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 Abstract—The problem of sensor set selection in cognitive 

radio networks (CRN) is considered in this paper. Although the 
method of cooperative spectrum sensing can greatly improve 
the sensing performance, the consumption of system resources 
will increase as the number of cooperative sensors increases, 
therefore, the number of cooperative sensors to use is a 
compromise between sensing performance and consumption of 
system resources. Firstly, based on the expression for the 
probability of detection which is characterized as a function of 
the number of cooperative sensors and the global average 
receiving signal to noise ratio,  a sensor set selecting method is 
proposed; then, a confidence based trustless sensor detecting 
method is presented to delete the trustless sensors from CRN 
which would add negative effect on the sensor set selecting 
method; lastly, based on the two methods above, a confidence 
based sensor set selecting algorithm is proposed, which not 
only effectively delete the trustless sensors from CRN but also 
use fewest cooperative sensors to minimize the consumption of 
system resources, while still having enough for the sensing 
performance requirements. Analysis and numerical results 
illustrate the effectiveness and reliability of the proposed 
algorithm.   

 
Index Terms—Cognitive Radio; Sensor Set Selection; 

Confidence Distance; Confidence Degree 
 

I. INTRODUCTION  
Recently the radio spectrum is becoming exhausted 

because of the growing demands for the radio spectrum. In 
this regard, the paradigm shifts from the conventional 
exclusive use of frequency resources by the fixed allocation 
to the dynamic frequency utilization is indispensable for the 
future wireless networks. Cognitive Radio (CR) can greatly 
improve spectrum efficiency through allowing unlicensed 
users to dynamically access the unused primary spectrum 
while bring no harm to the primary users [1-3]. Spectrum 
sensing, as a key enabling functionality in cognitive radio 
networks (CRN), needs to reliably detect signals from 
licensed primary radios to avoid harmful interference. 
Generally speaking, spectrum sensing techniques fall into 
three categories: energy detection, coherent detection and 
cyclostationary feature detection. If the secondary user has 
limited information on the primary signals (e.g., only the 
local noise power is known), the energy detector is optimal. 
In this paper, we assume that the primary signal is unknown 
and we adopt energy detection as the building block for the 
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proposed sensor set selecting algorithm.   
The sensing performance are summarized in terms of two 

parameters: probability of detection, given by 
1 1( | )dp p H H= , and probability of false alarm, given by 

1 0( | )fp p H H= , where 0H  is the hypothesis that the 

channel is vacant and 1H  is the hypothesis that the channel 
is occupied. In CRN, a larger dp  leads to less interference 
to primary users and a smaller fp  results in higher spectrum 
usage efficiency [4]. FCC has set strict requirements on both 
of them, for example, in IEEE 802.22, the world’s first 
international cognitive radio standard, primary users should 
be detected with 0.9dp ≥  and 0.1fp ≤  [5]. In this paper 

we assume primary users should be detected with dp β≥  
and fp γ≤ .  

According to [6-8], due to the effects of channel 
fading/shadowing, a single sensor may not be able to 
reliably detect the existence of primary users. It is shown in 
[8] that Rayleigh fading and shadowing fading in energy 
detection scenarios produce a high fp  for high dp  and 
result in poor spectrum usage. To address this issue, 
cooperative spectrum sensing exploiting spatial diversity 
among several secondary users has been proposed by 
several authors [9-13]. In such scenarios, a network of 
cooperative cognitive radios, which experience different 
channel conditions from a primary user, would have a better 
chance of detecting the primary radio if they combine the 
sensing information jointly.  

It is proven in [14] and [15] that, for a given fp , dp  
increases as the number of cooperative sensors increases 
when sensors are assumed to be independent from each 
other. From the view of sensing performance, the number of 
cooperative sensors should be as large as possible, but the 
consumption of system resources, such as the total 
transmission power of the signal measurements and the 
amount of overhead traffic, grows approximately linearly 
with the number of cooperative sensors. In this sense, the 
number of cooperative sensors to use is a trade-off between 
having a high reliability of sensing and having a low 
consumption of system resources. Consequently, it is 
desirable to use as few cooperative sensors as possible to 
minimize the consumption of system resources, while still 
having enough for the sensing performance requirements.  

