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Abstract—As embedded memory area on-chip is increasing 

and memory density is growing, problem of faults is growing 
exponentially. Considering the increasing impact that memory 
yield has on SoC yield in today’s memory dominant SoCs, a 
high memory yield is required for acceptable levels of SoC yield. 
Thus memory fault modeling, detection and repair has come to 
take an important place. The architecture presented in this 
work implements the newly defined March SS algorithm which 
helps in detecting some recently modeled faults. Also, a 
word-oriented memory Built-in Self Repair methodology, 
which supports on-the-fly memory repair, is employed to repair 
the faulty locations indicated by the MBIST controller 
presented. 

 
Index Terms—Built-In Self Test (BIST), Built-In Self Repair 

(BISR), Defect-Per Million (DPM), Memory Built-in Self Test 
(MBIST), Microcoded MBIST, Memory Built-In Self Repair 
(MBISR). 

 

I. INTRODUCTION 
According to the 2001 ITRS, today’s system on chips 

(SoCs) are moving from logic dominant chips to memory 
dominant chips in order to deal with today’s and future 
application requirements. The dominating logic (about 64% 
in 1999) is changing to dominating memory (approaching 
90% by 2011) [1] as shown in Fig.1. 
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Fig.1 The future of embedded memory 
 The shrinking technologies give rise to new defects due to 

introduction of parasitic capacitances and resistive opens. 
These together with transistor short channel effect, cross talk 
effects, impact of process variation have to be necessarily 
taken into account for developing new fault models for 
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embedded memories based on newer technologies. These 
fault models are then taken as basis of developing new, 
optimal, high coverage tests and diagnostic algorithms that 
allow for dealing with the new defects. The greater the fault 
detection and localization coverage, the higher the repair 
efficiency; hence higher the obtained yield. Memory repair is 
the necessary, since just detecting the faults is no longer 
sufficient for SoCs, hence both diagnosis and repair 
algorithms are required. Thus, the new trends in memory 
testing will be driven by the following items: 

• Fault modeling: New fault models should be established 
in order to deal with the new defects introduced by current 
and future (deep-submicron) technologies. 

• Test algorithm design: Optimal test/diagnosis algorithms 
to guarantee high defect coverage for the new memory 
technologies and reduce the DPM level. 

•  BIST: The only solution that allows at-speed testing for 
embedded memories. 

   BISR: Combining BIST with efficient and low cost 
repair schemes in order to improve the yield and system 
reliability as well. 

A new microcoded BIST architecture is presented here 
which is capable of employing new test algorithms like 
March SS [5] and March RAW [3] that have been developed 
for coverage of some recently developed static and dynamic 
fault models. This BIST controller is then interfaced with 
word-oriented BISR circuitry as shown in the following 
Fig.2. 

 
Fig.2 Principal Structure: MBIST and repair logic interface 
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Fig.3. Microcode MBIST Controller Architecture 

 

II. MICROCODE MBIST CONTROLLER 

As shown in the previous section, the importance of 

developing new fault models increases with the new memory 

technologies. 

Many well-known fault models, developed before late 

1990s failed to explain the occurrence of complex faults. 

These included faults that were observed during the DPM 

screening of a large number of tests applied to a large number 

of memory chips. This implied that new memory 

technologies involving high density of shrinking devices lead 

to newer faults and stimulated the introduction of new fault 

models, based on defect injection and SPICE simulation. 

Write Disturb Fault (WDF), Transition Coupling Fault (Cft), 

Deceptive Read Disturb Coupling Fault (Cfdrd) etc. are 

examples of some such newly defined fault models [2]. 

Another class of faults called Dynamic faults which require 

more than one operation to be performed sequentially in time 

in order to be sensitized have also been defined. [3-4] 

Traditional tests, like March C-, are thus becoming 

insufficient/inadequate for today‟s and the future high speed 

memories. Therefore, more appropriate test algorithms have 

been developed to deal with these new fault models like 

March SS and March RAW. March SS covers some of the 

new fault models like Deceptive Read Destructive fault 

(DRDF), Write disturb fault (WDF), etc., whereas March 

RAW covers some of the Dynamic faults. 

Some of the recently developed architectures can perform 

up to two march operations per march element [6]. As a result, 

they are not capable to handle new test algorithms that 

involve as many as six/seven operations per march element. 

The proposed architecture has the ability to execute 

algorithms with unlimited number of operations per March 

element. Thus almost all of the recently developed March 

algorithms can be successfully implemented and applied 

using this architecture.  

This has been illustrated in the present work by 

implementing March SS algorithm. The same hardware has 

been used to implement other new March algorithms. This 

requires just changing the Instruction storage unit, or the 

instruction codes and sequence inside the instruction storage 

unit. The instruction storage unit is used to store 

predetermined test pattern. 

A) Methodology 

The block diagram of the architecture is shown in Fig 3. 

The BIST Control Circuitry consists of Clock Generator, 

Pulse Generator, Instruction Pointer, Microcode Instruction 

storage unit, Instruction Register. The Test Collar circuitry 

consists of Address Generator, RW Control and Data 

Control.  

