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Abstract – While there exist various techniques that can be 

used to colour a greyscale image, such as those described in [1], 
[2], [3] and [4], in this paper we focus on one such technique 
that can be used with various colour spaces such as RGB, LUV, 
YCgCb, YCbCr, YUV, XYZ, and YIQ. This technique is 
described in detail in [4]. In this paper we analyse the 
performance of  Kekre’s Median Fast Search, Kekre’s 
Centroid Fast Search and Exhaustive Search algorithms in the 
greyscale colouring process with respect to time taken for 
colourization and quality of the coloured image. 
 

Index Terms—colour transfer, colour palette, colour spaces, 
pixel windows, colourization. 

 

I. INTRODUCTION 
While colour images are now quite commonplace, there 

was a time when all images (and videos) were solely in 
greyscale due to limitations in technology. For many of 
these images, it is highly desirable to have a coloured 
version to provide a greater touch of realism. Similarly, 
there is also interest in being able to convert old feature 
films that are entirely in greyscale to an acceptable coloured 
version. 

Many techniques have been proposed to achieve this 
effect such as those described in [1], [2] and [3]. However, 
these techniques have the inherent drawback of needing a 
certain amount of human intervention as the colourization 
process is being applied, such as choosing a seed pixel, 
assigning it a colour and so on. In this paper, however, we 
concentrate on the technique described in [4], which 
requires minimal human interaction. All that is needed is a 
source image of a similar scene to the target image being 
constructed. Thus, the technique outlined in [4] can be 
automated, allowing for the efficient generation of coloured 
images from given greyscale images provided coloured 
images of similar scenes are given. 

The greyscale image colourization technique described in 
[4] works on the principle of mapping greyscale (or 
luminance) values to corresponding colour space values that 
can be used to reconstruct the original colour. Since there 
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exists a many to one mapping between colour values and 
their corresponding luminance values, if a pixel-by-pixel 
mapping is constructed, the probability of finding the 
correct match for a given luminance value is extremely low. 
Thus, to improve the probability of finding a correct (or 
near correct) match, more than one pixels are taken at a time 
while constructing the luminance-to-colour (or gray-to-
colour) mapping table. 

In [4], four pixels were grouped together to form a pixel 
window grid size of 2 x 2 pixels. Thus each entry in the 
mapping table corresponded to four pixels in the image. In 
this paper, the grid size is varied from a grid of 1 x 2 pixels 
to 3 x 3 pixels, along with 4 x 1, 4 x 2 and 2 x 4 pixel grids. 
The largest grid size constructed in terms of the number of 
pixels involved is a grid size of 3 x 3 pixels (that is, nine 
pixels). 

The main aim of this paper, however, is to compare the 
performance of different search algorithms that can be used 
to find a match in the luminance-to-colour (or gray-to-
colour) mapping table. The search algorithms that are used 
in this paper are the Exhaustive Search (ES) algorithm, 
Kekre’s Median Fast Search (KMFS) algorithm, and 
Kekre’s Centroid Fast Search (KCFS) algorithm. The 
KMFS algorithm has also been used in [4] but was 
identified as Kekre’s Fast Search algorithm. 

Each of these search algorithms is meticulously studied in 
this paper, and a comprehensive comparison is obtained by 
testing the search algorithms over various images and also 
by varying pixel grid sizes. Thus, this paper attempts to give 
a comprehensive analysis of the performance of the search 
algorithms that can be used for colouring a greyscale image 
using the procedure delineated in [4]. Performance of the 
search algorithms is measured in terms of time taken for a 
single search, time taken for colouring an entire greyscale 
image and the quality of the coloured image. When the 
source (colour) and target (greyscale) images used are the 
same, quality is measured in terms of the Mean Squared 
Error (MSE). 
 

II. COLOUR SPACES USED FOR EXPERIMENTATION 

A. RGB Colour Space (standard) 
The RGB colour space is the standard red-green-blue 

colour space used when constructing a colour image. The R, 
G and B values indicate the red, green and blue components 
respectively of the colour of the pixel. The R, G and B 
values can vary from 0 to 255, thus allowing for the 
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construction of 24 bit colour images. The luminance is 
calculated using a weighted average of the R, G and B 
values such that the sum of the weights is unity. 

