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 Abstract—Nowadays, the appearance of a great number of 

multimedia data brings the need for more effective methods to 
manage these data. The multimedia retrieval systems always 
index these data based on feature vectors, and the index 
structures such as the R-tree family are used to manage them 
more efficiently. Slim-down algorithm is used in Slim-tree, and 
it can improve the disk access number for range queries in 
average 10%~20% for vector datasets. In this paper, we use 
Slim-down algorithm in both SS-tree and R-tree index 
structures, and propose a new structure: SlimSS-tree. 
Experiment results show that compared with SS-tree, the disk 
access number of SlimSS-tree for k nearest neighbor search 
improves by 20%~30% in average for vector datasets of 32 
dimensions, and the SlimSS-tree can provide fast query 
performance as well. But the Slim-down algorithm is not 
suitable for reducing the intersection of rectangle regions as it 
does to the sphere regions. It’s not efficient in rectangle node 
management. 

 
Index Terms—index structure; SlimSS-tree; R-tree; SS-tree; 

Slim-down; Reinsertion 

 

I. INTRODUCTION  
Recently, the number of multimedia data such as video, 

voice, image, text, and numerical data has drastically 
increased. This results the development of multimedia 
retrieval systems to manage them. In order to satisfy the 
information needs of users, it is very important for retrieval 
system to know which portions of the database are relevant 
to user’s requests. In particular, there is an urgent need of 
indexing techniques  to support similarity queries. 

In this paper, we focus on the R-tree[1] family. The most 
successful variant of R-tree seems to be R*-tree[2] which 
imports the idea of ‘Forced-Reinsert’ by deleting some 
rectangles from the overflowing node, and Reinserting them 
into the tree. The Reinsertion algorithm improves the query 
performance, and it was used in some other R-tree variants, 
such as SS-tree. 

Slim-down algorithm is used in Slim-tree[3]. It could 
diminish the number of objects that fall within the 
intersection of two regions in the same level, sometimes 
even decrease the number of nodes in the tree. Thus it can 
produce a ‘tighter’ tree and improve the search performance 
evidently. It can improve the number of disk accesses for 
range queries in average 10%~20% for vector datasets. 
Especially for datasets with bigger bloat-factors, the average 
improvement goes to 25%~35%. In this paper, we use Slim-
down algorithm in SS-tree index structure and propose a 
new structure: SlimSS-tree. We also use the Slim-down 
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algorithm in R-tree index structure to test whether it’s 
efficient in managing rectangle nodes, and compare it with 
Reinsertion algorithm. 

The rest of this paper is organized as follows. Section 2 
gives a brief introduction to the R-tree family methods. In 
section 3 we describe the index structure of SlimSS-tree 
using advanced Slim-down algorithm combined Slim-down 
with Reinsertion. Then the experiment results about the 
performance of SlimSS-tree, SS-tree and R-tree with 
Reinsertion and Slim-down algorithm is presented in section 
4. Finally, we conclude this paper in section 5. 

II. R-TREE FAMILY OF INDEX STRUCTURE 
The R-tree is a completely dynamic index structure, 

proposed by Guttman in 1984[1]. It is a height-balanced tree 
similar to B-tree for multi-dimensional spatial objects. In 
order to maintain its balanced structure, it allows region 
overlapping among sibling nodes, which is its major 
drawback. Later, lots of work has done to avoid the 
performance degradation caused by region overlapping. And 
some new index structures, such as R+-tree, R*-tree, X-tree, 
SS-tree, SR-tree and A-tree are generated. Most of them 
have the similar structure and properties as R-tree. 

R+-tree is proposed by Sellis etc. in 1987[4]. The great 
different between R-tree and R+-tree is that the R+-tree 
allows partitions to split rectangles, then zero overlap among 
intermediate node entries can be achieved. In the process of 
splitting node with rectangle G, it allows partitions to split 
rectangles which are in lower level of G into a collection of 
non-overlapping sub-rectangles, then zero overlap among 
the two new generated nodes can be achieved. Compare 
with R-tree, R+-tree exhibit good search performance at the 
expense of some extra space, especially for point queries. 

R*-tree is presented by Beckmann and Kriegel in 1990[2]. 
In this structure, the idea ‘Forced-Reinsert’ is proposed. 
That is when a node is overflowed, it checks whether this 
given level has executed Reinsertion before. If Reinsertion 
isn't executed before, it chooses some farthest entries of this 
node, deletes them and Reinserts them into the tree. 
Otherwise, it executes the split algorithm. Also the factors of 
area, margin and region overlapping etc. are taken into 
consideration for node split. Due to the concept of ‘Forced-
Reinsert’, the storage utilization is higher and the R*-tree 
clearly outperforms other R-tree variants proposed before. 

