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Abstract—In order to overcome the inefficiency shortcoming 

of traditional step-based searching method for extremum 
seeking in two-dimensional fractional Fourier domain, some 
typical intelligent optimization methods such as genetic 
algorithms, continuous ant colony algorithm, particle swarm 
optimization and chaos optimization method are introduced 
and applied successfully in fractional Fourier transform. To 
accelerate the convergence further, three optimization methods 
containing two improved chaos optimization methods and 
another hybrid method combing chaos optimization and 
Quasi-Newton method are proposed. The performances of the 
proposed optimization methods are verified by comparing with 
step-based method and other intelligent optimization methods 
based on simulation. Results show that the presented hybrid 
optimization algorithm is much more preferable considering 
computation efficiency, precision and resolution in all the above 
mentioned optimization methods. 

 
Index Terms—the fractional Fourier transform; genetic 

algorithms; continuous ant colony algorithm; particle swarm 
optimization; chaos optimization algorithm; Quasi-Newton 
algorithm; extremum seeking 

 

I. INTRODUCTION 

Traditional Fourier transform, which is used to deal with 
stationary signals, can’t demonstrate the time-variation 
characteristic of non-stationary signals. And the fractional 
Fourier transform (FRFT) [1]-[2] is developed recently to 
resolve the problem of Fourier transform. As one kind of 
non-stationary signals, linear frequency modulation (LFM) 
signal is widely used in radar, sonar and communication 
systems. So how to detect LFM echo signal degraded by 
noise is an important question and attracting more and more 
attention [3]-[5]. FRFT is suitable for dealing with chirp signal 
due to its orthonormal chirped basis. LFM signal can be 
concentrated in the proper fractional Fourier domain. Usually 
the detection and parameter estimation of LFM signal is 
accomplished by step-based searching method [6]-[8] in 
two-dimensional fractional Fourier domain using this 
concentrated characteristic. But the step-based seeking 
method is poor efficient especially when the precision is 
highly expected. It is significative and necessary extremely to 
develop some other optimization methods to decrease the 
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time-cost of classical step-based searching method in 
fractional Fourier domain. 

 It shows that LFM signal transformed with FRFT may 
appear some different peak values in fractional Fourier 
domain but only the maximum of them conformable with 
LFM signal need to be found out. Intelligent optimization 
methods [9]-[15] such as genetic algorithms (GA), continuous 
ant colony algorithm (CACA), particle swarm optimization 
(PSO) and chaos optimization method (COA) are heuristic 
global searching techniques. In this paper, the intelligent 
optimization methods are introduced and applied to the 
problem of searching maximum value in two-dimension 
fractional Fourier domain. Some computation results show 
that the COA takes less iterative numbers than the former 
three global optimization methods in continuous function 
optimization problems [15]. But the traditional COA has the 
deficiency of costing much time to get the maximum value at 
the late process of iteration, which affects the rapidity of 
convergence. To overcome this limitation the two improved 
chaos optimization methods and another three hybrid 
algorithm combing COA and Quasi-Newton method are 
presented and compared with step-based searching method 
and the former intelligent optimization methods. Simulation 
results show that the performances of the three proposed 
optimization methods are better than that of the other five 
optimization methods and it seems that the proposed hybrid 
optimization method has the best performance in all the 
above mentioned optimization methods. This paper is 
organized as followed: The mathematical description of the 
fractional Fourier domain optimization problem is given in 
Section II. Intelligent optimization methods applied in 
fractional Fourier domain are introduced and summarized in 
Section III. Three proposed optimization methods based on 
COA is presented in Section IV in detail. Some simulation 
results are described and analyzed in Section V. conclusions 
are given in Section VI. 
 

II. PROBLEM DSECRIPTION 
The fractional Fourier transform of signal x(t) is defined 

as: 
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The kernel of FRFT approaches ( , ) ( )pK u t u tδ= −  for 

0p =  and ( , ) ( )pK u t u tδ= +  for 2p = ± . 

In practice, signal x(t) is always represented in a series of 
discrete values after sampling and A/D transformation. 
Corresponding, the fast discrete fractional Fourier transform 
algorithm is described as: 
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So the optimization problem of Extremum Seeking for 
LFM signal in fractional Fourier domain can de expressed as 
following: 

Look for proper 0 0( , )p u  to make the target function 
2( , ) | ( ) |pf p u X u=  maximum. That is: 

( )2
0 0

( , )
( , ) arg max | ( ) |p

p u
p u X u=                    (4) 

We can see from (3) and (4) that the fractional domain 
optimization target function is multi-dimensional and 
non-linear exponential complicated function. Moreover, the 
discrete signals especially LFM signal transformed by FRFT, 
the target function is non-convex, and as a result, many local 
peak values may exist besides the global maximum value in 
fractional Fourier plane, which increases the difficulty of 
Extremum searching further. 

