
International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

654

 Abstract—Security being the major concern during data

transfers, we have various challenges to face. The requirements
of the security model vary depending on the type of data to be
encrypted. Considering small size of data the requirements
change from the existing security encryption techniques. One
of the major issues to be considered is the computational speed
of the encryption model. Though there are many challenging
encryption algorithms, which provide high level of security,
they increase the level of execution time for encryption. Cost
effectiveness of the encryption algorithm is also another main
concern for determining the efficiency of the algorithm. The
computational time of the algorithms have a major impact on
the determining the cost effectiveness. In this paper, we
propose an enhanced cost effective symmetric key algorithm
for small amount of data.

Index Terms—Cryptography; Decryption; Encryption;

Secret key; Security; Shared key; Small data; Symmetric key

I. INTRODUCTION
Security is one of the major issues in Information storage

and transfer. Any small hole in the encryption mechanism
will lead to the benefit of the intruders and the hackers.
Several algorithms have been evolving for the encryption of
data since the time internet has started growing [12].

The symmetric key algorithm is a simple algorithm for
encrypting and decrypting data. Even advanced algorithms
like asymmetric key algorithm, DES, AES [14] gives more
security than the trivial symmetric key encryption algorithm.
When the amount of data is very small, then even some
efficient algorithms prove to be obsolete. They take more
amount of time than usual to compute this small amount of
data. Hence a special algorithm, which is a modification to
the trivial symmetric key algorithm, is to be used.

The bit size of the secret key influences the computational
speed and the level of security provided [16]. Though higher
bit size of the key increases the complexity, it shouldn’t be
too high to increase the computational time of the
encryption model. Hence a 4-bit key is used as the secret
key for encryption. This 4-bit key varies for encrypting each
character, thereby increasing the challenge of the algorithm
for the intruders to find the key for small amount of data.

Sharing of key is another issue to be dealt with in
symmetric key encryption algorithms. There are several key
management algorithms available to support this issue. It
sometimes becomes an additional overhead by involving
new protocols in our algorithm. Hence the key management
strategy has also been handled more efficiently in this paper.

R.Satheesh Kumar, E.Pradeep, K.Naveen and R.Gunasekaran are with
the Department of Information Technology, Anna University, Chennai,
India(email: satheesh.ravindranath@gmail.com, pradeepfree4u@gmail.com,
naveen19892000@gmail.com, gunamit@annauniv.edu).

The remaining part of this paper includes related work,
proposed algorithm for symmetric key encryption and
decryption, performance analysis comparison with other
existing algorithms, conclusion and future work.

II. RELATED WORK
Between the two types of cryptography techniques, the

symmetric key encryption is the fast and most commonly
used, compared to the asymmetric key encryption. In case of
symmetric key encryption only one key is used on both
sides of encryption and decryption. Few commonly used
symmetric key algorithms are DES, RC2, RC4 etc. [1]

In case of Data Encryption Standard (DES) encryption
technique 64 bit blocks of data are considered and an
encryption key of 56 bit is used for encrypting the plain text
which results in 64 bit cipher text. The key used for the
encryption is shared between the encryption and decryption
sides. The key management for this encryption technique
doesn’t follow a fixed key management scheme. Encryption
techniques such as double DES, triple DES are an extension
of DES technique by repeated encryption and decryption
with different keys.

Advanced Encryption Standard (AES) is an advanced
version of DES technique. Here the key used for encryption
is usually 128,192,256 bits in size. This key size is directly
proportional to the complexity of the encryption technique.
128 bits of plain data are considered for encryption and
results in a 128 bit cipher text. The method used for sharing
the key between the sender and the receiver side doesn’t
follow a standard key management technique.

According to the new encryption algorithms mentioned in
[1], the ASCII value of the letters are considered and it is
divided by the secret key and the cipher text is obtained
from the quotient and remainder of the division. The 4-bit
secret key needs to be greater than 1000.Even the public key
cryptography [3] doesn’t work out well for small amount of
data. The authentication system has been well explained in
[2]. In [1], some special cases have been missed out which
have been considered in this paper.

Strong authentication scheme can also be maintained with
a small size key [10]. In our paper, we use a short key of
fixed size for authentication purposes. The performance
evaluations of various symmetric key algorithms have been
clearly stated in [11]. Further the requirements for
information security are stated in [16].