Clock Generator produces simulated clock waveforms 

Clock2, Clock3, Clock4, Clock5, Clock6, for the rest of the 

circuitry based on the input clock (named Clock1) as shown 

in Fig. 4 

 
Fig 4. Simulated waveform of Clock generator Module 

 

Pulse Generator generates a „Start Pulse‟ at positive edge 

of the „Start‟ signal marking the start of test cycle. 

Instruction Pointer points to the next microword, that is 

the next march operation to be applied to the memory under 

test (MUT). Depending on the test algorithm, it is able to i) 

point at the same address, ii) point to the next address, or iii) 
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jump back to a previous address.  

 The flowchart in Fig. 5 precisely describes the functioning 

of the Instruction Pointer.  

  
 

Fig. 5 Flowchart illustrating functional operation of Instruction Pointer 

Here, „Run complete‟ indicates that a particular march test 

operation has marched through the entire address space of 

MUT in increasing or decreasing order as dictated by the 

microcode. 

Instruction Register holds the microword (containing the 

test operation to be applied) pointed at by the Instruction 

Pointer. The various relevant bits of microword are sent to 

other blocks from IR. 

Address Generator points to the next memory address in 

MUT, according to the test pattern sequence. It can address 

the memory in forwards as well as backwards direction.  

RW Control generates read or write control signal for 

MUT, depending on relevant microword bits. 

Data Control generates data to be written to or expected to 

be read out from the memory location being pointed at by the 

Address Generator 

The Address Generator, RW Control and Data Control 

together constitute the Memory Test Collar. 

Input Multiplexer directs the input to memory by switching 

between test algorithm input and input given externally 

during the normal mode. The control signal for this 

multiplexer is also given externally by the user. If it indicates 

test mode then internally generated test data by BIST 

controller is given to the memory as input from the Test 

Collar. In case of Normal mode the memory responds to the 

external address, data and read/write signals. 

Fault Diagnosis module works during the test mode to 

give the fault waveform which consists of positive pulses 

whenever the value being read out of the memory does not 

match the expected value as given by Test Collar. In addition, 

it also gives the diagnostic information like the faulty 

memory location address and the expected/correct data value.  

This diagnostic information is used for programming the 

repair redundancy array.  

B) Microcode Instruction specification. 

The microcode is a binary code that consists of a fixed 

number of bits, each bit specifying a particular data or 

operation value. As there is no standard in developing a 

microcode MBIST instruction [7], the microcode instruction 

fields can be structured by the designer depending on the test 

pattern algorithm to be used. 

 The microcode instruction developed in this work is 

coded to denote one operation in a single microword. Thus a 

five operation March element is made up by five micro-code 

words. The format of 7-bit microcode MBIST instruction 

word is as shown in Fig. 6. Its various fields are explained as 

follows: Bit #1 (=1) indicates a valid microcode instruction, 

otherwise, it indicates the end of test for BIST Controller. 

Bits #2, #3 and #4 are used to specify first operation, 

in-between operation and last operation of a multi-operation 

March element, interpreted as shown in Fig. 6. 

 

#1 #2 #3 #4 #5 #6 #7 

Valid Fo Io Lo I/D R/W Data 

 

Fo Io Lo Description 

0 0 0 A single operation element 

1 0 0 First operation of a 

Multi-operation element 

0 1 0 In-between Operation of a 

Multi-operation element 

0 0 1 Last Operation of a 

Multi-operation element 
Fig. 6 Format of Microcode Instruction word 

 

Bit #5 (=1) notifies that the memory under test (MUT) is to 

be addressed in decreasing order; else it is accessed in 

increasing order. Bit #6 (=1) indicates that the test pattern 

data is to be written into the MUT; else, it is retrieved from 

the memory under test. Bit #7 (=1) signifies that a byte of 1s 

is to be generated (written to MUT or expected to be read out 

from the MUT); else byte containing all zeroes are generated. 

The instruction word is so designed so that it can 

accommodate any existing or future March algorithm. The 

contents of Instruction storage unit for March SS algorithm 

are shown in Table 1. 

The first march element M0 is a single operation element, 

which writes zero to all memory cells in any order, whereas 

the second march element M1 is a multi-operation element, 

which consists of five operations: i) R0, ii) R0, iii) W0, iv) R1 

and v) W1. MUT is addressed in increasing order as each of 

these five operations is performed on each memory location 

before moving on to the next location. 
TABLE 1 
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W1 1 0 1 0 0 1 1 

R1 1 0 1 0 0 0 1 

W0 1 0 0 1 0 1 0 

M3: ↓{R0 1 1 0 0 1 0 0 

R0 1 0 1 0 1 0 0 

W0 1 0 1 0 1 1 0 

R0 1 0 1 0 1 0 0 

W1} 1 0 0 1 1 1 1 

M4: ↓{ R1 1 1 0 0 1 0 1 

R1 1 0 1 0 1 0 1 

W1 1 0 1 0 1 1 1 

R1 1 0 1 0 1 0 1 

W0} 1 0 0 1 1 1 0 

M5: χ R0 1 0 0 0 1 0 0 

 0 X X X X X X 

III. WORD REDUNDANCY MBISR 

The BISR mechanism used here [17] employs an array of 

redundant words placed in parallel with the memory. These 

redundant words are used in place of faulty words in 

memory. 