A few trustless sensors may exist in CRN, for example, 
some sensors may receive “fake signals” coming from the 
spectrum leakage interference of an unknown wireless 
device (energy detector can not distinguish between 
interference and primary signals), and make the probability 
of false alarm extremely high. Now the problem has 
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changed into how to choose a sensor set that has fewest 
trustful cooperative sensors to satisfy the sensing 
performance requirements, when some trustless sensors 
exist in CRN.  

Based on the analysis above, the goal of this paper is to 
use fewest trustful cooperative sensors to minimize the 
consumption of system resources, while still having enough 
for the sensing performance requirements. The organization 
of this paper is given as follows: In Section Ⅱ, the system 
model is introduced in detail. The details of the confidence 
based sensor set selecting algorithm are given in Section Ⅲ. 
Simulation results and discussion are shown in Section Ⅳ. 
Section Ⅴ concludes this paper and suggests future work in 
this area.  

II. SYSTEM MODEL 
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Fig. 1. System model 

The system model is illustrated in Fig. 1. Consider a 
single-hop centralized CRN Ω  of M  independent 
secondary users, denoted as 1u  through Mu , is randomly 
deployed in a L L×  square area with the center of the 
square at distance r  from the primary transmitter TP . The 
transmitting power of TP  is Tp . We choose a sensor set nω  
of n  secondary users from Ω  which employs a cooperative 
spectrum sensing protocol to detect signal transmissions of 

TP . The binary hypothesis test model of iu  in nω  for 
spectrum sensing at thk  time instant is formulated as 
follows [4],  

0

1

: ( ) ( ) 1, 2, ,
: ( ) ( ) ( ) 1,2, ,

i i

i i i

H x k v k i n
H x k h s k v k i n

= =
= + =

        (1) 

where ( )s k  denotes the signal transmitted by the primary 
user and ( )ix k  is the received signal by the thi  secondary 
user. The signal ( )s k  is distorted by the channel gain ih , 
which is assumed to be constant during the detection 
interval, and is further corrupted by the zero-mean additive 
white Gaussian noise (AWGN) ( )iv k , i.e., 

2( ) ~ (0, )iv k N σ ( for ease of exposition, we assume that the 
noises at different secondary users have a same variance of 

2σ  which are known a priori). Without loss of generality, 
( )s k  and ( )iv k  are assumed to be independent from each 

other. 
Each secondary user in nω  caculates a test statistic iy  

over a detection interval of N  samples, i.e., 
1
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where N  is determined from the time-bandwidth product. 

If the number of samples N  is large enough (e.g., 10N ≥  
in practice), the test statistic iy  is asymptotically normally 
distributed with mean 
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where 
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is the local average receiving signal to noise ratio (ARSNR) 
at the thi  secondary user and the quantity 

21

0
( )N

s k
E S k−

=
=∑  represents the transmitted signal energy 

over a sequence of N  samples during each detection 
interval. The received primary signal power iP  can be 
calculated as the total power at the RF front-end minus the 
noise power 2σ . Further more, the exact local ARSNR can 
be estimated if iP  and 2σ  are known. 
 

III. THE SENSOR SET SELECTING ALGORITHM BASED ON 
CONFIDENCE DETECTION 

A. The sensor set selecting method 
Let 1 2[ , , , ]T

ny y y=y  denote the vector containing all of 
the test statistics of nω , then cooperative spectrum sensing 
can be formulated as the following binary hypothesis testing 
problem: 

0

1

: ~ ( , )
: ~ ( , )

H N
H N

0 0

1 1

y μ Ψ
y μ Ψ

                       (6) 

where 0μ  and 0Ψ  are the mean vector and covariance 
matrix of y , respectively, when 0H  is true; 1μ  and 1Ψ  are 
the mean vector and covariance matrix of y , respectively, 
when 1H  is true. They can be respectively expressed as 
follows,  

