
International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

613

 Abstract—Nowadays, the appearance of a great number of

multimedia data brings the need for more effective methods to
manage these data. The multimedia retrieval systems always
index these data based on feature vectors, and the index
structures such as the R-tree family are used to manage them
more efficiently. Slim-down algorithm is used in Slim-tree, and
it can improve the disk access number for range queries in
average 10%~20% for vector datasets. In this paper, we use
Slim-down algorithm in both SS-tree and R-tree index
structures, and propose a new structure: SlimSS-tree.
Experiment results show that compared with SS-tree, the disk
access number of SlimSS-tree for k nearest neighbor search
improves by 20%~30% in average for vector datasets of 32
dimensions, and the SlimSS-tree can provide fast query
performance as well. But the Slim-down algorithm is not
suitable for reducing the intersection of rectangle regions as it
does to the sphere regions. It’s not efficient in rectangle node
management.

Index Terms—index structure; SlimSS-tree; R-tree; SS-tree;

Slim-down; Reinsertion

I. INTRODUCTION
Recently, the number of multimedia data such as video,

voice, image, text, and numerical data has drastically
increased. This results the development of multimedia
retrieval systems to manage them. In order to satisfy the
information needs of users, it is very important for retrieval
system to know which portions of the database are relevant
to user’s requests. In particular, there is an urgent need of
indexing techniques to support similarity queries.

In this paper, we focus on the R-tree[1] family. The most
successful variant of R-tree seems to be R*-tree[2] which
imports the idea of ‘Forced-Reinsert’ by deleting some
rectangles from the overflowing node, and Reinserting them
into the tree. The Reinsertion algorithm improves the query
performance, and it was used in some other R-tree variants,
such as SS-tree.

Slim-down algorithm is used in Slim-tree[3]. It could
diminish the number of objects that fall within the
intersection of two regions in the same level, sometimes
even decrease the number of nodes in the tree. Thus it can
produce a ‘tighter’ tree and improve the search performance
evidently. It can improve the number of disk accesses for
range queries in average 10%~20% for vector datasets.
Especially for datasets with bigger bloat-factors, the average
improvement goes to 25%~35%. In this paper, we use Slim-
down algorithm in SS-tree index structure and propose a
new structure: SlimSS-tree. We also use the Slim-down

Lifang Yang, Xianglin Huang, Rui Lv and Hui Lv are withComputer
School, Communication University of China,Beijing, China(email:
huangxl@cuc.edu.cn).

algorithm in R-tree index structure to test whether it’s
efficient in managing rectangle nodes, and compare it with
Reinsertion algorithm.

The rest of this paper is organized as follows. Section 2
gives a brief introduction to the R-tree family methods. In
section 3 we describe the index structure of SlimSS-tree
using advanced Slim-down algorithm combined Slim-down
with Reinsertion. Then the experiment results about the
performance of SlimSS-tree, SS-tree and R-tree with
Reinsertion and Slim-down algorithm is presented in section
4. Finally, we conclude this paper in section 5.

II. R-TREE FAMILY OF INDEX STRUCTURE
The R-tree is a completely dynamic index structure,

proposed by Guttman in 1984[1]. It is a height-balanced tree
similar to B-tree for multi-dimensional spatial objects. In
order to maintain its balanced structure, it allows region
overlapping among sibling nodes, which is its major
drawback. Later, lots of work has done to avoid the
performance degradation caused by region overlapping. And
some new index structures, such as R+-tree, R*-tree, X-tree,
SS-tree, SR-tree and A-tree are generated. Most of them
have the similar structure and properties as R-tree.

R+-tree is proposed by Sellis etc. in 1987[4]. The great
different between R-tree and R+-tree is that the R+-tree
allows partitions to split rectangles, then zero overlap among
intermediate node entries can be achieved. In the process of
splitting node with rectangle G, it allows partitions to split
rectangles which are in lower level of G into a collection of
non-overlapping sub-rectangles, then zero overlap among
the two new generated nodes can be achieved. Compare
with R-tree, R+-tree exhibit good search performance at the
expense of some extra space, especially for point queries.

