
International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

507

Abstract – While there exist various techniques that can be

used to colour a greyscale image, such as those described in [1],
[2], [3] and [4], in this paper we focus on one such technique
that can be used with various colour spaces such as RGB, LUV,
YCgCb, YCbCr, YUV, XYZ, and YIQ. This technique is
described in detail in [4]. In this paper we analyse the
performance of Kekre’s Median Fast Search, Kekre’s
Centroid Fast Search and Exhaustive Search algorithms in the
greyscale colouring process with respect to time taken for
colourization and quality of the coloured image.

Index Terms—colour transfer, colour palette, colour spaces,
pixel windows, colourization.

I. INTRODUCTION
While colour images are now quite commonplace, there

was a time when all images (and videos) were solely in
greyscale due to limitations in technology. For many of
these images, it is highly desirable to have a coloured
version to provide a greater touch of realism. Similarly,
there is also interest in being able to convert old feature
films that are entirely in greyscale to an acceptable coloured
version.

Many techniques have been proposed to achieve this
effect such as those described in [1], [2] and [3]. However,
these techniques have the inherent drawback of needing a
certain amount of human intervention as the colourization
process is being applied, such as choosing a seed pixel,
assigning it a colour and so on. In this paper, however, we
concentrate on the technique described in [4], which
requires minimal human interaction. All that is needed is a
source image of a similar scene to the target image being
constructed. Thus, the technique outlined in [4] can be
automated, allowing for the efficient generation of coloured
images from given greyscale images provided coloured
images of similar scenes are given.

The greyscale image colourization technique described in
[4] works on the principle of mapping greyscale (or
luminance) values to corresponding colour space values that
can be used to reconstruct the original colour. Since there

 *Senior Professor, #Assistant Professor and PhD Research Scholar, ^B.
E. Computers Student

*,#Mukesh Patel School of Technology, Management and Engineering,
SVKM’s NMIMS University, Vile Parle (W), Mumbai – 56

^Thadomal Shahani Engineering College, Bandra (W), Mumbai – 50,
India.

(Email:*hbkekre@yahoo.com,#sudeepthepade@gmail.com,^adibparkar
@gmail.com)

exists a many to one mapping between colour values and
their corresponding luminance values, if a pixel-by-pixel
mapping is constructed, the probability of finding the
correct match for a given luminance value is extremely low.
Thus, to improve the probability of finding a correct (or
near correct) match, more than one pixels are taken at a time
while constructing the luminance-to-colour (or gray-to-
colour) mapping table.

In [4], four pixels were grouped together to form a pixel
window grid size of 2 x 2 pixels. Thus each entry in the
mapping table corresponded to four pixels in the image. In
this paper, the grid size is varied from a grid of 1 x 2 pixels
to 3 x 3 pixels, along with 4 x 1, 4 x 2 and 2 x 4 pixel grids.
The largest grid size constructed in terms of the number of
pixels involved is a grid size of 3 x 3 pixels (that is, nine
pixels).

The main aim of this paper, however, is to compare the
performance of different search algorithms that can be used
to find a match in the luminance-to-colour (or gray-to-
colour) mapping table. The search algorithms that are used
in this paper are the Exhaustive Search (ES) algorithm,
Kekre’s Median Fast Search (KMFS) algorithm, and
Kekre’s Centroid Fast Search (KCFS) algorithm. The
KMFS algorithm has also been used in [4] but was
identified as Kekre’s Fast Search algorithm.

Each of these search algorithms is meticulously studied in
this paper, and a comprehensive comparison is obtained by
testing the search algorithms over various images and also
by varying pixel grid sizes. Thus, this paper attempts to give
a comprehensive analysis of the performance of the search
algorithms that can be used for colouring a greyscale image
using the procedure delineated in [4]. Performance of the
search algorithms is measured in terms of time taken for a
single search, time taken for colouring an entire greyscale
image and the quality of the coloured image. When the
source (colour) and target (greyscale) images used are the
same, quality is measured in terms of the Mean Squared
Error (MSE).