III. PROPOSED CRYPTOGRAPHY TECHNIQUE
Our proposed encryption and decryption technique

provides a cost effective method for encrypting/decrypting
small data. It provides high level of security by having

A Novel Approach for Enciphering Data of
Smaller Bytes

R.Satheesh Kumar, E.Pradeep, K.Naveen and R.Gunasekaran

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

655

dynamic secret key. The main feature of our proposed
algorithm is the use of dynamic 4-bit secret key and quick
encryption and decryption technique.

A. Dynamic 4-BIT secret key
In order to provide quick and simple

encryption/decryption, the bits size of the secret key has to
be chosen effectively. When a large bit secret key is
considered, though it adds more complexity to the algorithm
and makes it more secure, it creates overhead to the
encrypting/decrypting system. For encrypting small amount
of data, there should not be any overhead to the encrypting
system as well as there should not be any compromise on
the security level. Thus an optimized size of 4 bits is chosen.

According to the encryption algorithm in [1], the 4-bit
key is considered static throughout the
encryption/decryption process. But in our
encrypting/decrypting technique, the 4-bit secret key keeps
on varying for each character of the plain text, thus
increasing the level of security. This 4-bit secret key can be
any binary value from 1000 to 1111.

B. Dynamic 4-BIT shared key
In order to enhance the security of the algorithm and

provide safe transmission of the secret key, a 4-bit shared
key is used. This 4-bit shared key is used to encrypt the 4-bit
secret key using the same encryption algorithm. This 4-bit
shared key can be any binary value from 1000 to 1111. Any
one is chosen as the initial value for the shared key. The
dynamic nature of the key involves incrementing the key by
1 for each bit of the secret key. This key has to be shared
between the two parties very securely via an Authentication
center. Each bit of the secret key is now encrypted to 9 bits.
The security of our algorithm for small amount of data is
increased by the introduction of this shared key over the
secret key.

In [1], though authors have specified that the key size can
be 4bit greater than 1000, it doesn’t work out well for
certain special cases of the key chosen and the plain text. In
[1], the authors have allotted only 3 bits for storing the
reminder. But for certain special cases, the remainder bits
become 4 bits. Hence our algorithm overcomes that
drawback by representing the final cipher text in 9-bit,
allocating 4 bits for the reminder.

C. Key Management Strategy
The existing encryption algorithms such as DES, double

DES, triple DES, and AES follow a separate key
management and authentication scheme. This separate key
management scheme is an extra overhead. In case of small
amount to be encrypted, reducing this type of overhead will
improve the efficiency. Thus in case of small amount of data
to be encrypted, the same encryption algorithm can be used
for encrypting the key too.

We have used the same encryption algorithm for sharing
the secret key between the two parties. Key management
being a significant issue with symmetric key cryptographic
algorithms, we have overcome this issue by using a two
level encryption technique for key sharing. The first level
deals with the encryption of the plain text with the help of
the secret key. The second level corresponds to the
encryption of the secret key using the shared.

IV. ARCHITECTURE MODEL
Figure 1 and Figure 2 shows the block diagram for the

encryption model and the decryption model respectively.

Encryption Block Model

The common blocks available in both the models are
complementary in nature. The “Shared/Secret key” indicates
that either the shared key or the secret key is used in the
block with respect to the current context. When the secret
key is encrypted, then the shared key is used or when the
plain text is encrypted, then the secret key is used.

Decryption Block Model

ASCII Converter
This block converts the plain text to a set of ASCII values.

Each character in the string is converted to its 8-bit ASCII
value at the encryption side. The same block is used at the
decryption block, which converts the 8-bit ASCII value to
the characters of the plain text.
Bit Converter

This block converts the ASCII value to stream of bits and
vice-versa at the encryption and the decryption side
respectively. Each ASCII value is converted to its
corresponding 8-bit stream. At the decryption side, from the
stream of bits, each 8-bit frame is taken and converted to its
ASCII value.
Division

The actual encryption technique is done here. The 8-bit
stream is reversed and it is divided by the secret key or the
shared key. The output of this block is the 5-bit quotient and
the 4-bit reminder.
Multiplier

The input to this block is the 9 bit stream containing the
quotient and the reminder found at the sender side. The
output from this block is the 8-bit stream corresponding to
the plain text. The secret key or the shared key has to be
given as an additional input.

Bit Stream Assembler

This block places the quotient and reminder obtained

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

656

from the previous block in its right place.
Bit Stream Dis-assembler

This block identifies the position of the quotient and the
reminder from the bit stream and gives the result as an input
to the Multiplier block.