R*-tree is presented by Beckmann and Kriegel in 1990[2].
In this structure, the idea ‘Forced-Reinsert’ is proposed.
That is when a node is overflowed, it checks whether this
given level has executed Reinsertion before. If Reinsertion
isn't executed before, it chooses some farthest entries of this
node, deletes them and Reinserts them into the tree.
Otherwise, it executes the split algorithm. Also the factors of
area, margin and region overlapping etc. are taken into
consideration for node split. Due to the concept of ‘Forced-
Reinsert’, the storage utilization is higher and the R*-tree
clearly outperforms other R-tree variants proposed before.

X-tree is proposed by Berchtold, Keim and kriegel in
1996[5]. The X-tree uses a split algorithm minimizing
overlap and new concept of Supernode to reduce the overlap
of bounding rectangles caused by increase of dimension. It
is based on the R*-tree. The mainly difference between
these two structures is that when a node needs to be split, the
R*-tree always split the node according to the factors of area,
margin and region overlapping etc.. But for the X-tree, if the

SlimSS-tree: A New Tree Combined SS-tree
With Slim-down Algorithm

Lifang Yang, Xianglin Huang, Rui Lv and Hui Lv

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

614

split for minimizing overlap can’t be found, the node
remains unsplit and a Supernode is generated. Therefore, the
overlap is reduced. In low dimensional space, the X-tree has
similar performance as R*-tree. But in high dimensional
space, for the number of Supernodes increases, the X-tree
outperforms the R*-tree significantly.

David, Ramesh etc. proposed SS-tree in 1996[6]. The SS-
tree uses super sphere to represent the nodes and objects
replacing the super rectangles used in R-tree, R*-tree etc..
The result of their tests shows that on higher dimensional
data (> 5D) SS-tree provides faster query performance than
the R*-tree.

SR-tree is presented by Katayama and Satoh in 1997[7]. In
paper [7], they have proved that bounding spheres occupy
much larger volume than bounding rectangles, thus the
search efficiency is reduced. In order to overcome this
drawback, a region of the intersection of a bounding sphere
and a bounding rectangle is proposed in [7] to represents the
nodes. Their test result shows that the SR-tree outperforms
both the SS-tree and R*-tree.

Sakurai, Yoshikawa etc. proposed the A-tree in 2000[8].
The basic idea of A-tree is the use of Virtual Bounding
Rectangles (VBRs), which contain and approximate MBRs
(Minimum Bounding Rectangles) and data objects. Because
of the compact VBRs, each node can install large number of
entries, which means the fanout of nodes become large, thus
lead to fast search. The test results using both synthetic and
real data sets show that the A-tree outperforms the SR-tree
in all range of dimensionality up to 64.

III. SLIMSS-TREE INDEX STRUCTURE

A. The structure of SlimSS-tree
SlimSS-tree is proposed based on the SS-tree, which uses

the super spheres to manage the nodes instead of the super
rectangles. The SlimSS-tree is a completely dynamic index
structure as R-tree, and has similar structure and properties
as R-tree. Let M and m ≤ M/2 be the maximum number and
minimum number of entries in one node respectively, and
each node(not include the date node) in SlimSS-tree
contains entries with the form of SSTreeElem structure, as
shown in figure 1. The SlimSS-tree satisfies following
properties:
(1) Every node must contain at least m and at most M

entries, unless it is the root node.
(2) The root should contain at least two entries, unless it is

a leaf node.
(3) For each entry representing by SSTreeElem structure as

figure 1, childptr represents the pointer of this entry to
its child node; update_count is used for the entry to be
periodically recalculated when its child node changed;
radius is the radius of the enclosing sphere of its child
node; and centroid[Dim] is the mean value of all its
child entries’ centroids.

(4) All leaves appear on the same level.
In our design, The SlimSS-tree mainly consists of

intermediate nodes, leaf nodes and date nodes. The date
nodes are used to store the date objects (Here they are
feature vectors), and each intermediate node or leaf node is
composed by the super spheres which completely enclose all
super spheres of its lower level nodes, as shown in figure 2.
Figure 2 shows one example of SlimSS-tree structure. In

figure 2(a), each point stands for one feature vector and each
super sphere stands for one entry of a node(not include the
date node). The index structure showed in figure 2(b) is the
corresponding SlimSS-tree structure for figure 2(a). Here
m=2 and M=4.