2 2
1[ , , ]T

nN Nσ σ ×=0μ                      (7) 
42 n nNσ ×= ×0Ψ Ι                         (8) 
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where n n×Ι  represents the identity matrix.  
For ease of exposition, we adopt the equal gain 

combining rule. Then the decision variable can be expressed 
as 

TΛ = y 1                                 (11) 

where 1[1,1, ,1]T
n×=1  denotes the unit vector. The 

means and variances of Λ  under different hypotheses are 
respectively given by 
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and 
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with 
1

/n
ii

nη
=

Γ =∑  which represents the global ARSNR 

of nω .  
According to the Neyman-Pearson Lemma [16], fp  and 

dp  can be respectively given by  

0
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with 
2 / 21( )

2
t

x
Q x e dt

π
∞ −= ∫ .   

By letting fp γ= , the decision threshold can be get as   
1 4 2( ) 2Q nN nNλ γ σ σ−= +          (16) 

With this threshold setting, the expression for the 
probability of detection becomes  

1( ) 2
2 4d

Q nN nNp Q
nN nN

γ−⎛ ⎞− Γ= ⎜ ⎟⎜ ⎟+ Γ⎝ ⎠
            (17) 

Note that in (17), dp  is characterized as a function of Γ  
and n  for given N  and γ . In Fig. 2, we plot Γ  against n , 
with 100N = , 0.01fp γ= =  and 0.99dp β= = . From Fig. 
2, we can see that the required global ARSNR Γ  decreases 
as n  increases. 
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Fig.2  The relationship between Γ  and n . 

The goal of this paper is to use fewest trustful cooperative 
sensors to minimize the consumption of system resources, 
while still having enough for the sensing performance 
requirements. Therefore, the operations of the sensor set 
selecting method are as follows: Firstly, obtain a queue 
denoted by ℜ  by sorting the sensors of the CRN in 
decreasing order of local ARSNR. Secondly, choose the first 
n  (1 n M≤ ≤ ) sensors of ℜ  to form the chosen sensor set 

cω . Finally, increase n  until n  and Γ  of the current cω  
satisfy dp β≥ , then this cω  is the sensor set we will 
choose and the method terminates.  

B. The confidence based trustless sensor detecting method  
When there are some trustless sensors in CRN, the sensor 

set selecting method described above may have some 
limitations. For example, some sensors that receive “fake 
signals” coming from the spectrum leakage interference of 
an unknown wireless device (energy detector can not 
distinguish between interference and primary signals) may 
easily be chosen into the chosen sensor set cω  and make the 
probability of false alarm extremely high. As illustrated in 
Fig. 2, a sensor whose “fake SNR” is 0.9 will make the 
probability of false alarm higher than 0.99.  

Luo and Lin, in their pioneering effort, have proposed 
“confidence distance measures” as a criterion for the 
purpose of sensor errors detection [17]. In this paper, we use 
these measures, denoted as ijd  and jid , to evaluate the 

difference between iy  and jy , where  

2 ( | ) ( )

2 ( | ) ( )
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y
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y
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=

=

∫

∫
              (18) 

As iy  and jy  are normally distributed, ijd  and jid  can 
be computed by the use of an error function which can be 
defined as  

 2

0

2erf ( ) ze dz
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θ
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Then ijd  and jid  can be respectively given by   
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It can be seen from (19) that usually ij jid d≠  (unless 

i jη η= ). For ease of exposition, we use a concise way for 

computing ijd  and jid , which can be shown as follows,  

erf ( )ij ji j id d y y= = −                    (20) 

Let us denote by 1ij ijr d= −  the mutual support degree 

between jy  and iy . From (20) we can see that the bigger 

ijr  is, the higher the mutual support degree between jy  and 

iy  will be. As there are M  secondary users in CRN, the 
general “mutual support degrees” of CRN can be described 
by a symmetric matrix defined as  ( )ij M M

r
×

=R . 