 

III. INTELLIGENT OPTIMIZATION METHODS 

A. Genetic Algorithms (GA) 
Genetic Algorithms is a population-based approach widely 

used to the solution of different optimization problems. The 
basic idea of GA approach arises from the thought of 
evolution and the diagram of GA is illustrated in Fig. 1.  
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Figure 1. Diagram of genetic algorithm 

B. Continuous Ant Colony Algorithm (CACA) 
Continuous Ant Colony Algorithm is developed from the 

basic Ant Colony Algorithm to solve the problem of 
continuous function optimization. Each ant release 
pheromone proportion to function value in the process of 
searching. Ant adjusts its behavior by pheromone and is 
prone to select the position exists more pheromone. The 
outline of CACA is given below: 

(1) Set maximum iterative number K, pheromone, and 
select several feasible solutions randomly as initialized ants. 

(2) Compute the function value of each ant and update 
local and global pheromone. 

(3) Ants select next solution according to pheromone 
information. 

(4) Termination criterion: if k< K, then k=k+1 and go back 
to (2). Otherwise, stop. 

C. Particle Swarm Optimization (PSO) 
Particle Swarm Optimization, inspired by the social 

behavior of swarms of birds and fish schools, is one of the 
artificial lives or multiple agents’ type techniques. PSO 
exploits a swarm of particles probing promising regions of 
the D-dimension search space with adaptable velocity. Each 
particle changes its position according to the best position it 
encountered and the best position attained by all particles. 
The update formula of velocity and position is stated by (5) 
and (6):  

1
1 2( ) ( )k k k k

i i i i i g iv w v c a p x c b p x+ = + − + −        (5) 

1 1k k k
i i ix x v+ += +                               (6) 

where: 
k
iv : Velocity vector of particle i at iteration k. 

1k
iv + : Modified velocity of particle i at next iteration k+1. 
k
ix : Positioning vector of particle i at iteration k. 

a , b : Random number between 0 and 1. 

ip  : Best position found by particle i  

gp  : Best position found by particle swarm separately. 

1c , 2c : Positive constants. 

iw : Weight function for velocity of particle i. 
1k

ix + : modified position of particle i at next iteration k+1. 

D. Chaos Optimization Algorithm(COA) 
Chaos is an universal phenomenon occurs in non-linear 

and deterministic systems. And chaotic motion has the 
feature of ergodicity that is Chaotic movement can go 
through all the sates of a certain space. The chaos 
optimization method proposed by Li and Wang [15] hunts the 
feasible solution based on the ergodicity characteristic of 
chaotic variant. The schedule of COA is demonstrated as 
followings: 

Step 1) Produce chaotic sequences using chaotic evolution 
equation (7). Note that the interval of chaotic sequences is 
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between 0 and 1. 
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Step 2) Map the chaotic sequences to variable interval by 
way of carrier wave according to the particular resolved 
problem.  

Step 3) Compare the function value of each chaotic 
sequence and pick out the best value as the output when the 
function value keep invariant and doesn’t not increment 
anymore. 

 

IV. THREE IMPROVED METHODS BASED ON CHAOS 
OPTIMIZATION ALGORITHMS 

The conventional chaos optimization algorithm has the 
shortcoming of inefficiency in the late iteration, and the three 
improved optimization algorithms are presented to overcome 
that disadvantage. 

A. The First Improved Chaos Optimization 
Algorithm(ICOA1) 

COA has two main shortages. Firstly chaotic sequences 
are formed using certain chaotic map. The logistic map 
signified by (7) is usually adopted in COA. But the 
distribution of chaotic sequences produced by logistic map is 
non-uniform leading to the slow constringency. The 
unlimited fold map remarked by (8) is uniform map with 
which we replace logistic map to accelerate the rate of 
convergence. The distribution of the two maps is 
demonstrated in fig. 2. Secondly the number of chaotic 
sequences is always set to large in order to ensure find the 
maximum value of multimodal function. The convergence of 
COA is affected and related with the initialized value. So we 
reduce the number of chaotic sequences and execute several 
times of the COA with different initialized value. This is the 
first proposed COA.  

