE 
The TPM that operates with query synchronize faster, but 

as amount of information exchanged is more that increases 
execution time of algorithm, but queries are only exchanged 
till synchronization. After synchronization of TPM inputs to 
TPM are taken from random number. 

The seed of pseudo random generator are not exchanged 
over network, attacker cannot anticipate random generators 
output though its algorithm is public. Hence not only weight 
vector but also input vector is unknown (so private) to 
attacker thereby making his task difficult. The queries along 
with private inputs restore the security of neural 
cryptography against attackers. 

REFERENCES 
[1] P. S. Revankar, W. Z. Gandhare, D. T. Rathod, “Neural 

synchronization with queries,” ICSAP 10, in press.  
[2] Volkmer M., Wallner S.: “Tree parity machine rekeying 

architectures”. IEEE Transactions on Computers 54, 2005, pp. 421-
427. 

[3] T. Godhavari, N. R. Alainelu and R. Soundararajan, “Cryptography 
using neural network”, IEEE Indicon 2005 Conference, Chennai, 
India, 11-13 Dec. 2005, pp.258-261. 

[4] A. Klimov, A. Mityaguine, and A. Shamir. “Analysis of neural 
cryptography”, In Y. Zheng, editor, Advances in Cryptology—
ASIACRYPT 2002, Springer, Heidelberg, pp. 288, 2003. 

[5] U. Maurer, “Secret key agreement by public discussion”, IEEE Trans. 
Information Theory, vol. 39, pp. 733-742, 1993. 

[6] N. Prabhakaran, P. Saravanam, P. Vivekanandan, “Neural 
cryptography with multiple transfers functions and multiple learning 
rule”, International Journal of Soft Computing 3, pp. 177-181, 2008.  

[7] Tieming Chen, and Samuel H.Huang, “Tree parity machine-based 
one-time password authentication”, Schemes International Joint 
Conference on Neural Networks (IJCNN 2008), 2008, pp.257-261. 

[8] Andreas Ruttor, Wolfgang Kinzel and Ido Kanter, “Neural 
cryptography with queries”, Journal of Statistical Mechanics: Theory 
and Experiment, doi:1088/1742-5468/2005/01/P01009, Jan. 2005. 

[9] Wolfgang Kinzel and ldo Kanter, “Interacting neural networks and 
cryptography”, Advances in Solid State Physics, Ed. by B. Kramer 
(Springer, Berlin. 2002), Vol. 42, pp.383. 

[10] M. Rosen-Zvi, E. Klein, 1. Kanter and W. Kinzel, “Mutual learning in 
a tree parity machine and its application to cryptography”, Phys. Rev. 
E, 2002. 

[11] Ido Kanter, Wolfgang Kinzel, and Eran Kanter, “Secure exchange of 
information by synchronization”, Euriphysics Letters 57, 2002, pp 
141-147 .  

[12] Maurer U., “Protocols for secret key agreement by public dicussion 
based on common information”, Advances in Cryptology- CRYPTO’ 
92. Vol. 740 of LNCS, Springer Verlog, 1993, pp. 461-470. 

[13] Stajano F., “Security in pervasive computing”, Proceeding of the 1st 
International Conference on Security in Pervasive Computing, Vol. 
2802 of LNCS, 2003.  



International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010 
1793-8201 

 

 

669

[14] “Advanced Encryption Standard”, Federal Information Processing 
Standards Publication 197,November 26, NIST, Computer Security 

Division ,2001, pp. 5-30. 

 