B. Kekre’s LUV Colour Space 
Kekre’s LUV colour space is introduced in [5], [6] and 

[7], and is related to the standard RGB colour space as 
follows: ܷܸܮ൩ ൌ   1 1 1െ2 1 10 െ1 1൩ .  ܴܤܩ൩ (1)

 ܴܤܩ൩ ൌ  1 െ2 01 1 െ11 1 1 ൩ .  3ܷ/6ܸ/2/ܮ൩ (2)

 

The L/3 component provides the luminance values. The 
Kekre’s LUV color space is special case of Kekre’s 
Transform [14],[17]. 

C. Kekre’s YCgCb Colour Space 
Kekre’s YCgCb colour space is a newly introduced 

colour space and is related to the standard RGB colour 
space as follows: ܻܾܥ݃ܥ൩ ൌ  1 1 11 െ1 01 0 െ1൩ . ܴܤܩ൩ (3)

 ܴܤܩ൩ ൌ  13 . 1 1 11 െ2 11 1 െ2൩ . ܻܾܥ݃ܥ൩ (4)

 

The Y/3 component provides the luminance values. 

D. YCbCr Colour Space 
The YCbCr colour space is currently used extensively 

and its use in similar applications are researched in [8] and 
[9]. It’s relation with the RGB colour space is as follows: 
 ܻݎܥܾܥ൩ ൌ   0.2989 0.5866 0.1145െ0.1688 െ0.3312 0.50.5 െ0.4184 െ0.0816൩ . ܴܤܩ൩ (5)

 ܴܤܩ൩ ൌ  1 െ0.001 1.4021 െ0.3441 െ0.7141 1.7718 0.001 ൩ . ܻݎܥܾܥ൩ (6)

 
The Y component provides the luminance values. 

E. YUV Colour Space 
The YUV colour space is used in the PAL (Phase 

Alternation Line), NTSC (National Television System 
Committee) and SECAM (Sequentiel Couleur Avec 
Mémoire or Sequential Colour with Memory) composite 
colour video standards. It’s effectiveness in other 
applications is studied in [10] and [11]. The following 
matrices may be used to interconvert between the YUV and 
RGB colour spaces: 

 ܻܸܷ൩ ൌ   0.299 0.587 0.114െ0.14713 െ0.28886 0.4360.615 െ0.51498 0.10001൩ . ܴܤܩ൩ (7)
 ܴܤܩ൩ ൌ  0.74952 െ0.50901 1.13981.0836 െ0.22472 െ0.58060.97086 1.9729 0.00001467൩ . ܻܸܷ൩ (8)

 
The Y component (as in the YCbCr colour space) 

provides the luminance values. 

F. XYZ Colour Space 
The XYZ colour space is not as widely used as the 

YCbCr, YUV and YIQ colour spaces. Its relationship with 
the RGB colour space is given as follows: 

 ܼܻܺ൩ ൌ 0.412456 0.3575761 0.18043750.212673 0.7151522 0.07217500.019334 0.1191920 0.9503041൩ . ܴܤܩ൩ (9)
 ܴܤܩ൩ ൌ 3.240454 െ1.53714 െ0.49853െ0.96927 1.876011 0.0415560.055643 െ0.20403 1.057225൩ . ܼܻܺ൩ (10)

G. YIQ Colour Space 
The YIQ colour space is derived from YUV colour space 

and is optionally used by the NTSC composite colour video 
standard. Its transformations are researched in [12]. The I 
stands for in phase and Q for quadrature, which is the 
modulation method used to transmit the colour information. 
The YIQ and RGB interconversion matrices are as follows: 

  ܫܻܳ ൩ ൌ 0.299 0.587 0.1140.596 െ0.275 െ0.3210.212 െ0.523 0.311 ൩ . ܴܤܩ൩ (11)

 ܴܤܩ൩ ൌ 1 0.956 0.6211 െ0.272 െ0.6471 െ1.107 1.704 ൩ .  ܫܻܳ ൩ (12)

As in all the above Y based colour spaces, the Y 
component provides the luminance values. 
 