1
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              (8) 

 

Figure 2. Distribution of logistic map and unlimited fold map 

B. The second improved Chaos Optimization 
Algorithm(ICOA2) 

Like the first improved COA, the second improved COA 
also reduces the number of chaotic sequences to enhance the 
efficiency but in another way apart from using unlimited fold 
map instead of logistic map. Usually after several iterations 
the evaluated value is near the true maximum value. 
Therefore we use the former results of COA as the initial 
value of the next chaotic sequences of COA. The truth value 
can be searched after a number of times. The diagram of first 
proposed CAO is illustrated in fig. 3. Note that the diagram of 
the second proposed method is similar to the first proposed 
method except that the iteration of COA is based on the 
former searching value in the second proposed method. 

C. The Hybrid Optimization Algorithm(HOA) 
Although our two proposed improved chaos optimization 

methods especially the second one enhance the convergence 
rate of the traditional chaos optimization algorithm in a 
certain extent, the proposed algorithms only use the function 
value of signal with different fractional Fourier domain in the 
procedure of iterations affecting the efficiency of the 
algorithm. The Quasi-Newton method [16]-[17], which 
overcomes the drawbacks of Newton method for maintaining 
the positive-definiteness property of Hessian matrix and 
solving its inverse matrix, has the speed of superlinear when 
its initial value is nearly the peak value due to its full use of 
the objective function value and gradient information. 
Usually the COA can find the rough region of possible 
solution after several iterations. So it’s feasible to combine 
the COA and Quasi-Newton method as hybrid algorithm in 
order to ensure both the global solution and the fast 
convergence ability. The diagram of the hybrid algorithm is 
demonstrated in fig. 4. 
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Figure 3. Diagram of the first ICOA 
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Figure 4. Diagram of the hybrid algorithm 

 

V. SIMULATION RESULTS 
We compare the performances of the above mentioned 

optimization methods from the following examples. 

Example 1. 
2

02( ) ( )i f t i tx t e w tπ πμ+= + , [0. ]t T∈ . 
Where the pulse width T is 0.1s, the frequency band is 

100-300Hz, the sampling frequency is 2000Hz, w(t) is 
Gaussian white noise, and the signal noise ratio is -5dB. 

The comparison of different optimization methods is 
described in Table I. 

 

TABLE I. OPTIMIZATION RESULTS OF VARIOUS SEARCHING METHODS FOR 
LFM SIGNAL AND GAUSSIAN NOISE  

Optimization 
methods 

Theoretical value 
(u0, p0) 

Estimated 
value 
(u*,p*) 

time 
(s) 

Step-based 
(0.001) 

(1.0635,1.4072) 

(1.063,1.4496) 17.2

Step-based 
(0.0005) (1.0635,1.4496) 34.4

GA (1.0633,1.4496) 29.8
CACA (1.0633,1.4496) 21.5
PSO (1.0632,1.4496) 11.4
COA (1.0634,1.4496) 8.8 
ICOA1 (1.0633,1.4496) 5.9 
ICOA2 (1.0633,1.4496) 4.8 
HOA (1.0634,1.4496) 3.3 
 

Example 2. 
2

02( ) ( )i f t i tx t e w tπ πμ+= + , [0. ]t T∈ . 
Where the pulse width T is 0.3s, the frequency band is 

100-300Hz, the sampling frequency is 2000Hz, w(t) is 
Gaussian white noise, and the signal noise ratio is -5dB. 
The comparison of different optimization methods is 
described in Table II. 

TABLE II. OPTIMIZATION RESULTS OF VARIOUS SEARCHING METHODS FOR 
LFM SIGNAL AND GAUSSIAN NOISE  

Optimization 
methods 

Theoretical 
value 
(u0, p0) 

Estimated 
value 
(u*,p*) 

time 
(s) 

Step-based 
(0.001) 

(1.0635,1.4981) 

(1.064,2.4291) 37.2

Step-based 
(0.0005) (1.0635,1.5250) 76.0

GA (1.0637,2.4291) 47.5
CACA (1.0637,2.4291) 45.8
PSO (1.0636,2.4291) 26.9
COA (1.0637,2.4291) 19.6
ICOA1 (1.0636,2.4291) 13.4
ICOA2 (1.0636,2.4291) 10.6
HOA (1.0635,2.4291) 7.0 

Example 3. 
2

02( ) ( )i f t i tx t e w tπ πμ+= + , [0. ]t T∈ . 
Where the pulse width T is 0.5s, the frequency band is 

100-300Hz, the sampling frequency is 2000Hz, w(t) is 
Gaussian white noise, and the signal noise ratio is -5dB. 

The comparison of different optimization methods is 
described in Table III. 