Figure 1. The SSTreeElem structure

(a) The data set of feature vectors

(b) The SlimSS-tree structure of (a)

Figure 2. The example of SlimSS-tree structure

B. Insertion Algorithm
The insertion algorithm of SlimSS-tree is similar to the

insertion algorithm of R-tree. There are three main
differences:
(1) The split algorithm used here simply finds the

dimension with the highest variance, and then chooses
the split location to minimize the sum of the variances
on each side of the split[6].

(2) When a node N is splited into two new node N1 and N2,
the original node N will be replaced with the new
generated node N1 or N2 whose centroid is nearer to N’s
centroid.

(3) In each node(not include the date node) of SlimSS-tree,
there is an update_count parameter for each entry. Only
when the update_count parameter of an entry is
multiple of UPDATE (A number can be set), the centroid
and radius parameters of this entry and its forefather
entries need to be adjusted. The influence of parameter
UPDATE to the performance of SlimSS-tree will be
given in section 4.

Insertion Algorithm: Insert one feature vector v to the SlimSS-
tree with root r.
BEGIN
 Set N to be the root r.

WHILE (N is not a leaf node)
Find the entry np whose centroid is nearest to v in N.
Set N to be the child node of entry np.

 END WHILE //N is a leaf node
Find the entry np whose centroid is nearest to v in N.

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

615

Set N to be the child node of entry np. Then N is a date node.
IF (N is not full)
 Insert v to N.
 The entry number of N increases one.
 np.update_count increases one.
 IF (np.update_count % UPDATE = 0)
 Adjust the centroid and radius parameters of np and its

forefather entries.
ELSE // N is full
 Split date node N into two new date node N1 and N2.
 IF (the centroid of N1 is nearer to the centroid of N than N2)

Replace node N with N1. And adjust the centroid and
radius parameters of its father entry np and np’s forefather
entries.

 Insert node N2 to the tree.
 ELSE
 Replace node N with N2. And adjust the centroid and

radius parameters of its father entry np and np’s forefather
entries.

 Insert node N1 to the tree.
END

The insertion process of inserting one node N to the tree is
similar to the feature vector insertion process. In the node
insertion process, the entry whose centroid is nearest to the
centroid of the inserted node N will be chosen for inserting
the node. And N will be inserted to the level with the same
level flag as N. After the insertion of all feature vectors, the
centroid and radius parameters of all entries in SlimSS-tree
need to be adjusted for the reason of the update_count
parameter.

C. Advanced Slim-down Algorithm
After all feature vectors are inserted to the SlimSS-tree

and the centroid and radius parameters of all entries has
been adjusted, the advanced Slim-down algorithm which
combins Slim-down with Reinsertion will be used to post-
process the tree to make it more tighter. Figure 3 shows how
slim-down algorithm works on one node. In figure 3, entry c
is the farthest entry of node i, and it is also included in node
j. The Slim-down algorithm moves it from node i to node j.
So the radius of node i is reduced, thus the intersection
region between node i and node j is reduced as well.

Advanced Slim-down algorithm: Using the Slim-down algorithm
combined with Reinsertion to post-process the SlimSS-tree nodes
in date Node level.
BEGIN

FOR (each node i in date node level of the SlimSS-tree)
WHILE (node i has entries not less than m)

Find the farthest entry c from the centroid of i.
Find a sibling node j of i, which also covers c.
IF (j exists and it is not full)

Remove c from i to j. The entry number of i decrease
one, and the entry number of j increase one.
Adjust the centroid and radius parameters of node i’s,
j’s father entries and their forefather entries.

ELSE
Run out of the loop of WHILE

END WHILE //stop Slim-down node i
IF (the number of entries in node i is less than m)

Delete node i from its parent node, the entry number of
its parent node decreases one, and adjust the centroid
and radius parameters of its forefather entries.
FOR (each entry in node i)

Push it to the Reinsertion stack.
 FOR (from leaf level to the root level)
 FOR (each node i in this level)

 IF (the entry number of node i is smaller than m)
Delete node i from its parent node, the entry number
of its parent node decreases one, and adjust the
centroid and radius parameters of its forefather
entries.
FOR (each entry in node i)

 Reinsert it to the tree directly.
 FOR (every entry in the Reinsertion stack)
 Reinsert it to the tree.
 Adjust the centroid and radius parameters of all entries in

SlimSS-tree.
END

Figure 3. How the Slim-down algorithm works

D. Nearest Neighbor Queries
Give a domain of feature value D — the indexed feature

vectors, a query vector Q∈D, and an integer k≥1, the KNN
query NN(Q, k) selects the k indexed feature vectors which
have the shortest distance from Q.