II. COLOUR SPACES USED FOR EXPERIMENTATION

A. RGB Colour Space (standard)
The RGB colour space is the standard red-green-blue

colour space used when constructing a colour image. The R,
G and B values indicate the red, green and blue components
respectively of the colour of the pixel. The R, G and B
values can vary from 0 to 255, thus allowing for the

Performance Analysis of Kekre's Median Fast
Search, Kekre's Centroid Fast Search and
Exhaustive Search Used for Colouring a

Greyscale Image
Dr. H. B. Kekre*, Sudeep D. Thepade# and Adib Parkar^

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

 508

construction of 24 bit colour images. The luminance is
calculated using a weighted average of the R, G and B
values such that the sum of the weights is unity.

B. Kekre’s LUV Colour Space
Kekre’s LUV colour space is introduced in [5], [6] and

[7], and is related to the standard RGB colour space as
follows: ܷܸܮ൩ ൌ 1 1 1െ2 1 10 െ1 1൩ . ܴܤܩ൩ (1)

 ܴܤܩ൩ ൌ 1 െ2 01 1 െ11 1 1 ൩ . 3ܷ/6ܸ/2/ܮ൩ (2)

The L/3 component provides the luminance values. The
Kekre’s LUV color space is special case of Kekre’s
Transform [14],[17].

C. Kekre’s YCgCb Colour Space
Kekre’s YCgCb colour space is a newly introduced

colour space and is related to the standard RGB colour
space as follows: ܻܾܥ݃ܥ൩ ൌ 1 1 11 െ1 01 0 െ1൩ . ܴܤܩ൩ (3)

 ܴܤܩ൩ ൌ 13 . 1 1 11 െ2 11 1 െ2൩ . ܻܾܥ݃ܥ൩ (4)

The Y/3 component provides the luminance values.

D. YCbCr Colour Space
The YCbCr colour space is currently used extensively

and its use in similar applications are researched in [8] and
[9]. It’s relation with the RGB colour space is as follows:
 ܻݎܥܾܥ൩ ൌ 0.2989 0.5866 0.1145െ0.1688 െ0.3312 0.50.5 െ0.4184 െ0.0816൩ . ܴܤܩ൩ (5)

 ܴܤܩ൩ ൌ 1 െ0.001 1.4021 െ0.3441 െ0.7141 1.7718 0.001 ൩ . ܻݎܥܾܥ൩ (6)

The Y component provides the luminance values.

E. YUV Colour Space
The YUV colour space is used in the PAL (Phase

Alternation Line), NTSC (National Television System
Committee) and SECAM (Sequentiel Couleur Avec
Mémoire or Sequential Colour with Memory) composite
colour video standards. It’s effectiveness in other
applications is studied in [10] and [11]. The following
matrices may be used to interconvert between the YUV and
RGB colour spaces:

 ܻܸܷ൩ ൌ 0.299 0.587 0.114െ0.14713 െ0.28886 0.4360.615 െ0.51498 0.10001൩ . ܴܤܩ൩ (7)
 ܴܤܩ൩ ൌ 0.74952 െ0.50901 1.13981.0836 െ0.22472 െ0.58060.97086 1.9729 0.00001467൩ . ܻܸܷ൩ (8)

The Y component (as in the YCbCr colour space)

provides the luminance values.

F. XYZ Colour Space
The XYZ colour space is not as widely used as the

YCbCr, YUV and YIQ colour spaces. Its relationship with
the RGB colour space is given as follows:

 ܼܻܺ൩ ൌ 0.412456 0.3575761 0.18043750.212673 0.7151522 0.07217500.019334 0.1191920 0.9503041൩ . ܴܤܩ൩ (9)
 ܴܤܩ൩ ൌ 3.240454 െ1.53714 െ0.49853െ0.96927 1.876011 0.0415560.055643 െ0.20403 1.057225൩ . ܼܻܺ൩ (10)

G. YIQ Colour Space
The YIQ colour space is derived from YUV colour space

and is optionally used by the NTSC composite colour video
standard. Its transformations are researched in [12]. The I
stands for in phase and Q for quadrature, which is the
modulation method used to transmit the colour information.
The YIQ and RGB interconversion matrices are as follows:

 ܫܻܳ ൩ ൌ 0.299 0.587 0.1140.596 െ0.275 െ0.3210.212 െ0.523 0.311 ൩ . ܴܤܩ൩ (11)

 ܴܤܩ൩ ൌ 1 0.956 0.6211 െ0.272 െ0.6471 െ1.107 1.704 ൩ . ܫܻܳ ൩ (12)

As in all the above Y based colour spaces, the Y
component provides the luminance values.