III. COLOUR TRANSFER ALGORITHM 
The colour transfer algorithm is discussed in detail in [4] 

specifically for the LUV colour space with a 2 x 2 pixel grid 
size. The main steps of the algorithm for a general colour 
space with an m x n pixel grid size are: 

A. Build luminance-to-colour mapping table 
The luminance-to-colour mapping table (or gray-to-

colour mapping table) is constructed as explained 
previously in the Introduction using a provided colour 
image of preferably a similar scene to the greyscale image 
which is to be coloured. The more similar the scene, the 
better are the results that are obtained. 

B. Process the greyscale image one pixel grid at a time 
Read one m x n grid of pixels from the greyscale image 

that is to be recoloured and find the closest match of the 
luminance values in the mapping table. The closest match is 
determined by calculating the Euclidean distance between 
the luminance values in the mapping table and the 
luminance values of the pixel grid from the greyscale image. 
Assuming there are g = m x n pixels in the grid, the 
Euclidean distance d would be calculated for each grid from 
the equation 13. ݀ଶ ൌ ൫݈݁ܿ݊ܽ݊݅݉ݑሺ݅ሻ௧ െ ሺ݅ሻ൯ଶ݁ܿ݊ܽ݊݅݉ݑ݈

ୀଵ   
(13)

The mapping table entry with the smallest value of d must 
be found. It must be noted that this does not guarantee the 
best match, but with a moderate grid size, errors can be 
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minimized while still producing acceptable results with little 
or no distortion. 

This paper focuses on this step of the colour transfer 
algorithm by comparing different techniques to find the best 
match in the mapping table. 

C. Recolour the greyscale image 
The greyscale image is recoloured using the best match 

found in step two of the algorithm one pixel grid at a time. 
 

IV. EXHAUSTIVE SEARCH (ES) 

A. The Algorithm 
Exhaustive search is a very simple algorithm to 

implement, but its performance deteriorates as the image 
sizes increase or pixel grid sizes decrease. 

In exhaustive search, every luminance entry in the 
luminance-to-colour mapping table is compared with the 
luminance values obtained from the greyscale image and the 
Euclidean distance is calculated for each. This is extremely 
expensive in terms of computational power as the size of the 
mapping table increases because Euclidean distance 
calculations are not trivial additions but comprise complex 
operations such as summations and squares. 

Only when the entire table is searched and the minimum 
Euclidean distance is found, this algorithm terminates and 
returns the entry with the minimum Euclidean distance. 

B. Time Complexity 
Consider an image of size M x N pixels and a grid size of 

m x n pixels with m < M and n < N. Assume that M modulo 
m = 0 and N modulo n = 0. This assumption ensures that the 
image is divided into an integral number of grids. This is a 
reasonable assumption to make, as any image can be padded 
or resized to fulfil the above conditions. 
Let, 
 ݇ ൌ ܯ݉   ൈ  ܰ݊ (14)

 
          Thus the number of entries in the mapping table will 
be k. As the entire table must be searched, the complexity of 
this algorithm using the standard big-O notation is O(k). 
Thus the time complexity of exhaustive search increases 
linearly with increase in either of the dimensions (width or 
height) of the image. 
 

V. KEKRE’S MEDIAN FAST SEARCH (KMFS) 
Kekre’s Median Fast Search algorithm was first used in 

[4] for a grid size of 2 x 2 pixels and was identified as 
Kekre’s Fast Search algorithm. It is now extended to a grid 
size of m x n pixels to perform a thorough comparison with 
the exhaustive search algorithm both in terms of quality of 
output as well as in terms of speed of computation. Note 
that if the source colour image and the target greyscale 
image (which is to be coloured using the colour palette 
generated using the source colour image) are different, and 
the actual coloured version of the greyscale image is not 
available, the “quality” of the output is subjective. 

A. The Algorithm 
Kekre’s Median Fast Search algorithm, to a certain 

degree, is similar to the standard binary search algorithm 
that is extensively used for its low time complexity. Let g = 
m x n be the number of pixels found in each pixel grid. Thus 
every mapping table entry will have g luminance values. Let 
the values be A1 to Ag. 

First sort the entire mapping table with respect to A1 in 
either ascending or descending order (either will do). We 
chose to sort the table in ascending order. 

Save the value of A1 found at the midpoint of the table 
after sorting. Split the table into two equal halves (or as near 
as possible into two equal halves) at this position (include 
the midpoint into the upper half). 