V. ENCRYPTION TECHNIQUE
The following is the algorithm for encrypting a small

amount of data
Step 1: Convert each plain character into its corresponding
ASCII equivalent.
Step 2: Convert the ASCII values to its binary representation
in 8 bits.
Step 3: Reverse the bits.
Step 4: Divide these bits with the secret key.
Step 5: Find the quotient and the reminder.
Step 6: Represent the reminder in the first four bits and
quotient in the last five bits of the 9-bit cipher text.
Step 7: Apply the same algorithm and encrypt the secret key
with the help of the shared key.
Step 8: The encrypted secret key is sent before the cipher
text of the actual plain text.

A. Case Study
Let us consider the sample text “Hello”. The encryption

process is done for each character individually in a sequence.
Let’s consider the first character “H”.

Step 1: ASCII value of “H” is 72.
Step 2: The ASCII value 72 is converted into its binary

value 01001000.
0 1 0 0 1 0 0 0

Step 3: The 8-bit value obtained in step 2 is reversed
resulting in 00010010.

0 0 0 1 0 0 1 0
Step 4: Divide the 8-bit value got in step 3 with the secret

key 1001.
Step 5: Quotient of the division is 00010 and the

remainder is 0000.
 Step 6: According to the algorithms the 9-bit cipher text is
formed from the quotient (5-bit) and remainder (4-bit) of the
division performed.

0 0 0 0 0 0 0 1 0
The above steps are repeated for the remaining characters

of the plain text. The key secret key for the next character
“e” will be 1010. The secret key keeps on varying (1001,
1010, 1011 etc.) for the individual characters of the plain
text.

The cipher text for the plain text “Hello” is
000000010011010000101000100011000100110010010. It
also transmits the encrypted secret key
100001011110000000110000000010101001. The secret key
is encrypted with the shared key 1100.

VI. DECRYPTION TECHNIQUE
Extract the secret key with the help of the shared key by

using the following procedure.
Step 1: Extract the quotient and reminder from the 9-bit
cipher text.
Step 2: Multiply the shared key with the quotient and add it

with the reminder.
Step 3: Reverse and find out the actual character with the
help of its ASCII equivalent.
Step 4: The above procedure is followed until the secret is
found out.
Step 5: With the help of this secret key, the actual plain text
is found out by following the same procedure.
The keys used in every point of time will be dynamic in its
nature (i.e.) the value of the key will be shuttling between
1000 and 1111.

A. Case Study
The encrypted secret key

100001011110000000110000000010101001 is first
decrypted using the shared key (1100). Using the secret key
1001 the remaining cipher text is decrypted to get back the
plain text. The decryption method followed for decrypting
the secret key is similar to the decryption of the remaining
cipher text.

Let’s consider the decryption of the cipher text
corresponding to the plain text “H”.

Step 1: Extract the quotient (00010) and reminder (0000)
from the 9-bit cipher text.

0 0 0 0 0 0 0 1 0
Step 2: Secret key 1001 is multiplied with the quotient

00010 and added with the reminder 0000.
0 0 0 1 0 0 1 0

Step 3: Reverse of the above value being 01001000 is
obtained and the corresponding character based on ASCII
equivalent “H” is found.

0 1 0 0 1 0 0 0
The above steps are repeated for the remaining cipher text

with different secret keys (1001, 1010, 1011, etc) to get back
the plain text “Hello”. The decryption of the encrypted
secret key is also done using the above mention decryption
technique.

B. Special Case
Step 1: ASCII value of “U” is 85.
Step 2: The ASCII value 85 is converted into its binary

value 01010101.
0 1 0 1 0 1 0 1

Step 3: The 8-bit value obtained in step 2 is reversed
resulting in 00010010.

1 0 1 0 1 0 1 0
Step 4: Divide the 8-bit value got in step 3 with the secret

key 1010.
Step 5: Quotient of the division is 10010 and the

remainder is 1000.
 Step 6: According to the algorithms the 9-bit cipher text is
formed from the quotient (5-bit) and remainder (4-bit) of the
division performed.

1 0 0 0 1 0 0 1 0
It has to be noted the number of bits for the reminder that

has been generated in this special case is 4. Hence the old
algorithm would not work fruitfully.