TABLE III. OPTIMIZATION RESULTS OF VARIOUS SEARCHING METHODS 
FOR LFM SIGNAL AND GAUSSIAN NOISE  

Optimization 
methods 

Theoretical value 
(u0, p0) 

Estimated value
(u*,p*) 

time 
(s) 

Step-based 
(0.001) 

(1.0635,3.1466) 

(1.064,3.1465) 91.5 

Step-based 
(0.0005) (1.0635,3.1465) 136.

8 

GA (1.0636,3.1465) 117.
6 

CACA (1.0637,3.1465) 138.
9 

PSO (1.0637,3.1465) 65.8 
COA (1.0637,3.1465) 48.6 
ICOA1 (1.0637,3.1465) 33.4 
ICOA2 (1.0636,3.1465) 25.5 
HOA (1.0636,3.1465) 14.9 

Example 4. 
2

02( ) ( )i f t i tx t e w tπ πμ+= + , [0. ]t T∈ . 
Where the pulse width T is 0.7s, the frequency band is 

100-300Hz, the sampling frequency is 2000Hz, w(t) is 
Gaussian white noise, and the signal noise ratio is -5dB. 
The comparison of different optimization methods is 
described in Table IV. 

TABLE IV. OPTIMIZATION RESULTS OF VARIOUS SEARCHING METHODS 
FOR LFM SIGNAL AND GAUSSIAN NOISE  

Optimization 
methods 

Theoretical 
value 
(u0, p0) 

Estimated 
value 
(u*,p*) 

time 
(s) 

Step-based 
(0.001) 

(1.0635,3.7231) 

(1.064,3.1465) 142.
9 

Step-based 
(0.0005) (1.0635,3.1465) 284.

5 

GA (1.0636,3.7283) 183.
1 

CACA (1.0637,3.7283) 198.
9 

PSO (1.0637, 3.7283) 101.
6 

COA (1.0637, 3.7283) 74.4 
ICOA1 (1.0637, 3.7283) 51.1 
ICOA2 (1.0636, 3.7283) 40.1 
HOA (1.0637, 3.7283) 25.2 
Example 5. ( ) ( )x t r t= , [0. ]t T∈ . 
Where the pulse width of transmitted signal T is 0.432s, 

the frequency band of the LFM signal is 650-850Hz, the 
sampling frequency is 5000Hz, r(t) is reverberation 
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containing echo signal detected by matched filter. The echo 
target appears in the distance of 5.2 kilometer approximately. 
As is illustrated in fig. 5. 

 
Figure 5. Detection of matched filter 

The comparison of different optimization methods is 
described Table V. 

TABLE V. OPTIMIZATION RESULTS OF VARIOUS SEARCHING METHODS FOR 
LFM ECHO SIGNAL IN REVERBERATION BACKGROUND 

Optimization 
methods 

Theoretical 
value 
(u0, p0) 

Estimated value 
(u*,p*) 

time 
(s) 

Step-based 
(0.001) 

(1.0255,6.9472) 

(1.024,6.8530) 168.3

Step-based 
(0.0005) (1.0235,6.8530) 339.7

GA (1.0237,6.8530) 252.4
CACA (1.0237,6.8530) 236.0
PSO (1.0237,6.8530) 112.5
COA (1.0237,6.8530) 87.3 
ICOA1 (1.0237,6.8530) 60.2 
ICOA2 (1.0237,6.8530) 44.9 
HOA (1.0237,6.8530) 25.1 

Example 6. ( ) ( )x t r t= , [0. ]t T∈ . 
Where the pulse width of transmitted signal T is 0.432s, 

the frequency band of the LFM signal is 650-850Hz, the 
sampling frequency is 5000Hz, r(t) is reverberation 
containing echo signal detected by matched filter. The echo 
target appears in the distance of 4.1 kilometer approximately. 
As is illustrated in fig. 6. 

 
Figure 6. Detection of matched filter 

The comparison of different optimization methods is 
described Table VI. 

TABLE VI. OPTIMIZATION RESULTS OF VARIOUS SEARCHING METHODS 
FOR LFM ECHO SIGNAL IN REVERBERATION BACKGROUND 

Optimization 
methods 

Theoretical value 
(u0, p0) 

Estimated value 
(u*,p*) 

time 
(s) 

Step-based 
(0.001) 

(1.0255,6.9658) 