Now sort the entire upper half of the table and the entire 
lower half of the table independently of each other with 
respect to A2. Note that the values in A1 will now no longer 
be sorted as we are now sorting the table values with respect 
to A2. Now save the two values of A2 found at the respective 
midpoints and once again split the table in the same manner 
(thus now there will be four parts). 

Repeat the process till sorting with respect to Ag, saving 
all the midpoints. Once the table entries are sorted as such, 
the table building process is said to be completed. 

When searching the table, first compare the A1 luminance 
value of the greyscale image pixel grid with the A1 value of 
the first midpoint that had been saved. If the image 
luminance value is less than or equal to the midpoint value, 
it is very likely that the best match for this pixel grid will be 
in the upper half of the table (assuming we have sorted in 
ascending order). Now compare the value A2 of the image 
pixel grid with the A2 value of the upper midpoint of the 
second lot of midpoints. Repeat the process till we reach the 
comparison of the Ag value with the one of the values in the 
gth set of midpoints. 

Now we will have a small set of table entries that are 
likely to contain the correct mapping entry. The Euclidean 
distance needs to be calculated only for this small set of 
entries. 

The following figure (Figure 1) illustrates how a search 
using the KMFS algorithm would proceed for a 4 pixel grid 
size: 

 

 
Figure 1 – Illustration of KMFS Algorithm 
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Only the entries in the coloured block of the final column 
in the mapping table need to have their Euclidean distances 
calculated with the greyscale image pixel grid luminance 
values to find the best match (that is, the entry with the 
minimum distance). Clearly the number of computations is 
reduced drastically when the KMFS algorithm is used as 
compared to the exhaustive search algorithm. 

However, it must be noted that now there is a possibility 
that the table entry with the actual minimum Euclidean 
distance is not found due to an incorrect branch being 
chosen. This scenario may occur because the selection of a 
branch of the table is based on only one of the luminance 
values in the pixel grid and not all. The probability of such 
an occurrence increases with increase in grid size. 

B. Time Complexity 
Consider an image of size M x N pixels and a grid size of 

m x n pixels with m < M and n < N. 
Assume that M modulo m = 0 and N modulo n = 0. This 

assumption ensures that the image is divided into an integral 
number of grids. This is a reasonable assumption to make, 
as any image can be padded or resized to fulfil the above 
conditions. 

Let, ݇ ൌ ܯ݉   ൈ  ܰ݊ (15)

Thus the number of entries in the mapping table will be k. 
Let g be the grid size, ݃ ൌ ݉ ൈ ݊ (16)
Searching now comprises of g simple comparisons 

followed by the calculation of approximately k/2g Euclidean 
distances. 

From (15) and (16) we find, g ൌ  MNk  (17)

Thus, the complexity of the KMFS algorithm in the 
standard big-O notation is: 

O kۇۉ 2MN୩൘  ۊی

Hence, Kekre’s Median Fast Search will always 
outperform exhaustive search with regard to time 
complexity. 

 
Kekre’s Centroid Fast Search (KCFS) 
Kekre’s Centroid Fast Search algorithm [15],[16] is a 

variation of Kekre’s Median Fast Search algorithm. 
The Algorithm 
Let g = m x n be the number of pixels found in each pixel 

grid. Thus every mapping table entry will have g luminance 
values. Let the values be A1 to Ag. 

Now instead of finding the median of the values in A1 
(i.e. sorting the values and finding the middle value), 
compute the mean of the values in A1. Now split the table 
into two parts with all values of A1 that are less than the 
mean in one section and all values that are greater than the 
mean in the other section. Note that just as in the case of 
Kekre’s Median Fast Search, when arranging luminance 
values with respect to A1, all the other luminance values get 
arranged accordingly as well. 

Once the table is split with respect to A1, consider the 
two sections separately and split them with respect to A2 
using the same procedure. Repeat the process till Ag is 
reached. It must be noticed that while in the KMFS 
algorithm, the table is split into almost equal sections, when 
using the KCFS algorithm, the sections obtained need not 
necessarily be equal. 

The search procedure is almost identical to the process 
described in the KMFS algorithm, except that in this case 
each luminance value is compared with the mean value 
rather than the midpoint (median) value. If it is less than the 
mean, the first section is chosen for a search for the next 
luminance value, else the second section is chosen. This 
continues till a comparison has been made at the Ag level. 
However, the reduction in the number of Euclidean distance 
calculations needed using this search algorithm may not be 
as great as the reduction obtained using the KMFS 
algorithm due to the possibility of skewed section sizes. 