III. COLOUR TRANSFER ALGORITHM
The colour transfer algorithm is discussed in detail in [4]

specifically for the LUV colour space with a 2 x 2 pixel grid
size. The main steps of the algorithm for a general colour
space with an m x n pixel grid size are:

A. Build luminance-to-colour mapping table
The luminance-to-colour mapping table (or gray-to-

colour mapping table) is constructed as explained
previously in the Introduction using a provided colour
image of preferably a similar scene to the greyscale image
which is to be coloured. The more similar the scene, the
better are the results that are obtained.

B. Process the greyscale image one pixel grid at a time
Read one m x n grid of pixels from the greyscale image

that is to be recoloured and find the closest match of the
luminance values in the mapping table. The closest match is
determined by calculating the Euclidean distance between
the luminance values in the mapping table and the
luminance values of the pixel grid from the greyscale image.
Assuming there are g = m x n pixels in the grid, the
Euclidean distance d would be calculated for each grid from
the equation 13. ݀ଶ ൌ ൫݈݁ܿ݊ܽ݊݅݉ݑሺ݅ሻ௧ െ ሺ݅ሻ൯ଶ݁ܿ݊ܽ݊݅݉ݑ݈

ୀଵ
(13)

The mapping table entry with the smallest value of d must
be found. It must be noted that this does not guarantee the
best match, but with a moderate grid size, errors can be

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

509

minimized while still producing acceptable results with little
or no distortion.

This paper focuses on this step of the colour transfer
algorithm by comparing different techniques to find the best
match in the mapping table.

C. Recolour the greyscale image
The greyscale image is recoloured using the best match

found in step two of the algorithm one pixel grid at a time.

IV. EXHAUSTIVE SEARCH (ES)

A. The Algorithm
Exhaustive search is a very simple algorithm to

implement, but its performance deteriorates as the image
sizes increase or pixel grid sizes decrease.

In exhaustive search, every luminance entry in the
luminance-to-colour mapping table is compared with the
luminance values obtained from the greyscale image and the
Euclidean distance is calculated for each. This is extremely
expensive in terms of computational power as the size of the
mapping table increases because Euclidean distance
calculations are not trivial additions but comprise complex
operations such as summations and squares.

Only when the entire table is searched and the minimum
Euclidean distance is found, this algorithm terminates and
returns the entry with the minimum Euclidean distance.

B. Time Complexity
Consider an image of size M x N pixels and a grid size of

m x n pixels with m < M and n < N. Assume that M modulo
m = 0 and N modulo n = 0. This assumption ensures that the
image is divided into an integral number of grids. This is a
reasonable assumption to make, as any image can be padded
or resized to fulfil the above conditions.
Let,
 ݇ ൌ ܯ݉ ൈ ܰ݊ (14)

 Thus the number of entries in the mapping table will
be k. As the entire table must be searched, the complexity of
this algorithm using the standard big-O notation is O(k).
Thus the time complexity of exhaustive search increases
linearly with increase in either of the dimensions (width or
height) of the image.

V. KEKRE’S MEDIAN FAST SEARCH (KMFS)
Kekre’s Median Fast Search algorithm was first used in

[4] for a grid size of 2 x 2 pixels and was identified as
Kekre’s Fast Search algorithm. It is now extended to a grid
size of m x n pixels to perform a thorough comparison with
the exhaustive search algorithm both in terms of quality of
output as well as in terms of speed of computation. Note
that if the source colour image and the target greyscale
image (which is to be coloured using the colour palette
generated using the source colour image) are different, and
the actual coloured version of the greyscale image is not
available, the “quality” of the output is subjective.

A. The Algorithm
Kekre’s Median Fast Search algorithm, to a certain

degree, is similar to the standard binary search algorithm
that is extensively used for its low time complexity. Let g =
m x n be the number of pixels found in each pixel grid. Thus
every mapping table entry will have g luminance values. Let
the values be A1 to Ag.