VII. PERFORMANCE ANALYSIS
Performance analysis has been made with all other

existing encryption algorithms. The graphs have been

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

657

developed with the knowledge gained from [5] [6] [7] [15]

Plain Text Vs Cipher Text

Figure (3) shows the variation of the number of bits in the
cipher text with respect to the plain text’s bits. This graph
shows that our encryption algorithm results in lesser number
of cipher text bits for small amount of data comparing with
other existing encryption algorithms namely AES, DES, and
RSA.

Table 1 shows the comparison of key sizes among
different existing encryptions algorithms [6] [7] [8] [9] [13].
Though the security is provided in various algorithms by
having large key size, equivalent security is provided in our
encryption algorithm by having a small key size with
reversing techniques.

TABLE I. KEY SIZE COMPARISON OF VARIOUS ENCRYPTION
ALGORITHMS

ALGORITHM TYPE KEY SIZE

3 key Triple DES Block cipher 168

2 key Triple DES Block cipher 112

DES Block cipher 40/56

AES Block cipher 128/192/256

RSA RC2 Block cipher 128 or any size

RSA RC4 Stream cipher 40/56/128/25

RSA RC5 Block cipher 0 to 2,048 bits

RSA RC6 Block cipher 0 to 2,048 bits

Blowfish Block cipher 32 up to 448 bits

SEED Block cipher 128

Two Fish Block cipher 128 to 256 bits

GOST Symmetric cipher 256 bits

Camellia Block cipher 128 bits, 192 bits, and 256 bits

Histogram for different key sizes

Figure 4 shows the visual representation of different
encryption algorithms’ key sizes. It has to be noted that our
algorithm occupies the lower position in the key size.
Though the key size is less, it provides an equivalent
security to the information.

Figure 5 shows the plot of key size and number of rounds
for different encryption algorithms namely AES, DES, RSA
[5] [6]. The graph depicts the processing time of each
algorithm to compute the cipher text for small amount of
data. An increase in the processing time [4] for small
amount of data shows an unnecessary degradation in the
system, which our encryption algorithm over comes.

Number of Rounds Vs Key size

Performance of our Cipher model

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

658

Figure 6 shows the run-time of our algorithm with the
increase in the bytes of the plain text. It also shows the
efficiency of our novel approach in enciphering the plain
text. Since our algorithm is meant only for small amount of
data, plain text’s size greater than 4 bytes may lead to
degradation in the efficiency. So, we always recommend
using our algorithm for only small amount of data. Since the
key exchange is made only once during the start of the
session, the overhead of the amount bits used for the
encryption of the secret key is reduced in further
transformation of the data.

VIII. CONCLUSION
Our encryption algorithm for small amount of data

provides high level of security with short duration and
smooth encryption of data. It provides equal challenge as
other encryption algorithms with less number of bits used for
the secret key. Hence small amount of data can be encrypted
in a faster and secure manner. Division and reversing
operations increase the challenge of the algorithm for small
amount of data by introducing toughness for the intruders to
decipher the plain text. Our enciphering approach also
provides high level of authentication between the end users
with only a small key size, which is fixed. The key
management for the sharing of the secret key between the
two parties is also efficiently handled using the same
algorithm. Enormous overhead due to the large key size has
been effectively ruled out in this paper. Various projections
on the performance of our algorithm have also been
discussed in this paper.

IX. FUTURE SCOPE
Repeating our encryption algorithm for small amount of

data in a cyclic manner can increase the complexity of our
system. Various permutation techniques can be used in place
of reversing the bits to increase the complexity of the
algorithm. Our system can be extended to be used along with
different key management and sharing strategies. Optimizing
the bit size of the secret key can also encrypt the medium
size data. This system can be further optimized to combine
with other existing encryption algorithms for exchanging
their keys. The position of the secret key transmission can
also be changed dynamically for each character.

One small modification can be done to our encryption
algorithm to increase the challenge for the hackers. The
resultant cipher text which is obtained can be grouped in the
form of 8 bits. Sufficient number of zeros can be padded at
the end, if the number of bits is not a multiple of 8. Each
group of 8 bits can be again converted to their respective
ASCII values before transmitting to the receiver. Because of
this enhancement, there wouldn’t be any significant change
in the performance.

REFERENCES
[1] Sarker, M.Z.H.; Parvez, M.S., “A Cost Effective Symmetric Key

Cryptographic Algorithm for Small Amount of Data”, 9th
International Multitopic Conference, IEEE INMIC2005, pages: 1-6.