Let iρ  denote the synthetic support degree of iy  by other 
test statistics. The bigger iρ  is, the higher the synthetic 
support degree of iy  by other test statistics is and the truer 

iy  is. So iρ  is the weight value of iy  in y  which is 
defined as confidence degree and satisfy  

1
1

0 [1,2, , ]

M
ii

i i M

ρ
ρ

=
=

≥ ∈
∑                   (21) 

As iρ  should be the total information of 1 2, , ,i i iMr r r , a 
group of positive values denoted by 1 2, , , Mα α α  should 
exist, which would satisfy  
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1 1 2 2i i i M iMr r rρ α α α= + + +                  (22) 
Then we can get 

=ρ Rα                                    (23) 

with 1 2 1[ , , , ]T
M Mα α α ×=α  and 1 2 1[ , , , ]T

M Mρ ρ ρ ×=ρ .  
As jα  is the weight value of ijr  in 1 2, , ,i i iMr r r , the 

bigger jρ  is, the bigger jα  should be. Thus ρ  and α  
should have the same weight value distribution and we can 
get  

δ=ρ α                                     (24) 

with 
1

1 M
ii

δ α
=

= ∑ . 

By substituting (24) into (23), we can get 
δ =α Rα                                  (25) 

Let 'δ ( ' 0δ > ) denote the biggest eigenvalue of R . 
According to the matrix theory, only the eigenvector 
corresponding to 'δ , denoted by 'α ,is positive and satisfy 
the needs of ρ , so we can firstly compute 'δ  and 'α  of R , 
and then ρ  can be achieved by  

1
' 'M

ii
α

=
= ∑ρ α                           (26) 

After achieving ρ , we can delete the trustless sensors 
from the CRN using a uniform threshold ε  when iρ ε≤ .  

C. The confidence based sensor set selecting algorithm  
Based on the two methods above, a confidence based 

sensor set selecting algorithm is proposed in this section. 
The algorithm firstly deletes the trustless sensors from CRN 
using the confidence based trustless sensor detecting method 
and gets a confidence sensor set, denoted by Φ , containing 
all of the trustful sensors in CRN. Then it chooses a sensor 
set ω  from Φ  using the sensor set selecting method. The 
algorithm can be specified as follows,  

• Step 1: Firstly, fusion center receives y  from M  
secondary users; then it uses the confidence based 
trustless sensor detecting method to delete the 
trustless sensors from CRN (as the fusion center do 
not know whether the primary user is absent or not, 
using this method can delete the trustless sensors and 
mitigate the negative effect these trustless sensors 
will cause when primary user is absent); finally it 
makes decision whether primary user is absent or not 
based on the sensor set 'Φ  containing all of the 
remaining sensors in CRN. If primary user is present, 
perform step 2, else, perform step 3. 

• Step 2: When primary user is present, the confidence 
based trustless sensor detecting method may not 
always detect the trustless sensors in CRN, so, there 
may be some trustless sensors in 'Φ . Store the 

detecting vector 'Φy  of 'Φ  and choose the sensor set 
'ω (may contain trustless sensors) from 'Φ  using the 

sensor set selecting method. Use 'ω  as the sensor set 
until the fusion decision (always use the confidence 
based trustless sensor detecting method to delete the 
trustless test statistics of 'ω ) shows that the primary 
user is absent, and then perform step 4.  

• Step 3: When primary user is absent, the confidence 
based trustless sensor detecting method can detect 
the trustless sensors in CRN, thus no trustless 
sensors exist in 'Φ . As the sensor set selecting 

method needs primary user’s signal as a reference, 
we use 'Φ  as the sensor set until the fusion decision 
(always using the confidence based trustless sensor 
detecting method to delete the trustless test statistics 
of 'Φ ) shows that the primary user is present, and 

then store the detecting vector 'Φy  of 'Φ  and 
perform step 4.  