First sort the entire mapping table with respect to A1 in
either ascending or descending order (either will do). We
chose to sort the table in ascending order.

Save the value of A1 found at the midpoint of the table
after sorting. Split the table into two equal halves (or as near
as possible into two equal halves) at this position (include
the midpoint into the upper half).

Now sort the entire upper half of the table and the entire
lower half of the table independently of each other with
respect to A2. Note that the values in A1 will now no longer
be sorted as we are now sorting the table values with respect
to A2. Now save the two values of A2 found at the respective
midpoints and once again split the table in the same manner
(thus now there will be four parts).

Repeat the process till sorting with respect to Ag, saving
all the midpoints. Once the table entries are sorted as such,
the table building process is said to be completed.

When searching the table, first compare the A1 luminance
value of the greyscale image pixel grid with the A1 value of
the first midpoint that had been saved. If the image
luminance value is less than or equal to the midpoint value,
it is very likely that the best match for this pixel grid will be
in the upper half of the table (assuming we have sorted in
ascending order). Now compare the value A2 of the image
pixel grid with the A2 value of the upper midpoint of the
second lot of midpoints. Repeat the process till we reach the
comparison of the Ag value with the one of the values in the
gth set of midpoints.

Now we will have a small set of table entries that are
likely to contain the correct mapping entry. The Euclidean
distance needs to be calculated only for this small set of
entries.

The following figure (Figure 1) illustrates how a search
using the KMFS algorithm would proceed for a 4 pixel grid
size:

Figure 1 – Illustration of KMFS Algorithm

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

 510

Only the entries in the coloured block of the final column
in the mapping table need to have their Euclidean distances
calculated with the greyscale image pixel grid luminance
values to find the best match (that is, the entry with the
minimum distance). Clearly the number of computations is
reduced drastically when the KMFS algorithm is used as
compared to the exhaustive search algorithm.

However, it must be noted that now there is a possibility
that the table entry with the actual minimum Euclidean
distance is not found due to an incorrect branch being
chosen. This scenario may occur because the selection of a
branch of the table is based on only one of the luminance
values in the pixel grid and not all. The probability of such
an occurrence increases with increase in grid size.

B. Time Complexity
Consider an image of size M x N pixels and a grid size of

m x n pixels with m < M and n < N.
Assume that M modulo m = 0 and N modulo n = 0. This

assumption ensures that the image is divided into an integral
number of grids. This is a reasonable assumption to make,
as any image can be padded or resized to fulfil the above
conditions.

Let, ݇ ൌ ܯ݉ ൈ ܰ݊ (15)

Thus the number of entries in the mapping table will be k.
Let g be the grid size, ݃ ൌ ݉ ൈ ݊ (16)
Searching now comprises of g simple comparisons

followed by the calculation of approximately k/2g Euclidean
distances.

From (15) and (16) we find, g ൌ MNk (17)

Thus, the complexity of the KMFS algorithm in the
standard big-O notation is:

O kۇۉ 2MN୩൘ ۊی

Hence, Kekre’s Median Fast Search will always
outperform exhaustive search with regard to time
complexity.

Kekre’s Centroid Fast Search (KCFS)
Kekre’s Centroid Fast Search algorithm [15],[16] is a

variation of Kekre’s Median Fast Search algorithm.
The Algorithm
Let g = m x n be the number of pixels found in each pixel

grid. Thus every mapping table entry will have g luminance
values. Let the values be A1 to Ag.

Now instead of finding the median of the values in A1
(i.e. sorting the values and finding the middle value),
compute the mean of the values in A1. Now split the table
into two parts with all values of A1 that are less than the
mean in one section and all values that are greater than the
mean in the other section. Note that just as in the case of
Kekre’s Median Fast Search, when arranging luminance
values with respect to A1, all the other luminance values get
arranged accordingly as well.

Once the table is split with respect to A1, consider the
two sections separately and split them with respect to A2
using the same procedure. Repeat the process till Ag is
reached. It must be noticed that while in the KMFS
algorithm, the table is split into almost equal sections, when
using the KCFS algorithm, the sections obtained need not
necessarily be equal.