MINDIST algorithm[9] is one of the most popular nearest
neighbor search algorithms. The MINDIST (Minimum
Distance) of a point Q(q1, q2,…, qd) in Euclidean space E(d)
from a sphere S(O, r) in the same space is defined as:

 0, (,)
(,)

(,) ,
if d Q O r

MINDIST Q S
d Q O r others

≤⎧
= ⎨ −⎩

 (1)

Where, O(o1, o2,…, od) is the centroid of the sphere S, r is
the radius of S, and

2 1/ 2

1
(,) ()

d

i i
i

d Q O q o
=

= −∑ (2)

Let KNNlist to be the current k indexed feature vectors
nearest to query Q, and KNNdist to be the distances of the k
indexed feature vectors to Q, dmax to be the kth shortest
distance from the indexed feature vectors to Q, and entrylist
to be the list for entries which may contain the NN(Q, k).

KNN Query Algorithm: Find the k indexed feature vectors which
have the shortest distance from query vector Q in SlimSS-tree.
BEGIN

Clear the KNNlist to be NULL, set all the elements of KNNdist
to be MAX, initiate dmax to be MAX, and use entries in the root
of SlimSS-tree to initiate the entrylist. Then calculate the
MINDISTs of Q from every entry in the entrylist, and sort the
entries according to the MINDISTs in increasing order.
WHILE (the entrylist is not empty)

IF (the first entry in entrylist is one entry of a leaf node)
FOR (every indexed feature vector Oj in this entry)
 Calculate the distance of Q and Oj: distj

 IF (distj < dmax) THEN
Delete the last element in KNNdist and
KNNlist. Insert distj to KNNdist in increasing
order. Insert Oj to KNNlist in the order as
distj in KNNdist. Let dmax to be the last
element in KNNdist.

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

616

ELSE IF (the first entry in entrylist is the entry of an
intermediate node)

In entrylist, stead the first entry with the entries of its
lower level. Calculate the MINDISTs of Q from every
entry in the entrylist, and sort the entries according to
the MINDISTs in increasing order. Delete the entries
whose MINDISTs are larger than dmax from the
entrylist.

END WHILE
The indexed feature vectors in KNNlist are the NN(Q, k).
The distances in KNNdist are the k shortest distance to query Q.

END

IV. EXPERIMENT RESULT
In this section, we provide experiment results of the

performance of the SlimSS-tree with different UPDATE
parameter, and compare the SlimSS-tree with the SS-tree
index structures (include SS-tree and SS-tree without
Reinsertion) and R-tree index structures (include R-tree, R-
tree with Reinsertion and R-tree with Slim-down). We
implemented these trees in VC6.0 under Windows on a Dell
OPTIPLEX 360 computer with Intel Core2 Duo CPU E7400
2.8GHz and RAM 3.0GB. The datasets used in our test are
loaded from the website
http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures
.html. These datasets contain four sets of image features: the
color histogram, color histogram layout, color moments, and
co-occurence texture, extracted from a Corel image
collection of 68040 pictures. The page size of the index

structure node is 4096 Bytes in our test. In paper [2], it has
proved that m=40%*M yields the best performance. So
m=40%*M is used in all kinds of nodes in our design. In the
following figures, we report the average number of disk
accesses obtained from 60 points KNN queries, and all of
the query points are randomly extracted from the 68040
feature vectors for each dataset.

A. The performance of SlimSS-tree with different UPDATE
parameter

The most important characteristics of these datasets and
the execution time for building SlimSS-tree and query with
different UPDATE parameter is shown in table 1. Here the
execution time of query is the total execution time for 60
point k=50 nearest neighbor Queries. Figure 4 shows the
performances of SlimSS-tree with different UPDATE
parameter for KNN query, where k ranges from 1 to 100
with step 5. The execution time for adjusting tree is reduced
with the increase of UPDATE parameter. As a result, the
execution time for building SlimSS-tree is reduced. At the
same time, the centroid and radius parameter of each entry
is not very accurate, which may influence the execution time
for query (as shown in table 1) and the performance of
SlimSS-tree (as shown in figure 4). We can see from table 1
and figure 4 that when UPDATE=5, the SlimSS-tree
achieves the best performance. So the SlimSS-tree, SS-tree
index structures are all built in the condition UPDATE=5
next section.