• Step 4: Using the confidence based trustless sensor 
detecting method to delete the trustless sensors from 

'Φ , the confidence sensor set Φ  can be get and the 
final sensor set ω  can be chosen from Φ  using the 

sensor set selecting method based on 'Φy .  
• Step 5: When the global ARSNR Γ  and the number 

of cooperative sensors of current ω  don’t satisfy 
dp β≥ , use the current confidence sensor set Φ  to 

make decision whether the primary user is present or 
not. If it present, choose a new sensor set from Φ  
using the sensor set selecting method; if it absent, 
maintain current sensor set ω  unchangeably.  

IV. SIMULATION AND ANALYSIS 
In this section, the performance of the proposed 

confidence based sensor set selecting algorithm is evaluated 
numerically. The parameters used in the following 
simulations are as follows: 20kmL = , 0.99β = , 0.01γ =  
and  100WTp = . According to the path-loss model, the 
received primary signal power at the thi  sensor which is d  
meters away from TP  is given as  i TP p d α−=  where α  is the 
path loss exponent which is set to be 3. The simulation 
results that shown in Fig. 3 to Fig. 9 are all averaged over 
1000 realizations of the CRN, with secondary users being 
uniformly distributed. In simulation, we assume that a 
trustless sensor exists in the CRN, the received “fake 
primary signal power” at which is -127 dBm.  
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Fig. 3 The number of cooperative sensors n  of the selected sensor set ω  
versus noise variance 2σ  for various N . 
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Fig. 4 The number of cooperative sensors n  of the selected sensor set ω  
versus r  (the distance between TP and the center of the coverage area) for 

various N . 

Fig. 3 shows the number of cooperative sensors n  of the 
sensor set ω  selected by the proposed confidence based 
sensor set selecting algorithm versus noise power 2σ , with 

50M = , 100kmr = and N = 50, 100 and 200. From Fig. 3, 
we can see that n  decreases as 2σ  decreases, as expected, 
as the local ARSNR of each sensor increases as 2σ  
decreases and one can achieve the same sensing 
performance requirements using fewer sensors at larger 
values of local ARSNR. From Fig. 3, we can also see that n  
decreases as the number of samples N  increases, as 
expected, as the received transmitted signal energy sE  of 

TP  during each detection interval increases as N  increases 
and one can use fewer sensors to achieve the same sensing 
performance requirements at larger sE . 

Fig. 4 shows the number of cooperative sensors n  of the 
sensor set ω  selected by the proposed confidence based 
sensor set selecting algorithm versus the distance r  between 

TP  and the center of the coverage area, with 

50M = , 2 123dBmσ = −  and N = 50, 100 and 200. From 
Fig. 4, we can see that n  decreases as r  decreases, as 
expected, as the local ARSNR of each sensor increases as r  
decreases and one can achieve the same sensing 
performance requirements using fewer sensors at larger 
values of local ARSNR. From Fig. 4, we can also see that n  
decreases as the number of samples N  increases, the reason 
for which is the same as Fig. 3.  
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Fig. 5 Sensing performance comparison of the algorithm with and without 
confidence detection with 2 123 dBmσ = −  and 100N = . 
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Fig. 6 Sensing performance comparison of the algorithm with and without 
confidence detection with 100kmr =  and 100N = . 

Fig. 5 shows the probability of false alarm of the sensor set 
selecting algorithm with and without confidence detection 
versus the distance r  between TP  and the center of the 

coverage area, with 50M = , 2 123dBmσ = − and 100N = . 
From Fig. 5, we can see that the confidence based sensor set 
selecting algorithm can always satisfy the sensing performance 
requirements, as expected, as the confidence based trustless 
sensor detecting method can effectively delete the trustless 
sensor from CRN. From Fig. 5, we can also see that the 
probability of false alarm of the sensor set selecting algorithm 
without confidence detection is very high, as expected, as the 
trustless sensor may be easily chosen into the selected sensor 
set and produces a high probability of false alarm.  