X-tree is proposed by Berchtold, Keim and kriegel in 
1996[5]. The X-tree uses a split algorithm minimizing 
overlap and new concept of Supernode to reduce the overlap 
of bounding rectangles caused by increase of dimension. It 
is based on the R*-tree. The mainly difference between 
these two structures is that when a node needs to be split, the 
R*-tree always split the node according to the factors of area, 
margin and region overlapping etc.. But for the X-tree, if the 
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split for minimizing overlap can’t be found, the node 
remains unsplit and a Supernode is generated. Therefore, the 
overlap is reduced. In low dimensional space, the X-tree has 
similar performance as R*-tree. But in high dimensional 
space, for the number of Supernodes increases, the X-tree 
outperforms the R*-tree significantly. 

David, Ramesh etc. proposed SS-tree in 1996[6]. The SS-
tree uses super sphere to represent the nodes and objects 
replacing the super rectangles used in R-tree, R*-tree etc.. 
The result of their tests shows that on higher dimensional 
data (> 5D) SS-tree provides faster query performance than 
the R*-tree. 

SR-tree is presented by Katayama and Satoh in 1997[7]. In 
paper [7], they have proved that bounding spheres occupy 
much larger volume than bounding rectangles, thus the 
search efficiency is reduced. In order to overcome this 
drawback, a region of the intersection of a bounding sphere 
and a bounding rectangle is proposed in [7] to represents the 
nodes. Their test result shows that the SR-tree outperforms 
both the SS-tree and R*-tree. 

Sakurai, Yoshikawa etc. proposed the A-tree in 2000[8]. 
The basic idea of A-tree is the use of Virtual Bounding 
Rectangles (VBRs), which contain and approximate MBRs 
(Minimum Bounding Rectangles) and data objects. Because 
of the compact VBRs, each node can install large number of 
entries, which means the fanout of nodes become large, thus 
lead to fast search. The test results using both synthetic and 
real data sets show that the A-tree outperforms the SR-tree 
in all range of dimensionality up to 64. 

III. SLIMSS-TREE INDEX STRUCTURE  

A. The structure of SlimSS-tree 
SlimSS-tree is proposed based on the SS-tree, which uses 

the super spheres to manage the nodes instead of the super 
rectangles. The SlimSS-tree is a completely dynamic index 
structure as R-tree, and has similar structure and properties 
as R-tree. Let M and m ≤ M/2 be the maximum number and 
minimum number of entries in one node respectively, and 
each node(not include the date node) in SlimSS-tree 
contains entries with the form of SSTreeElem structure, as 
shown in figure 1. The SlimSS-tree satisfies following 
properties: 
(1) Every node must contain at least m and at most M 

entries, unless it is the root node. 
(2) The root should contain at least two entries, unless it is 

a leaf node. 
(3) For each entry representing by SSTreeElem structure as 

figure 1, childptr represents the pointer of this entry to 
its child node; update_count is used for the entry to be 
periodically recalculated when its child node changed; 
radius is the radius of the enclosing sphere of its child 
node; and centroid[Dim] is the mean value of all its 
child entries’ centroids. 

(4) All leaves appear on the same level. 
In our design, The SlimSS-tree mainly consists of 

intermediate nodes, leaf nodes and date nodes. The date 
nodes are used to store the date objects (Here they are 
feature vectors), and each intermediate node or leaf node is 
composed by the super spheres which completely enclose all 
super spheres of its lower level nodes, as shown in figure 2. 
Figure 2 shows one example of SlimSS-tree structure. In 

figure 2(a), each point stands for one feature vector and each 
super sphere stands for one entry of a node(not include the 
date node). The index structure showed in figure 2(b) is the 
corresponding SlimSS-tree structure for figure 2(a). Here 
m=2 and M=4. 

 

    
Figure 1.  The SSTreeElem structure 

(a) The data set of feature vectors 

  
(b) The SlimSS-tree structure of (a) 

Figure 2.  The example of SlimSS-tree structure 

B. Insertion Algorithm 
The insertion algorithm of SlimSS-tree is similar to the 

insertion algorithm of R-tree. There are three main 
differences: 
(1) The split algorithm used here simply finds the 

dimension with the highest variance, and then chooses 
the split location to minimize the sum of the variances 
on each side of the split[6]. 