[2] D. Jablon, "Strong Password Only Authenticated Key Exchange"
Computer Communication Review, ACM SIGCOMM, Vol 26 No 5,
pp 5-26, 1997

[3] Cilardo, A.; Mazzeo, A.; Mazzocca, N.; Romano, L., “A novel unified
architecture for public-key cryptography”, Proceedings of the
conference on Design, Automation and Test in Europe, 2005, Volume
3, Pages: 52 - 57.

[4] M. McLoone, “Hardware performance analysis of the SHACAL-2
encryption algorithm”, IEEE Proceedings on Circuit Devices and
Systems, 2005, VOL 152; pages 478-484.

[5] Different bit sizes of various encrypting algorithms
http://download.oracle.com/docs/cd/B12037_01/network.
101/b10772/asoappa.htm.

[6] Different encryption/decryption algorithms
http://www.networksorcery.com/enp/data/encryption. htm.

[7] Camellia web page, http://www.faqs.org/rfcs/rfc4312.html.
[8] RC algorithms http://www.smartcomputing.com/ editorial/

dictionary/detail.asp? guid=&searchtype=&
DicID=18720&RefType=Encyclopedia.

[9] Rounds of encryption for RSA. http://www.rsa.com/
rsalabs/node.asp?id=2254.

[10] David P. Jablon, “Strong Password-Only Authenticated Key
Exchange”, Computer Communication Review (ACM
SIGCOMM) 26 (5): 5–26, September 25, 1996.

[11] Diaa Salama Abdul. Elminaam1, Hatem Mohamed Abdul Kader2 and
Mohie Mohamed Hadhoud3, “Performance Evaluation of Symmetric
Encryption Algorithms”, IJCSNS International Journal of Computer
Science and Network Security, VOL.8 No.12, December 2008.

[12] W.Stallings, ''Cryptography and Network Security 4th Ed,'' Prentice
Hall, 2005, PP. 58-309.

[13] Bruce Schneier. The Blowfish Encryption Algorithm, October 25,
2008, http://www.schneier.com/blowfish.html.

[14] Daemen, J., and Rijmen, V. "Rijndael: The Advanced Encryption
Standard."D r. Dobb's Journal, March 2001, PP. 137-139.

[15] "A Performance Comparison of Data Encryption Algorithms," IEEE
[Information and Communication Technologies, 2005. ICICT 2005.
First International Conference, 2006-02-27, PP. 84- 89.

[16] Hardjono, ''Security In Wireless LANS And MANS,'' Artech House
Publishers 2005.

R.Gunasekaran received the BE degree in
computer science and engineering from the
University of Madras, Chennai, India, and
the ME degree in computer science and
engineering from the Bharathiyar
University, Coimbatore, India.
Since 2003 he has been with Anna
University Chennai, India where he is
currently a senior lecturer in the
Department of Information Technology. He
is in the verge of completing his Ph.D

degree in Computer Science and Engineering in Anna University Chennai,
India. His research interests include Mobile Ad Hoc Networks, Mobile
Communications and WiMAX.
Mr. Gunasekaran is associated with Journal of Network and Computer
Applications, Elsevier Publications, Journal of the Network and Systems
Management, Springer Publications as a reviewer. He is a member of IEEE,
ISTE and CSI.

R.Satheesh Kumar is pursuing his final year
Bachelor of Technology in Information
technology at Anna University, Chennai,
India.
He was an intern at Microsoft, IDC,
Hyderabad, India as a PROGRAM
MANAGER during May – July 2009. His
research interests include networks,
information security, cryptography and grid
computing.

Mr. Satheesh is a Student member of IEEE.

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

659

Pradeep.E is pursuing his final year
Bachelor of Technology in Information
technology at Anna University, Chennai,
India.
He has completed CCNA training at Cisco
Labs. He is an alumnus of Cisco Networking
Academy. His research interests include
cryptography, network security, computer
networks and grid computing.
Mr. Pradeep is a Student member of IEEE

and a member of IEEE Communications Society.

Naveen.K is pursuing his final year Bachelor
of Technology in Information technology at
Anna University, Chennai, India.
He has completed certified network courses
conducted by Microsoft and Cisco. He holds
MCP, MCSE, MCTS and CCNA. He is also
pursuing CCNP and CWNA. His reach
interests include networks, information
security and grid computing.
Mr. Naveen is a Student member of ACM.