In addition, the drawback of the KMFS algorithm also 
applies to the KCFS algorithm. It is possible for the KCFS 
algorithm also to choose an incorrect branch leading to the 
best possible match for the luminance values to not be found. 

 Time Complexity 
Consider an image of size M x N pixels and a grid size of 

m x n pixels with m < M and n < N. 
Once again, as in the case of Kekre’s Median Fast Search, 

assume that M modulo m = 0 and N modulo n = 0. 
Let, k ൌ Mm ൈ  Nn (18)

Thus the number of entries in the mapping table will be k. 
Let g be the grid size, ݃ ൌ ݉ ൈ ݊ (19)
Thus, there will be g luminance values for each entry in 

the mapping table (A1 to Ag). 
As in the case of Kekre’s Median Fast Search, searching 

now comprises of g simple comparisons followed by the 
calculation of Euclidean distances. However, in the case of 
this algorithm, the number of entries in the mapping table 
for which the Euclidean distance must be calculated can no 
longer be approximated to k/2g, as the mapping table is no 
longer split into equal (or even almost equal) parts. 

Let p be the number of divisions in the mapping table for 
the last entry Ag. Thus, the expected number of entries for 
which the Euclidean distance must be calculated is 
approximately k/p. 

Thus, the complexity of the KCFS algorithm in the 
standard big-O notation is: ܱቀ݇ ൗ ቁ 

Note that in the best case, the table will be split into 
sections of nearly equal sizes and in this scenario p = 2g, 
thus reducing the time complexity of KCFS to that of 
KMFS. In general, however, p < 2g. 

Hence, Kekre’s Centroid Fast Search will always 
outperform exhaustive search but, in general, will not 
perform as well as Kekre’s Median Fast Search with respect 
to time complexity. 
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VI. COMPARISON OF RECONSTRUCTED IMAGES USING 
VARIOUS PIXEL GRID SIZES (SAME SOURCE AND TARGET) 
Various images, each of size 180 x 180 pixels, were used 

to build the mapping table, and their greyscale equivalents 
were coloured using the constructed mapping table for 
various grid sizes with searches performed using all the 
search algorithms discussed previously. 

The following bar chart (Figure 2) shows the comparison 
of the average mean squared error obtained across all 
images and all seven colour spaces for various grid sizes 
using the various search algorithms. 

As can be seen from the bar chart, Kekre’s Median Fast 
Search actually outperforms Exhaustive Search for the 
smaller grid sizes, but its performance rapidly deteriorates 
as the grid sizes increase and become more rectangular. 
Note how the square grid size of 3 x 3 pixels performs 
significantly better using the KMFS algorithm as compared 
to the rectangular grid sizes of 2 x 4 pixels and 4 x 2 pixels 
with the same algorithm. 

Kekre’s Centroid Fast Search performs similarly to 
Kekre’s Median Fast Search for smaller grid sizes but 
performs significantly better than it for the larger, more 
rectangular grid sizes, though not as well as Exhaustive 
Search. 

 
Figure 2 – MSE across various Grid Sizes 

The comparison of the search algorithms with respect to 
time taken per search across the various grid sizes for all 
images is shown in the following bar chart (Figure 3). The 
time has been measured in milliseconds. 

 
Figure 3 – Time Taken per Search across various Grid Sizes 

The comparison of the average time taken to reconstruct 
an entire image across all images using the search 
algorithms is shown in Figure 4. Here the time has been 
measured in seconds. All images, as mentioned previously 
were of the same dimensions (180 x 180 pixels), thus 
allowing for a valid comparison of reconstruction times 
across grid sizes. 

Thus, it is actually better to use one of Kekre’s Fast 
Search algorithms whenever a small pixel grid size is being 
used. They are not only faster, but also produce better 
results. However, it is also seen that when the grid size is 
very small, the overall errors are larger as compared to a 
slightly larger grid size like 2 x 2 pixels in the case of 
KMFS and 3 x 3 pixels in the case of ES. It is also noticed 
that the KCFS algorithm thoroughly outperforms the KMFS 
algorithm in terms of errors for larger grid sizes. 