The search procedure is almost identical to the process
described in the KMFS algorithm, except that in this case
each luminance value is compared with the mean value
rather than the midpoint (median) value. If it is less than the
mean, the first section is chosen for a search for the next
luminance value, else the second section is chosen. This
continues till a comparison has been made at the Ag level.
However, the reduction in the number of Euclidean distance
calculations needed using this search algorithm may not be
as great as the reduction obtained using the KMFS
algorithm due to the possibility of skewed section sizes.

In addition, the drawback of the KMFS algorithm also
applies to the KCFS algorithm. It is possible for the KCFS
algorithm also to choose an incorrect branch leading to the
best possible match for the luminance values to not be found.

 Time Complexity
Consider an image of size M x N pixels and a grid size of

m x n pixels with m < M and n < N.
Once again, as in the case of Kekre’s Median Fast Search,

assume that M modulo m = 0 and N modulo n = 0.
Let, k ൌ Mm ൈ Nn (18)

Thus the number of entries in the mapping table will be k.
Let g be the grid size, ݃ ൌ ݉ ൈ ݊ (19)
Thus, there will be g luminance values for each entry in

the mapping table (A1 to Ag).
As in the case of Kekre’s Median Fast Search, searching

now comprises of g simple comparisons followed by the
calculation of Euclidean distances. However, in the case of
this algorithm, the number of entries in the mapping table
for which the Euclidean distance must be calculated can no
longer be approximated to k/2g, as the mapping table is no
longer split into equal (or even almost equal) parts.

Let p be the number of divisions in the mapping table for
the last entry Ag. Thus, the expected number of entries for
which the Euclidean distance must be calculated is
approximately k/p.

Thus, the complexity of the KCFS algorithm in the
standard big-O notation is: ܱቀ݇ ൗ ቁ

Note that in the best case, the table will be split into
sections of nearly equal sizes and in this scenario p = 2g,
thus reducing the time complexity of KCFS to that of
KMFS. In general, however, p < 2g.

Hence, Kekre’s Centroid Fast Search will always
outperform exhaustive search but, in general, will not
perform as well as Kekre’s Median Fast Search with respect
to time complexity.

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

511

VI. COMPARISON OF RECONSTRUCTED IMAGES USING
VARIOUS PIXEL GRID SIZES (SAME SOURCE AND TARGET)
Various images, each of size 180 x 180 pixels, were used

to build the mapping table, and their greyscale equivalents
were coloured using the constructed mapping table for
various grid sizes with searches performed using all the
search algorithms discussed previously.

The following bar chart (Figure 2) shows the comparison
of the average mean squared error obtained across all
images and all seven colour spaces for various grid sizes
using the various search algorithms.

As can be seen from the bar chart, Kekre’s Median Fast
Search actually outperforms Exhaustive Search for the
smaller grid sizes, but its performance rapidly deteriorates
as the grid sizes increase and become more rectangular.
Note how the square grid size of 3 x 3 pixels performs
significantly better using the KMFS algorithm as compared
to the rectangular grid sizes of 2 x 4 pixels and 4 x 2 pixels
with the same algorithm.

Kekre’s Centroid Fast Search performs similarly to
Kekre’s Median Fast Search for smaller grid sizes but
performs significantly better than it for the larger, more
rectangular grid sizes, though not as well as Exhaustive
Search.

Figure 2 – MSE across various Grid Sizes

The comparison of the search algorithms with respect to
time taken per search across the various grid sizes for all
images is shown in the following bar chart (Figure 3). The
time has been measured in milliseconds.

Figure 3 – Time Taken per Search across various Grid Sizes

The comparison of the average time taken to reconstruct
an entire image across all images using the search
algorithms is shown in Figure 4. Here the time has been
measured in seconds. All images, as mentioned previously
were of the same dimensions (180 x 180 pixels), thus
allowing for a valid comparison of reconstruction times
across grid sizes.

Thus, it is actually better to use one of Kekre’s Fast
Search algorithms whenever a small pixel grid size is being
used. They are not only faster, but also produce better
results. However, it is also seen that when the grid size is
very small, the overall errors are larger as compared to a
slightly larger grid size like 2 x 2 pixels in the case of
KMFS and 3 x 3 pixels in the case of ES. It is also noticed
that the KCFS algorithm thoroughly outperforms the KMFS
algorithm in terms of errors for larger grid sizes.