(2) When a node N is splited into two new node N1 and N2, 
the original node N will be replaced with the new 
generated node N1 or N2 whose centroid is nearer to N’s 
centroid. 

(3) In each node(not include the date node) of SlimSS-tree, 
there is an update_count parameter for each entry. Only 
when the update_count parameter of an entry is 
multiple of UPDATE (A number can be set), the centroid 
and radius parameters of this entry and its forefather 
entries need to be adjusted. The influence of parameter 
UPDATE to the performance of SlimSS-tree will be 
given in section 4. 

 
Insertion Algorithm: Insert one feature vector v to the SlimSS-
tree with root r. 
BEGIN 
     Set N to be the root r. 

WHILE (N is not a leaf node) 
Find the entry np whose centroid is nearest to v in N. 
Set N to be the child node of entry np. 

      END WHILE    //N is a leaf node 
Find the entry np whose centroid is nearest to v in N. 
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Set N to be the child node of entry np. Then N is a date node. 
IF (N is not full) 
    Insert v to N. 
    The entry number of N increases one. 
    np.update_count increases one. 
    IF (np.update_count % UPDATE = 0) 
         Adjust the centroid and radius parameters of np and its 

forefather entries. 
ELSE  // N is full 
    Split date node N into two new date node N1 and N2. 
    IF (the centroid of N1 is nearer to the centroid of N than N2) 

Replace node N with N1. And adjust the centroid and 
radius parameters of its father entry np and np’s forefather 
entries. 

         Insert node N2 to the tree. 
    ELSE 
        Replace node N with N2. And adjust the centroid and 

radius parameters of its father entry np and np’s forefather 
entries. 

        Insert node N1 to the tree. 
END 

The insertion process of inserting one node N to the tree is 
similar to the feature vector insertion process. In the node 
insertion process, the entry whose centroid is nearest to the 
centroid of the inserted node N will be chosen for inserting 
the node. And N will be inserted to the level with the same 
level flag as N. After the insertion of all feature vectors, the 
centroid and radius parameters of all entries in SlimSS-tree 
need to be adjusted for the reason of the update_count 
parameter. 

C. Advanced Slim-down Algorithm 
After all feature vectors are inserted to the SlimSS-tree 

and the centroid and radius parameters of all entries has 
been adjusted, the advanced Slim-down algorithm which 
combins Slim-down with Reinsertion will be used to post-
process the tree to make it more tighter. Figure 3 shows how 
slim-down algorithm works on one node. In figure 3, entry c 
is the farthest entry of node i, and it is also included in node 
j. The Slim-down algorithm moves it from node i to node j. 
So the radius of node i is reduced, thus the intersection 
region between node i and node j is reduced as well. 

 
Advanced Slim-down algorithm: Using the Slim-down algorithm 
combined with Reinsertion to post-process the SlimSS-tree nodes 
in date Node level. 
BEGIN 

FOR (each node i in date node level of the SlimSS-tree) 
WHILE (node i has entries not less than m) 

Find the farthest entry c from the centroid of i. 
Find a sibling node j of i, which also covers c.  
IF (j exists and it is not full) 

Remove c from i to j. The entry number of i decrease 
one, and the entry number of j increase one. 
Adjust the centroid and radius parameters of node i’s, 
j’s father entries and their forefather entries. 

ELSE 
Run out of the loop of WHILE 

END WHILE  //stop Slim-down node i 
IF (the number of entries in node i is less than m) 

Delete node i from its parent node, the entry number of 
its parent node decreases one, and adjust the centroid 
and radius parameters of its forefather entries. 
FOR (each entry in node i)  

Push it to the Reinsertion stack. 
      FOR (from leaf level to the root level) 
            FOR (each node i in this level) 

                  IF (the entry number of node i is smaller than m) 
Delete node i from its parent node, the entry number 
of its parent node decreases one, and adjust the 
centroid and radius parameters of its forefather 
entries. 
FOR (each entry in node i)  

          Reinsert it to the tree directly.  
      FOR (every entry in the Reinsertion stack) 
            Reinsert it to the tree. 
      Adjust the centroid and radius parameters of all entries in 

SlimSS-tree. 
END 

 

 
Figure 3.  How the Slim-down algorithm works 

D. Nearest Neighbor Queries 
Give a domain of feature value D — the indexed feature 

vectors, a query vector Q∈D, and an integer k≥1, the KNN 
query NN(Q, k) selects the k indexed feature vectors which 
have the shortest distance from Q. 