TABLE I. CHARACTERISTICS OF FEATURE DATASETS AND EXECUTION TIME FOR BUILDING SLIMSS-TREE AND QUERY

Feature datasets Dimension UPDATE =1 UPDATE =3 UPDATE =5 UPDATE =7 UPDATE =9
Build query Build query Build query Build query Build query

ColorHistogram dataset 32 4.23s 9.07s 2.70s 7.67s 3.59s 8.79s 2.29s 11.26s 2.20s 7.53s
LayoutHistogram dataset 32 3.90s 12.43s 2.53s 9.73s 2.21s 6.18s 2.10s 7.70s 2.11s 6.64s

ColorMoments dataset 9 2.25s 5.32s 1.29s 1.23s 1.11s 1.21s 1.01s 1.34s 0.96s 1.06s
Co-ocTexture dataset 16 2.73s 6.51s 1.71s 1.31s 1.51s 1.21s 1.43s 1.11s 1.42s 1.48s

Notes: The query time is the total execution time for 60 query vectors for k=50 nearest neighbor queries.

ColorHistogram kNN Query

0

200

400

600

800

1000

1200

1400

1600

1800

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

k

D
i
s
k

A
c
c
e
s
s

N
u
m
b
e
r

update_count=1

update_count=3

update_count=5

update_count=7

update_count=9

LayoutHistogram kNN Query

0

500

1000

1500

2000

2500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

k

Di
sk

 A
cc

e
ss

 N
um

be
r

update_count=1

update_count=3

update_count=5
update_count=7

update_count=9

(a) Experiment result for ColorHistogram dataset

(b) Experiment result for LayoutHistogram dataset

ColorMoments kNN Query

0

20

40

60

80

100

120

140

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

k

D
isk

 A
cc

es
s N

um
be

r

update_count=1

update_count=3

update_count=5

update_count=7

update_count=9

CoocTexture kNN Query

0

20

40

60

80

100

120

140

160

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

k

D
i
s
k

A
c
c
e
s
s

N
u
m
b
e
r

update_count=1

update_count=3

update_count=5

update_count=7

update_count=9

(c) Experiment results for ColorMoments dataset
(d) Experiment result for Co-ocTexture dataset

Figure 4. Performance of SlimSS-tree with different UPDATE parameter

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

617

TABLE II. CHARACTERISTICS OF THE BUILT TREES

Feature datasets SS-tree without
Reinsertion R-tree SS-tree R-tree with

Reinsertion SlimSS-tree R-tree with
Slim-down

ColorHistogram
dataset

H 3 4 3 4 3 4
I 175 322 154 290 100 322
V 3235 3089 3052 2832 1905 3089

LayoutHistogram
dataset

H 3 4 3 4 3 4
I 157 341 134 321 96 341
V 2971 3066 2786 2848 1854 3061

ColorMoments
dataset

H 2 2 2 2 2 2
I 17 31 14 27 16 31
V 941 935 884 852 924 935

Co-ocTexture
dataset

H 2 3 2 3 2 3
I 44 85 40 74 41 85
V 1617 1591 1533 1425 1568 1591

Notes: H represents the height of the tree, V represents the data node number of the tree, I represents the number of intermediate nodes and leaf nodes.

TABLE III. EXECUTION TIME FOR BUILDING TREES AND QUERY

Feature datasets
R-tree SS-tree without

Reinsertion
R-tree with
Reinsertion SS-tree R-tree with

Slim-down SlimSS-tree

Build query Build query Build query Build query Build query Build query
ColorHistogram dataset 4.50s 87.14s 1.50s 26.06s 6.68s 73.79s 2.15s 20.00s 4.53s 88.00s 2.42s 7.20s

LayoutHistogram dataset 4.37s 188.32s 1.89s 9.34s 6.28s 189.73s 1.95s 9.04s 4.42s 185.04s 2.26s 2.82s
ColorMoments dataset 3.92s 0.39s 1.31s 0.31s 4.51s 0.37s 1.48s 0.28s 4.21s 0.39s 1.10s 0.31s
Co-ocTexture dataset 3.98s 0.79s 1.62s 0.26s 5.11s 0.54s 1.60s 0.23s 4.03s 0.76s 1.56s 0.23s

Notes: The query time is the total execution time for 60 query vectors for k=50 nearest neighbor queries. And the execution time of building SlimSS-tree, SS-trees is test in the condition UPDATE=5.