(1.026,6.9606) 157.3 

Step-based 
(0.0005) (1.0255,6.9606) 314.9 

GA (1.0257,6.9606) 216.0 
CACA (1.0257,6.9606) 217.3 
PSO (1.0256,6.9606) 115.1 
COA (1.0258,6.9606) 81.6 
ICOA1 (1.0257,6.9606) 55.5 
ICOA2 (1.0256,6.9606) 41.9 
HOA (1.0256,6.9606) 23.1 
As can be seen from table I to VI that the theoretical and 

estimated values are a little different due to the effects of both 
discrete sampling and noise background. The time of all the 
mentioned optimization methods is related directly with the 
pulse width of the signal, which can be seen obviously from 
table I to IV with the same parameters except pulse width. 
This is because the computation time of fast discrete FRFT 
adopted in this paper is ( log )O N N , N  is the time-bandwidth 
product. The elapsed time of step-based optimization method 
is in proportional with step. When the step is 0.001, it takes 
shorter time than that of GA and CACA, but as the increase 
of the step such as 0.0005, it costs much time that of GA and 
CACA. The estimated errors of the global optimization 
methods are not more than 0.0002 and could be regarded as 
the same approximately. So the performance of GA is almost 
the same as that of CACA but is worse than that of PSO 
considering both accuracy and speed. And the performance 
of COA is best in all the above optimization methods except 
our proposed methods due to the ergodicity property of each 
chaotic sequence and the use of second carrier technique that 
is the second search nearby the first searching results. The 
iteration ratios of the three proposed optimization methods 
are better than that of COA. Performance of ICOA2 is better 
than ICOA1 because it make full use of the former 
information. And the performance of the proposed hybrid 
algorithm is the best in all the mentioned optimization 
methods due to its adopting Quasi-Newton method and using 
the information of objective function sufficiently such as the 
function value and gradient information. 

Example 7. 
2

0

3
2

1

( ) ( )m mi f t i t
m

m

x t a e w tπ πμ+

=

= +∑ , [0. ]t T∈ . 

Where the pulse width T is 0.2s, the frequency bands of 
three LFM signals are 98-300Hz, 350-500Hz and 600-806Hz 
separately, the sampling frequency is 4000Hz, the amplitudes 
a1=1.0, a2=2.99 and a3=3, w(t) is Gaussian noise, and the 
signal noise ratio is -5dB. 

The comparison of different optimization methods is 
described in Table VII. 

TABLE VII. OPTIMIZATION RESULTS OF VARIOUS SEARCHING METHODS 
FOR THREE LFM SIGNAL AND GAUSSIAN NOISE 

Optimization 
methods 

Theoretical value 
(u0, p0) 

Estimated value 
(u*,p*) 

Step-based 
(0.001) (1.0328,4.9644) (1.033,4.9674) 
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Step-based 
(0.0001) (1.0329,4.9674) 

GA (1.0326,4.9674) 
CACA (1.0329,4.9674) 
PSO (1.0328,4.9674) 
COA (1.0329,4.9674) 
ICOA1 (1.0329,4.9674) 
ICOA2 (1.0329,4.9674) 
HOA (1.0329,4.9674) 

The true peak values of three LFM signals in fractional 
Fourier domain demonstrated in Fig. 7 are (1.0321, 1.4054), 
(1.0239, 3.0031) and (1.0328, 4.9644) separately. And the 
function value of (1.0328, 4.9644) is maximum which is a 
little bigger that of (1.0239, 3.0031). As can be seen from 
Table VII that all the intelligent optimization methods and 
our proposed algorithms can find the true global maximum 
value although there exits two almost same values. The 
resolution of the first and third LFM signal is no less than 
0.0001. It is the reason that the step-based method with step 
at least 0.0001 can distinguish the two different LFM signals. 
The intelligent optimization methods and our proposed 
algorithms can distinguish different LFM signals due to their 
searching mechanism with precision less than 0.0001. 

Figure 7. Counter map of three LFM signals in fractional Fourier domain 
 

VI. CONCLUSIONS 
Signals transformed with the fractional transform can be 

demonstrated in multi-value objective function and the 
maximum of them needed to be found out. The intelligent 
optimization methods are global heuristic searching 
algorithm. In this paper, we first introduce some intelligent 
optimization algorithms such as GA, CACA, PSO and COA 
in fractional Fourier transform for extreme searching to 
resolve the problem of the common used step-based method 
which is time consuming especially when the precision is 
highly desired. Then we present two improved chaos 
optimization algorithms in order to enhance the iterative 
speed. The two proposed improved chaos optimization 
algorithms only use the value of the objective function. So 
the third hybrid algorithm combing COA and Quasi-Newton 
method is proposed in order to accelerate the convergence 

rate further. Simulation results show that performances of the 
three proposed optimization method are better than that of 
step-based method and some other intelligent optimization 
methods that is GA, CACA and PSO. And it concludes that 
the proposed hybrid optimization algorithm is much more 
preferable balancing computation efficiency and precision. 
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