MINDIST algorithm[9] is one of the most popular nearest 
neighbor search algorithms. The MINDIST (Minimum 
Distance) of a point Q(q1, q2,…, qd) in Euclidean space E(d) 
from a sphere S(O, r) in the same space is defined as: 

 0, ( , )
( , )

( , ) ,
if d Q O r

MINDIST Q S
d Q O r others

≤⎧
= ⎨ −⎩

            (1) 

Where, O(o1, o2,…, od) is the centroid of the sphere S, r is 
the radius of S, and  

2 1/ 2

1
( , ) ( )

d

i i
i

d Q O q o
=

= −∑                     (2) 

Let KNNlist to be the current k indexed feature vectors 
nearest to query Q, and KNNdist to be the distances of the k 
indexed feature vectors to Q, dmax to be the kth shortest 
distance from the indexed feature vectors to Q, and entrylist 
to be the list for entries which may contain the NN(Q, k). 

 
KNN Query Algorithm: Find the k indexed feature vectors which 
have the shortest distance from query vector Q in SlimSS-tree. 
BEGIN 

Clear the KNNlist to be NULL, set all the elements of KNNdist 
to be MAX, initiate dmax to be MAX, and use entries in the root 
of SlimSS-tree to initiate the entrylist. Then calculate the 
MINDISTs of Q from every entry in the entrylist, and sort the 
entries according to the MINDISTs in increasing order. 
WHILE (the entrylist is not empty) 

IF (the first entry in entrylist is one entry of a leaf node) 
FOR (every indexed feature vector Oj in this entry) 
         Calculate the distance of Q and Oj: distj 

              IF ( distj < dmax )  THEN 
Delete the last element in KNNdist and 
KNNlist. Insert distj to KNNdist in increasing 
order. Insert Oj to KNNlist in the order as 
distj in KNNdist. Let dmax to be the last 
element in KNNdist. 
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ELSE IF (the first entry in entrylist is the entry of an 
intermediate node) 

In entrylist, stead the first entry with the entries of its 
lower level. Calculate the MINDISTs of Q from every 
entry in the entrylist, and sort the entries according to 
the MINDISTs in increasing order. Delete the entries 
whose MINDISTs are larger than dmax from the 
entrylist. 

END WHILE 
The indexed feature vectors in KNNlist are the NN(Q, k).  
The distances in KNNdist are the k shortest distance to query Q. 

END 
 

IV. EXPERIMENT RESULT  
In this section, we provide experiment results of the 

performance of the SlimSS-tree with different UPDATE 
parameter, and compare the SlimSS-tree with the SS-tree 
index structures (include SS-tree and SS-tree without 
Reinsertion) and R-tree index structures (include R-tree, R-
tree with Reinsertion and R-tree with Slim-down). We 
implemented these trees in VC6.0 under Windows on a Dell 
OPTIPLEX 360 computer with Intel Core2 Duo CPU E7400 
2.8GHz and RAM 3.0GB. The datasets used in our test are 
loaded from the website 
http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures
.html. These datasets contain four sets of image features: the 
color histogram, color histogram layout, color moments, and 
co-occurence texture, extracted from a Corel image 
collection of 68040 pictures. The page size of the index 

structure node is 4096 Bytes in our test. In paper [2], it has 
proved that m=40%*M yields the best performance. So 
m=40%*M is used in all kinds of nodes in our design. In the 
following figures, we report the average number of disk 
accesses obtained from 60 points KNN queries, and all of 
the query points are randomly extracted from the 68040 
feature vectors for each dataset.  

A. The performance of SlimSS-tree with different UPDATE 
parameter 

The most important characteristics of these datasets and 
the execution time for building SlimSS-tree and query with 
different UPDATE parameter is shown in table 1. Here the 
execution time of query is the total execution time for 60 
point k=50 nearest neighbor Queries. Figure 4 shows the 
performances of SlimSS-tree with different UPDATE 
parameter for KNN query, where k ranges from 1 to 100 
with step 5. The execution time for adjusting tree is reduced 
with the increase of UPDATE parameter. As a result, the 
execution time for building SlimSS-tree is reduced. At the 
same time, the centroid and radius parameter of each entry 
is not very accurate, which may influence the execution time 
for query (as shown in table 1) and the performance of 
SlimSS-tree (as shown in figure 4). We can see from table 1 
and figure 4 that when UPDATE=5, the SlimSS-tree 
achieves the best performance. So the SlimSS-tree, SS-tree 
index structures are all built in the condition UPDATE=5 
next section. 