Figure 4 – Time Taken for Reconstruction of Entire Image across various

Grid Sizes
When time is considered, Kekre’s Fast Search algorithms

comprehensively outperform the Exhaustive Search
algorithm both in terms of individual search times and in
terms of the time taken to reconstruct an entire image.
Between the two, the difference is not very great with the
KMFS algorithm slightly outperforming the KCFS
algorithm.

However, when MSE is also taken into account, thanks to
the fact that the KCFS algorithm significantly outperforms
the KMFS algorithm in this respect for larger grid sizes such
as 3 x 3, the KCFS algorithm should be preferred for such
grid sizes. For a 2 x 2 grid size or less, the performance of
both algorithms is similar with the KMFS algorithm being
slightly more efficient with respect to time, so the KMFS
algorithm should be preferred.

VII. COMPARISON OF RECONSTRUCTED IMAGES USING
VARIOUS PIXEL GRID SIZES (DIFFERENT SOURCE AND

TARGET)
Following are some images that were reconstructed using

the search algorithms. Note how both KMFS and ES give
comparable results for the smaller grid size but distortions
increase for the KMFS algorithm as grid sizes increase.
Also note how quality degradation is much lesser for KCFS
as compared to KMFS as grid size increases.

As the original colour images of the greyscale images
used were not available, the MSE could not be calculated,
hence these results are subjective. However, the time taken
per search and the time taken for the complete
reconstruction of the colour images was measured, and is
shown in the bar charts following the images.

Both the original images (that is the coloured images) and
the greyscale images to be coloured were of the same size,
180 x 180 pixels.

0

20

40

60

80

100

120

140

1 x 2 2 x 1 1 x 3 3 x 1 1 x 4 2 x 2 4 x 1 2 x 3 3 x 2 3 x 3 2 x 4 4 x 2

M
ea

n
Sq

ua
re

 E
rr

or

Grid Size

ES

KMFS

KCFS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 x 2 2 x 1 1 x 3 3 x 1 1 x 4 2 x 2 4 x 1 2 x 3 3 x 2 2 x 4 4 x 2 3 x 3

T
im

e
(m

ill
is

ec
on

ds
)

Grid Size

ES

KMFS

KCFS

0
2
4
6
8

10
12
14
16
18
20

1 x 2 2 x 1 1 x 3 3 x 1 1 x 4 2 x 2 4 x 1 2 x 3 3 x 2 2 x 4 4 x 2 3 x 3

T
im

e
(s

ec
on

ds
)

Grid Size

ES

KMFS

KCFS

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

 512

 a) Source b) Target

 1 x 2 2 x 2 3 x 3 4 x 2

c) Exhaustive Search

 1 x 2 2 x 2 3 x 3 4 x 2

d) Kekre’s Median Fast Search

 1 x 2 2 x 2 3 x 3 4 x 2

e) Kekre’s Centroid Fast Search
Figure 5 – Reconstruction of target image using similar source image

Figure 6 – Time taken per search (in milliseconds)

Figure 7 – Time taken for complete reconstruction of the colour image (in

seconds)

 a) Source b) Target

 1 x 2 2 x 2 3 x 3 4 x 2

c) Exhaustive Search

 1 x 2 2 x 2 3 x 3 4 x 2

d) Kekre’s Median Fast Search

 1 x 2 2 x 2 3 x 3 4 x 2

e) Kekre’s Centroid Fast Search
Figure 8 – Reconstruction of target image using similar source image

Figure 9 – Time taken per search (in milliseconds)

Figure 10 – Time taken for complete reconstruction of the colour image (in

seconds)

VIII. CONCLUSION
In this paper, we have done a comprehensive comparison

of search algorithms used for colouring greyscale images by
the technique described in [4].

We have found that while in general, Kekre’s Fast Search
algorithms do not perform as well as the Exhaustive Search
algorithm with respect to image quality; they still
outperform the Exhaustive Search algorithm for smaller
pixel grid sizes.