 
Figure 4 – Time Taken for Reconstruction of Entire Image across various 

Grid Sizes 
When time is considered, Kekre’s Fast Search algorithms 

comprehensively outperform the Exhaustive Search 
algorithm both in terms of individual search times and in 
terms of the time taken to reconstruct an entire image. 
Between the two, the difference is not very great with the 
KMFS algorithm slightly outperforming the KCFS 
algorithm. 

However, when MSE is also taken into account, thanks to 
the fact that the KCFS algorithm significantly outperforms 
the KMFS algorithm in this respect for larger grid sizes such 
as 3 x 3, the KCFS algorithm should be preferred for such 
grid sizes. For a 2 x 2 grid size or less, the performance of 
both algorithms is similar with the KMFS algorithm being 
slightly more efficient with respect to time, so the KMFS 
algorithm should be preferred. 
 

VII. COMPARISON OF RECONSTRUCTED IMAGES USING 
VARIOUS PIXEL GRID SIZES (DIFFERENT SOURCE AND 

TARGET) 
Following are some images that were reconstructed using 

the search algorithms. Note how both KMFS and ES give 
comparable results for the smaller grid size but distortions 
increase for the KMFS algorithm as grid sizes increase. 
Also note how quality degradation is much lesser for KCFS 
as compared to KMFS as grid size increases. 

As the original colour images of the greyscale images 
used were not available, the MSE could not be calculated, 
hence these results are subjective. However, the time taken 
per search and the time taken for the complete 
reconstruction of the colour images was measured, and is 
shown in the bar charts following the images. 

Both the original images (that is the coloured images) and 
the greyscale images to be coloured were of the same size, 
180 x 180 pixels. 
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             a) Source  b) Target 
 

       
         1 x 2      2 x 2  3 x 3           4 x 2 

c) Exhaustive Search 
 

       
         1 x 2      2 x 2  3 x 3           4 x 2 

d) Kekre’s Median Fast Search 
 

       
         1 x 2      2 x 2  3 x 3           4 x 2 

e) Kekre’s Centroid Fast Search 
Figure 5 – Reconstruction of target image using similar source image 

 
Figure 6 – Time taken per search (in milliseconds) 

 
Figure 7 – Time taken for complete reconstruction of the colour image (in 

seconds) 

          
             a) Source  b) Target 

 

       
         1 x 2      2 x 2  3 x 3           4 x 2 

c) Exhaustive Search 
 

       
         1 x 2      2 x 2  3 x 3           4 x 2 

d) Kekre’s Median Fast Search 
 

       
         1 x 2      2 x 2  3 x 3           4 x 2 

e) Kekre’s Centroid Fast Search 
Figure 8 – Reconstruction of target image using similar source image 

 
Figure 9 – Time taken per search (in milliseconds) 

 
Figure 10 – Time taken for complete reconstruction of the colour image (in 

seconds) 
 

VIII.  CONCLUSION 
In this paper, we have done a comprehensive comparison 

of search algorithms used for colouring greyscale images by 
the technique described in [4]. 

We have found that while in general, Kekre’s Fast Search 
algorithms do not perform as well as the Exhaustive Search 
algorithm with respect to image quality; they still 
outperform the Exhaustive Search algorithm for smaller 
pixel grid sizes. 
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However, we have also proved that Kekre’s Fast Search 
algorithms always perform significantly better than the 
Exhaustive Search algorithm when time taken is considered. 
This has been proved both by algorithmic analysis, and by 
actual measurements. 

Between the KMFS and KCFS algorithms we have found 
that the KMFS algorithm is slightly faster than the KCFS 
algorithm in general with similar image quality results for 
smaller pixel grid sizes. On the other hand, as the pixel grid 
sizes increase above 2 x 2 pixels, the errors obtained using 
the KMFS algorithm drastically increase. While errors also 
increase when using the KCFS algorithm, the increase is 
significantly lesser than that of the KMFS algorithm. 

Thus, in conclusion, it can be stated that when using pixel 
grid sizes with areas up to 4 pixels (that is, 2 x 2 pixels), 
Kekre’s Median Fast Search algorithm should be used due 
to its highly superior performance in terms of time and 
acceptable performance in terms of image quality. For larger 
grid sizes (for example, 3 x 3 pixels) Kekre’s Centroid Fast 
Search algorithm should be preferred instead. 
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