TABLE I.  CHARACTERISTICS OF FEATURE DATASETS AND EXECUTION TIME FOR BUILDING SLIMSS-TREE AND QUERY  

Feature datasets Dimension UPDATE =1 UPDATE =3 UPDATE =5 UPDATE =7 UPDATE =9
Build  query Build query Build query Build  query Build  query

ColorHistogram dataset 32 4.23s 9.07s 2.70s 7.67s 3.59s 8.79s 2.29s 11.26s 2.20s 7.53s
LayoutHistogram dataset 32 3.90s 12.43s 2.53s 9.73s 2.21s 6.18s 2.10s 7.70s 2.11s 6.64s

ColorMoments dataset 9 2.25s 5.32s 1.29s 1.23s 1.11s 1.21s 1.01s 1.34s 0.96s 1.06s
Co-ocTexture dataset 16 2.73s 6.51s 1.71s 1.31s 1.51s 1.21s 1.43s 1.11s 1.42s 1.48s

Notes: The query time is the total execution time for 60 query vectors for k=50 nearest neighbor queries. 
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(a) Experiment result for ColorHistogram dataset                                          

(b) Experiment result for LayoutHistogram dataset 
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(c) Experiment results for ColorMoments dataset                                            
(d) Experiment result for Co-ocTexture dataset 

Figure 4.  Performance of SlimSS-tree with different UPDATE parameter 
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TABLE II.  CHARACTERISTICS OF THE BUILT TREES 

Feature datasets  SS-tree without 
Reinsertion R-tree SS-tree R-tree with 

Reinsertion SlimSS-tree  R-tree with 
Slim-down 

ColorHistogram 
dataset 

H 3 4 3 4 3 4 
I 175 322 154 290 100 322 
V 3235 3089 3052 2832 1905 3089 

LayoutHistogram 
dataset 

H 3 4 3 4 3 4 
I 157 341 134 321 96 341 
V 2971 3066 2786 2848 1854 3061 

ColorMoments 
dataset 

H 2 2 2 2 2 2 
I 17 31 14 27 16 31 
V 941 935 884 852 924 935 

Co-ocTexture 
dataset 

H 2 3 2 3 2 3 
I 44 85 40 74 41 85 
V 1617 1591 1533 1425 1568 1591 

Notes: H represents the height of the tree, V represents the data node number of the tree, I represents the number of intermediate nodes and leaf nodes. 

TABLE III.  EXECUTION TIME FOR BUILDING TREES AND QUERY 

Feature datasets 
R-tree SS-tree without 

Reinsertion 
R-tree with 
Reinsertion SS-tree R-tree with 

Slim-down SlimSS-tree 

Build query Build  query Build query Build query Build  query Build query
ColorHistogram dataset 4.50s 87.14s 1.50s 26.06s 6.68s 73.79s 2.15s 20.00s 4.53s 88.00s 2.42s 7.20s

LayoutHistogram dataset 4.37s 188.32s 1.89s 9.34s 6.28s 189.73s 1.95s 9.04s 4.42s 185.04s 2.26s 2.82s
ColorMoments dataset 3.92s 0.39s 1.31s 0.31s 4.51s 0.37s 1.48s 0.28s 4.21s 0.39s 1.10s 0.31s
Co-ocTexture dataset 3.98s 0.79s 1.62s 0.26s 5.11s 0.54s 1.60s 0.23s 4.03s 0.76s 1.56s 0.23s

Notes: The query time is the total execution time for 60 query vectors for k=50 nearest neighbor queries. And the execution time of building SlimSS-tree, SS-trees is test in the condition UPDATE=5. 

 

B. The performance of SlimSS-tree, SS-tree index 
structures and R-tree index structures 

In this paper, the quadratic split algorithm is used in our 
R-tree index structures, and the R-tree with Slim-down is 
generated by executing the Slim-down algorithm in the date 
node level of R-tree. We don’t provide details since paper [1] 
gives the description about R-tree index structure and the 
introductions about the Reinsertion algorithm and Slim-
down algorithm can be found in paper [2] and paper [3] 
respectively.  