B. The performance of SlimSS-tree, SS-tree index
structures and R-tree index structures

In this paper, the quadratic split algorithm is used in our
R-tree index structures, and the R-tree with Slim-down is
generated by executing the Slim-down algorithm in the date
node level of R-tree. We don’t provide details since paper [1]
gives the description about R-tree index structure and the
introductions about the Reinsertion algorithm and Slim-
down algorithm can be found in paper [2] and paper [3]
respectively.

Table 2 shows the most important characteristics of the
built SlimSS-tree, SS-trees and R-trees. In table 2, it is
evident that both the node number of the R-tree and SS-tree
decreases for the use of Reinsertion algorithm, and the node
number of SlimSS-tree reduces obviously in high
dimensional space for using the advanced Slim-down
algorithm. But Slim-down algorithm is not useful for
reducing the node number of R-tree structure as it does to
SlimSS-tree. In table 3, it is evident that both the execution
time for building SS-tree structures and query in SS-tree
structures is less than the execution time for building R-tree
structures and query in R-tree structures. And the execution
time for query in SlimSS-tree is the least for dimension 32.
Here the execution time of query is the total execution time
for 60 points k=50 nearest neighbor Queries.

We can see from figure 5 that the search performances of
R-trees, SS-trees and SlimSS-tree are degraded clearly with
the increase of dimensionality (as figure 5(a), 5(b), 5(c) and
5(d)). In high dimensional space when the nearest neighbor
number k>6, the SlimSS-tree proposed in this paper
outperforms the other five index structures, especially
outperforms the SS-tree and SS-tree without Reinsertion (as
figure 5(a), 5(b)). Compared with the SS-tree, the disk
access number of SlimSS-tree improves by 20%~30% in
average in high dimensional space. The main reason is that
as the increase of dimensionality, the overlap regions

between nodes increases and the advanced Slim-down
algorithm can effectively reduce the intersection regions
between spheres very well, thus improve the search
performance of SlimSS-tree obviously. In the low
dimensional space, it is evident that the SlimSS-tree and SS-
tree sturctures outperform the R-tree structures (as figure
5(c), 5(d)). As shown in figure 5, when the dimension of
feature vectors is low or the number of Nearest Neighbors
is small, the SlimSS-tree can almost has the same
performance as SS-tree structures as well.

It is clear in figure 5 that the Reinsertion algorithm can
improve the search performance of SS-tree and R-tree
structures. But the R-tree with Slim-down algorithm almost
has the same performance as the original R-tree. The Slim-
down algorithm can’t improve the search performance of R-
tree as it does to the SlimSS-tree, mainly for the reason that
most intersection regions of MBRs of R-tree are not in the
edge parts, thus the farthest feature vector of one data node
is not contained in its sibling nodes and the execution of
Slim-down stopped. So it can’t decrease the intersection
regions for rectangle nodes. Table 4 gives the successful
times and failed times for the executing of Slim-down
algorithm in R-tree.

ColorHistogram kNN Query

0

500

1000

1500

2000

2500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 100

k

Di
s
k

Ac
ce

s
s

Nu
mb

er

R-tree
SS-tree without Reinsertion
R-tree with Reinsertion
SS-tree
R-tree with Slim-down
SlimSS-tree

(a) Experiment result for ColorHistogram dataset

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

618

LayoutHistogram kNN Query

0

500

1000

1500

2000

2500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 100

k

Di
s
k
A
cc
e
ss

Nu
m
be
r

R-tree
SS-tree without Reinsertion
R-tree with Reinsertion
SS-tree
R-tree with Slim-down
SlimSS-tree