For successful interfacing with already existing BIST 

solutions as shown in Fig. 2, the following interface signals 

are taken from the MBIST logic: 

1) A fault pulse indicating a faulty location address 

2) Fault address 

3) Expected data or correct data that is compared with the 

results of Memory under test 

The MBISR logic used here can function in two modes 

A) Mode 1: Test & Repair Mode 

In this mode the input multiplexer connects test collar 

input for memory under test as generated by the BIST 

controller circuitry. As faulty memory locations are detected 

by the fault diagnosis module of BIST Controller, the 

redundancy array is programmed. A redundancy word is as 

shown in Fig. 7. 

 
Fig.7. Redundancy Word Line 

The fault pulse acts as an activation signal for 

programming the array. The redundancy word is divided into 

three fields. The FA (fault asserted) indicates that a fault has 

been detected. The address field of a word contains the faulty 

address, whereas the data field is programmed to contain the 

correct data which is compared with the memory output. 

The IE and OE signals respectively act as control signals 

for writing into and reading from the data field of the 

redundant word. 

An overflow signal indicates that memory can no longer be 

repaired if all the redundancy words have been programmed. 

The complete logic of programming of memory array is 

shown by Fig. 8. 

B) Mode 2: Normal Mode 

During the normal mode each incoming address is 

compared with the address field of programmed redundant 

words. If there is a match, the data field of the  

 
Fig. 7. Flowchart describing programming of redundancy array 

 

redundant word is used along with the faulty memory 

location for reading and writing data. The output multiplexer 

of Redundant Array Logic then ensures that in case of a 

match, the redundant word data field is selected over the data 

read out (  = 0) of the faulty location in case of a read 

signal. This can be easily understood by the redundancy word 

detail shown in Fig.7. 
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Fig.9 shows the Repair Module including the redundancy 

array and output multiplexer and its interfacing with the 

existing BIST module. 

 
Fig. 8 Redundancy Array Logic 

 

IV. RESULTS 

Mentor Graphic‟s ModelSim has been used to verify the 

functionality and timing constraints of Verilog coded BIST 

module, Repair redundancy array, and their interface. 

The full architecture containing all these modules has been 

successfully synthesized using Xilinx ISE 8.2i. 

The simulation waveform of a fault-free SRAM is shown 

in Fig.10.  

The top module in the figure shows the interfacing of BIST 

Controller (including test collar), MUT and Comparator. As 

the START signal goes high, indicating the start of test, the 

first March element M0 of March SS algorithm is executed. 

As this is a write signal, no values are read out from the 

memory to be compared with expected or correct values and 

hence the output FAULT waveform of comparator is high 

impedance. As read operation starts at the beginning of 

execution of M1 element, the values from MUT are read out 

and compared with the expected values. The FAULT 

waveform shows a „low‟ level throughout the test for a 

fault-free SRAM 

The SRAM model is also amended to be in defective state 

by inserting faults. The simulated waveform is shown in Fig. 

11. 

The inserted faults are Deceptive Read Disturb fault 

(DRDF) at location 11, Write Disturb Fault (WDF) at 

location 13, Deceptive Read Disturb Coupling fault (CFdrd) 

at location 9 (victim) due to location 10 (aggressor), Write 

Disturb Coupling Fault (CFwd) at location 14 (victim) due to 

location 15 (aggressor) [9].  

The fault detect waveform shows 12 pulses due to the 

above faults in given four locations, as the test  elements 

march through MUT to uncover these defects. 

The above stated faults cannot be detected by March C- 

algorithm but are easily detected by March SS Algorithm 

which has been implemented by the architecture presented in 

this work. 

Fig. 12 is the simulated waveform of fault diagnosis 

module. Fault pulse, faulty location address and correct data 

signals are generated by this module for successful 

interfacing with the Redundancy Array logic. This is clearly 

illustrated by the simulated waveform (magnified) at the 

seventh fault pulse given by fault diagnosis module. 

 

 

 

 
Fig. 10 Simulated waveform of fault-free SRAM 
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Fig. 11 Simulated waveform of faulty SRAM 

 

  

Fig.12. Simulated waveform Fault Detection module magnified at the 7th Fault Pulse 
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V. CONCLUSION 

The simulation results have shown that the micro-coded 

MBIST architecture described here is an effective testing 

method to test embedded memories as it provides a flexible 

approach and better fault coverage. Just as March SS, any 

other new march algorithm can also be implemented using 

the same BIST hardware by changing the instructions in the 

microcode storage unit, without the need to redesign the 

entire circuitry. The word redundancy uses spare words in 

place of spare rows and columns. This repair mechanism 

avoids lengthy redundancy calculations as suggested by 

some other authors in their works [18], [19], as it stores faulty 

location addresses immediately supporting on-the-fly fault 

repair. Moreover, it can be interfaced easily with existing 

MBIST logic. 
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