Table 2 shows the most important characteristics of the 
built SlimSS-tree, SS-trees and R-trees. In table 2, it is 
evident that both the node number of the R-tree and SS-tree 
decreases for the use of Reinsertion algorithm, and  the node 
number of SlimSS-tree reduces obviously in high 
dimensional space for using the advanced Slim-down 
algorithm. But Slim-down algorithm is not useful for 
reducing the node number of R-tree structure as it does to 
SlimSS-tree. In table 3, it is evident that both the execution 
time for building SS-tree structures and query in SS-tree 
structures is less than the execution time for building R-tree 
structures and query in R-tree structures. And the execution 
time for query in SlimSS-tree is the least for dimension 32. 
Here the execution time of query is the total execution time 
for 60 points k=50 nearest neighbor Queries. 

We can see from figure 5 that the search performances of 
R-trees, SS-trees and SlimSS-tree are degraded clearly with 
the increase of dimensionality (as figure 5(a), 5(b), 5(c) and 
5(d)). In high dimensional space when the nearest neighbor 
number k>6, the SlimSS-tree proposed in this paper 
outperforms the other five index structures, especially 
outperforms the SS-tree and SS-tree without Reinsertion (as 
figure 5(a), 5(b)). Compared with the SS-tree, the disk 
access number of SlimSS-tree improves by 20%~30% in 
average in high dimensional space. The main reason is that 
as the increase of dimensionality, the overlap regions 

between nodes increases and the advanced Slim-down 
algorithm can effectively reduce the intersection regions 
between spheres very well, thus improve the search 
performance of SlimSS-tree obviously. In the low 
dimensional space, it is evident that the SlimSS-tree and SS-
tree sturctures outperform the R-tree structures (as figure 
5(c), 5(d)). As shown in figure 5, when the dimension of 
feature vectors is low  or the number of Nearest Neighbors 
is small, the SlimSS-tree can almost has the same 
performance as SS-tree structures as well.  

It is clear in figure 5 that the Reinsertion algorithm can 
improve the search performance of SS-tree and R-tree 
structures. But the R-tree with Slim-down algorithm almost 
has the same performance as the original R-tree. The Slim-
down algorithm can’t improve the search performance of R-
tree as it does to the SlimSS-tree, mainly for the reason that 
most intersection regions of MBRs of R-tree are not in the 
edge parts, thus the farthest feature vector of one data node 
is not contained in its sibling nodes and the execution of 
Slim-down stopped. So it can’t decrease the intersection 
regions for rectangle nodes. Table 4 gives the successful 
times and failed times for the executing of Slim-down 
algorithm in R-tree. 
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(a) Experiment result for ColorHistogram dataset 



International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010 
1793-8201 

 

 

618

LayoutHistogram kNN Query

0

500

1000

1500

2000

2500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 100

k

Di
s
k 
A
cc
e
ss
 
Nu
m
be
r

R-tree
SS-tree without Reinsertion
R-tree with Reinsertion
SS-tree
R-tree with Slim-down
SlimSS-tree

 
(b) Experiment result for LayoutHistogram dataset 
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(c) Experiment result for ColorMoments dataset 
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(d) Experiment result for Co-ocTexture dataset 

Figure 5.  The performance of R-trees, SS-trees and SlimSS-tree 

TABLE IV.  THE EXECUTING SITUATION FOR SLIM-DOWN  IN R-TREE 

Feature datasets Successful Times Failed Times 
ColorHistogram datasets 27 55 

LayoutHistogram datasets 22 9 
ColorMoments datasets 8 3 
Co-ocTexture datasets 0 2 

Notes; Successful Times represents the Slim-down algorithm successfully remove the farthest entry 
in one node to its sibling node in R-tree. Failed Times represents the Slim-down algorithm failed to 
execute Slim-down, for its sibling node is full. 

 

V. CONCLUSION 
In this paper, we use the Slim-down algorithm combined 

with Reinsertion in SS-tree, and propose a new index 
structure: SlimSS-tree. In the high dimensional space, the 
SlimSS-tree outperforms the SS-tree obviously, while in low 
dimensional space it almost has the same performance as the 

SS-tree. The main reason is that the overlapping regions 
between nodes increases as the increase of dimensionality of 
feature vectors, and the Slim-down algorithm can effectively 
reduce the intersection regions between spheres, thus 
improve the search performance of SlimSS-tree obviously. 
We also compare our proposed SlimSS-tree, SS-tree, with 
the R-tree structures. Experiment results show that the 
execution time for building SlimSS-tree, the SS-tree 
structures and query in them is evidently less than the R-tree 
structures. We can also see that the Slim-down algorithm 
can not improve the performance of R-tree clearly as it does 
to the SlimSS-tree. It is not suitable for reducing the 
intersection of rectangle regions, mainly for the reason that 
most intersection regions of MBRs are not in the edge 
portions of MBRs. 
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