(b) Experiment result for LayoutHistogram dataset

ColorMoments kNN Query

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 100

k

D
i
s
k

A
c
ce
s
s

N
u
m
b
e
r

R-tree

SS-tree without Reinsertion
R-tree with Reinsertion

SS-tree
R-tree with Slim-down

SlimSS-tree

(c) Experiment result for ColorMoments dataset

CoocTexture kNN Query

0

50

100

150

200

250

300

350

400

450

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 100

k

D
i
s
k

A
c
c
e
s
s

N
u
m
b
e
r

R-tree
SS-tree without Reinsertion
R-tree with Reinsertion
SS-tree
R-tree with Slim-down
SlimSS-tree

(d) Experiment result for Co-ocTexture dataset

Figure 5. The performance of R-trees, SS-trees and SlimSS-tree

TABLE IV. THE EXECUTING SITUATION FOR SLIM-DOWN IN R-TREE

Feature datasets Successful Times Failed Times
ColorHistogram datasets 27 55

LayoutHistogram datasets 22 9
ColorMoments datasets 8 3
Co-ocTexture datasets 0 2

Notes; Successful Times represents the Slim-down algorithm successfully remove the farthest entry
in one node to its sibling node in R-tree. Failed Times represents the Slim-down algorithm failed to
execute Slim-down, for its sibling node is full.

V. CONCLUSION
In this paper, we use the Slim-down algorithm combined

with Reinsertion in SS-tree, and propose a new index
structure: SlimSS-tree. In the high dimensional space, the
SlimSS-tree outperforms the SS-tree obviously, while in low
dimensional space it almost has the same performance as the

SS-tree. The main reason is that the overlapping regions
between nodes increases as the increase of dimensionality of
feature vectors, and the Slim-down algorithm can effectively
reduce the intersection regions between spheres, thus
improve the search performance of SlimSS-tree obviously.
We also compare our proposed SlimSS-tree, SS-tree, with
the R-tree structures. Experiment results show that the
execution time for building SlimSS-tree, the SS-tree
structures and query in them is evidently less than the R-tree
structures. We can also see that the Slim-down algorithm
can not improve the performance of R-tree clearly as it does
to the SlimSS-tree. It is not suitable for reducing the
intersection of rectangle regions, mainly for the reason that
most intersection regions of MBRs are not in the edge
portions of MBRs.

ACKNOWLEDGMENT
This paper is supported by the program for New Century

Excellent Talents in University (NCET-07-0768) and
Project 211 of China.

REFERENCES
[1] Antonin Guttman. R-trees: A Dynamic Index Structure for Spatial

Searching. Proc. ACM SIGMOD Int. Conf. on Management of Data,
1984, pp. 47-57.

[2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard
Seeger. The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles. ACM SIGMOD, 1990, pp. 322-331.

[3] Caetano Traina Jr., Agma Traina, Bernhard Seeger, Christos
Faloutsos. Slim-trees: High Performance Metric Trees Minimizing
Overlap Between Nodes. Proc. of the 7th Int. Conf. on Extending
Database Technology: Advances in Database Technology, 2000, pp.
51-65.

[4] Timos Sellis, Nick Roussopoulos and Christos Faloutsos. The R+-tree:
A Dynamic index for Multi-dimensional Objects. Proc. of the 13th
VLDB Conf., Brighton, 1987, pp. 507-518

[5] Stefan Berchtold, Daniel A. Keim, Hans-Peter Kriegel. The X-tree:
An Index Structure for High-dimensional Data. Proc. of the 22nd
VLDB Conf. Mumbai (Bombay), India, 1996, pp. 28-39

[6] David A. White, Ramesh Jain. Similarity Indexing with the SS-tree.
Proc. of the 12th Int. Conf. on Data Engineering, 1996, pp. 516-523.

[7] Norio Katayama, Shin’ichi Satoh. The SR-tree: An Index Structure
for High-Dimensional Nearest Neighbor Queries. Proc. ACM
SIGMOD Int. Conf. on Management of Data, 1997, pp. 1-12.

[8] Yasushi Sakurai, Masatoshi Yoshikawa, Shunsuke Uemura, Haruhiko
Kojima. The A-tree: An Index Structure for High-Dimensional Spaces
Using Relative Approximation. Proc. of the 26th VLDB Conf., 2000,
pp.

[9] Nick Roussopoulos, Stephen Kelley, Frederic Vincent. Nearest
Neighbor Queries. Proc. ACM SIGMOD Int. Conf. on Management
of Data, 1995, pp. 71-79.