 Fig. 6 shows the probability of false alarm of the sensor set 
selecting algorithm with and without confidence detection 
versus noise power 2σ , with 50M = , 100kmr =  and 

100N = . From Fig. 6, we can see that the confidence based 
sensor set selecting algorithm can always satisfy the sensing 
performance requirements and the probability of false alarm of 
the sensor set selecting algorithm without confidence detection 
is very high, the reasons for which are the same as Fig. 5.  
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Fig. 7 Existence probability of the sensor set versus noise variance 2σ  for 

various r  
From Figs. 3 and 4, we can note that the entire CRN may 

not meet the sensing performance requirements when 2σ  or 
r  is large. That is to say, the needed sensor set may not 
exist in a CRN when 2σ  or r  is large. The existence 
probability of the needed sensor set is characterized as a 
function of 2σ and r . The relationships among them are 
shown in Fig. 7, with 50M =  and 100N = . From Fig. 7, 
we can see that the existence probability of the sensor set 
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increases as 2σ  and r  decreases, as expected, since the 
smaller the value of 2σ  and r  is, the higher the SNR will be.  
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Fig.8 The tracking performance curves of the proposed sensor set selecting 

algorithm 
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Fig. 9 Ineffective probability ineffp  of the proposed adaptive sensor set 

selecting algorithm versus the moving speed v of sensors for various r . 
According to the proposed confidence based adaptive 

sensor set selecting algorithm, when the global ARSNR Γ  
of the current selected sensor set doesn’t satisfy dp β≥ , the 
fusion center of the CRN will start the renewal process to 
select a new sensor set.  

The tracking performance of the proposed confidence 
based adaptive sensor set selecting algorithm is evaluated in 
Figure 8. We assume that the initial value of the average 
SNR of the selected sensor set when 0t =  is 0.28Γ =  
which decreases by 0.001 / s  with t  increasing. The 
parameters used in this simulations are as follows: 100N = ，

10n =  and 0.23ε = . From Figure 8, we can see that the 
proposed algorithm with tracking function can always make 

0.99dp ≥  by the renewal process which starts at 50t s=  in the 
graph, while the sensing performance of the algorithm 
without tracking function deteriorating with time increasing. 

In this paper, we use the ineffective probability ineffp  to 
evaluate the renewal frequency of the proposed confidence 
based adaptive sensor set selecting algorithm, which can be 
defined as 

total ineffective time
total simulation timeineffp =  

In this paper, we adopt the random walk with reflection 
mobility model (RWRMM) widely used for simulating 
sensor movements [17]. The simulation results are shown in 
Fig. 9, with 50M = . In simulation, we assume the 

RWRMM assigns each sensor a random moving direction 
which is changed every one second. For each simulation 
result, sensors move with a same speed v  and the total 
simulation time is 1000s. From Fig. 9, we can see that the 
ineffective probability ineffp  increases as moving speed 
increases, as expected, since the higher the moving speed v  
is, the global ARSNR Γ  may decreases faster. We can also 
note from Fig. 9 that the ineffective probability ineffp  
decreases as r  decreases, as expected, since the smaller the 
value of  r  is, the higher the SNR of the sensors will be.  

V. CONCLUSION 
This paper attempts to makes a good trade-off between 

having a high reliability of the sensing and having a low 
consumption of system resources by using fewest 
cooperative sensors to satisfy the sensing performance 
requirements. Firstly, the sensing performance of 
cooperative spectrum sensing is investigated and the 
relationship among the sensing performance, the number of 
cooperative sensors and the global average receiving signal 
to noise ratio is derived, based on which, a sensor set 
selecting method is proposed; then a confidence based 
trustless sensor detecting method is presented to delete the 
trustless sensors from CRN which would add negative effect 
on the sensor set selecting method; lastly, based on the two 
methods above, a confidence based sensor set selecting 
algorithm is proposed, which not only effectively delete the 
trustless sensors from CRN but also use fewest cooperative 
sensors to minimize the consumption of system resources, 
while still having enough for the sensing performance 
requirements. Analysis and numerical results illustrate the 
effectiveness and reliability of the proposed algorithm.  
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