0

0.5

1

1.5

2

2.5

1 x 2 2 x 2 4 x 2 3 x 3

T
im

e
(m

ill
is

ec
on

ds
)

Grid Size

ES

KMFS

KCFS

0

5

10

15

20

25

1 x 2 2 x 2 4 x 2 3 x 3

T
im

e
(s

ec
on

ds
)

Grid Size

ES

KMFS

KCFS

0

0.5

1

1.5

2

2.5

3

1 x 2 2 x 2 4 x 2 3 x 3

T
im

e
(m

ill
is

ec
on

ds
)

Grid Size

ES

KMFS

KCFS

0

5

10

15

20

25

30

1 x 2 2 x 2 4 x 2 3 x 3

T
im

e
(s

ec
on

ds
)

Grid Size

ES

KMFS

KCFS

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

513

However, we have also proved that Kekre’s Fast Search
algorithms always perform significantly better than the
Exhaustive Search algorithm when time taken is considered.
This has been proved both by algorithmic analysis, and by
actual measurements.

Between the KMFS and KCFS algorithms we have found
that the KMFS algorithm is slightly faster than the KCFS
algorithm in general with similar image quality results for
smaller pixel grid sizes. On the other hand, as the pixel grid
sizes increase above 2 x 2 pixels, the errors obtained using
the KMFS algorithm drastically increase. While errors also
increase when using the KCFS algorithm, the increase is
significantly lesser than that of the KMFS algorithm.

Thus, in conclusion, it can be stated that when using pixel
grid sizes with areas up to 4 pixels (that is, 2 x 2 pixels),
Kekre’s Median Fast Search algorithm should be used due
to its highly superior performance in terms of time and
acceptable performance in terms of image quality. For larger
grid sizes (for example, 3 x 3 pixels) Kekre’s Centroid Fast
Search algorithm should be preferred instead.

REFERENCES
[1] T. Welsh, M. Ashikhmin, and K. Mueller, Transferring color to

grayscale images,” ACM TOG, vol. 20, no. 3, pp. 277–280, 2002.
[2] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color transfer

between images,” IEEE Computer graphics and applications, vol. 21,
no. 5, pp. 34–41, September/October 2001.

[3] H. B. Kekre, Sudeep D. Thepade, “Creating the Color Panoramic
View using Medley of Grayscale and Color Partial Images”, WASET
International Journal of Electrical, Computer and System Engineering
(IJECSE), Volume 2, No. 3, Summer 2008.

[4] H. B. Kekre, Sudeep D. Thepade, “Color Traits Transfer to Grayscale
Images”, In Proc. of Int. Conference on Emerging Trends in Engg.
And Tech., ICETET-2008.

[5] H. B. Kekre, Sudeep D. Thepade, “Image Blending in Vista Creation
using Kekre’s LUV Color Space”, In SPIT-IEEE Colloquium, SPIT
Mumbai, INDIA, Feb 4-5,2008.

[6] H. B. Kekre, Sudeep D. Thepade, “Improving ‘Color to Gray and
Back’ using Kekre’s LUV Color Space”, IEEE International
Advanced Computing Conference 2009 (IACC ’09), Thapar
University, Patiala, INDIA, 6-7 March 2009.

[7] H. B. Kekre, Sudeep D. Thepade, “Boosting Block Truncation
Coding using Kekre’s LUV Color Space for Image Retrieval”,
WASET International Journal of Electrical, Computer and System
Engineering (IJECSE), Volume 2, No.3, Summer 2008.

[8] Son Lam Fung, A. Bouzerdoum, D. Chai, “A novel skin color model
in YCbCr color space and its application to human face detection”, In
Proc. of International Conference on Image Processing (ICIP-2002),
Vol.1, pp. I289-I292.

[9] Hideki Noda, Michiharu Niimi, “Colorization in YCbCr color space
and its application to JPEG images”, Pattern Recognition Society
Published by Elsevier B.V., Vol.40, number 12, pp.3714-3720,
December, 2007.

[10] H. B. Kekre, Sudeep D. Thepade, “Using YUV Color Space to Hoist
the Performance of Block Truncation Coding for Image Retrieval”,
IEEE International Advanced Computing Conference 2009
(IACC ’09), Thapar University, Patiala, INDIA, 6-7 March 2009.

[11] Daniela Stanescu, et. al., “Steganography in YUV color space”, IEEE
International Workshop on Robotic and Sensors Environments,
ROSE-2007, Ottawa, Canada, 12-13 October 2007.

[12] B. Ahirwal, M. Khadtare, R. Mehta, “FPGA based system for color
space transformation RGB to YIQ and YCbCr”, In Proc. of Int.
Conference on Intelligent and Advanced Systems, ICIAS 2007, Kuala
Lumpur, pp.:1345-1349, 25-28 Nov 2007.

[13] H. B. Kekre, Sudeep D. Thepade, “Color Based Image Retrieval
using Amendment Block Truncation Coding with YCbCr Color
Space”, International Journal on Imaging (IJI), Volume 2, Number
A09, Autumn 2009, pp. 2-14.

[14] H. B. Kekre, Sudeep D. Thepade, “Image Retrieval using Non-
Involutional Orthogonal Kekre’s Transform”, International Journal of

Multidisciplinary Research and Advances in Engineering (IJMRAE),
Ascent Publication House, Volume 1, No.I, 2009.

[15] H.B.kekre, Tanuja K. Sarode, “Centroid Based Fast Search Algorithm
for Vector Quantization”, International Journal of Imaging (IJI),
Volume 1, Number A08, pp. 73-83, Autumn 2008.

[16] H.B.kekre, Tanuja K. Sarode, “Fast Codevector Search Algorithm for
3-D Vector Quantized Codebook”, WASET International Journal of
Computer and Information Science and Engineering (IJCISE),
Volume 2, Number 4, pp. 235-239, Fall 2008.

[17] H. B. Kekre, Sudeep D. Thepade, “Improving the Performance of
Image Retrieval using Partial Coefficients of Transformed Image”,
International Journal of Information Retrieval, Serials Publications,
Volume 2, Issue 1, 2009, pp. 72-79.

Dr. H. B. Kekre has received B.E. (Hons.) in Telecomm.
Engg. from Jabalpur University in 1958, M.Tech
(Industrial Electronics) from IIT Bombay in 1960,
M.S.Engg. (Electrical Engg.) from University of Ottawa in
1965 and Ph.D. (System Identification) from IIT Bombay
in 1970. He has worked Over 35 years as Faculty of

Electrical Engineering and then HOD Computer Science and Engg. at IIT
Bombay. For last 13 years worked as a Professor in Department of
Computer Engg. at Thadomal Shahani Engineering College, Mumbai. He is
currently Senior Professor working with Mukesh Patel School of
Technology Management and Engineering, SVKM’s NMIMS University,
Vile Parle(w), Mumbai, INDIA. He has guided 17 Ph.D.s, 150
M.E./M.Tech Projects and several B.E./B.Tech Projects. His areas of
interest are Digital Signal processing and Image Processing. He has more
than 250 papers in National / International Conferences / Journals to his
credit. Recently six students working under his guidance have received best
paper awards. Currently he is guiding ten Ph.D. students.

Sudeep D. Thepade has Received B.E.(Computer)
degree from North Maharashtra University with
Distinction in 2003. M.E. in Computer Engineering from
University of Mumbai in 2008 with Distinction, currently
Perusing Ph.D. from SVKM’s NMIMS University,
Mumbai. He has more than 06 years of experience in

teaching and industry. He was Lecturer in Dept. of Information Technology
at Thadomal Shahani Engineering College, Bandra(W), Mumbai for nearly
04 years. Currently working as Assistant Professor in Computer
Engineering at Mukesh Patel School of Technology Management and
Engineering, SVKM’s NMIMS University, Vile Parle(W), Mumbai,
INDIA. He is member of International Association of Engineers (IAENG)
and International Association of Computer Science and Information
Technology (IACSIT), Singapore. His areas of interest are Image
Processing and Computer Networks. He more than 48 papers in
National/International Conferences/Journals to his credit with a Best Paper
Award at International Conference SSPCCIN-2008 and Second Best Paper
Award at ThinkQuest-2009 National Level paper presentation competition
for faculty.

Adib Parkar is currently pursuing a Bachelors (B.E.)
degree in Computer Science from Thadomal Shahani
Engineering College in Mumbai, India. He has been an
active IEEE Student Member for 3 years and is also a
member of the Computer Society of India. His areas of

interest lie in the fields of Image Processing and Artificial Intelligence.

