
International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010
1793-8201

466

Abstract—As embedded memory area on-chip is increasing

and memory density is growing, problem of faults is growing
exponentially. Considering the increasing impact that memory
yield has on SoC yield in today’s memory dominant SoCs, a
high memory yield is required for acceptable levels of SoC yield.
Thus memory fault modeling, detection and repair has come to
take an important place. The architecture presented in this
work implements the newly defined March SS algorithm which
helps in detecting some recently modeled faults. Also, a
word-oriented memory Built-in Self Repair methodology,
which supports on-the-fly memory repair, is employed to repair
the faulty locations indicated by the MBIST controller
presented.

Index Terms—Built-In Self Test (BIST), Built-In Self Repair

(BISR), Defect-Per Million (DPM), Memory Built-in Self Test
(MBIST), Microcoded MBIST, Memory Built-In Self Repair
(MBISR).

I. INTRODUCTION
According to the 2001 ITRS, today’s system on chips

(SoCs) are moving from logic dominant chips to memory
dominant chips in order to deal with today’s and future
application requirements. The dominating logic (about 64%
in 1999) is changing to dominating memory (approaching
90% by 2011) [1] as shown in Fig.1.

16%

16%

13%
9% 6% 4%

20%

52%
71% 83% 90% 94%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1999 2002 2005* 2008* 2011* 2014*

Year
% Area Memory % Area Reused Logic % Area New Logic

Source: SIA, ITRS 2000
*F

Fig.1 The future of embedded memory
 The shrinking technologies give rise to new defects due to

introduction of parasitic capacitances and resistive opens.
These together with transistor short channel effect, cross talk
effects, impact of process variation have to be necessarily
taken into account for developing new fault models for

Dr. R.K. Sharma and Aditi Sood are with the Department of Electronics

and Communications Engineering, National Institute of Technology,
Kurukshetra(email: mail2drrks@gmail.com, aditi.vlsi@gmail.com).

embedded memories based on newer technologies. These
fault models are then taken as basis of developing new,
optimal, high coverage tests and diagnostic algorithms that
allow for dealing with the new defects. The greater the fault
detection and localization coverage, the higher the repair
efficiency; hence higher the obtained yield. Memory repair is
the necessary, since just detecting the faults is no longer
sufficient for SoCs, hence both diagnosis and repair
algorithms are required. Thus, the new trends in memory
testing will be driven by the following items:

• Fault modeling: New fault models should be established
in order to deal with the new defects introduced by current
and future (deep-submicron) technologies.

• Test algorithm design: Optimal test/diagnosis algorithms
to guarantee high defect coverage for the new memory
technologies and reduce the DPM level.

• BIST: The only solution that allows at-speed testing for
embedded memories.

 BISR: Combining BIST with efficient and low cost
repair schemes in order to improve the yield and system
reliability as well.

A new microcoded BIST architecture is presented here
which is capable of employing new test algorithms like
March SS [5] and March RAW [3] that have been developed
for coverage of some recently developed static and dynamic
fault models. This BIST controller is then interfaced with
word-oriented BISR circuitry as shown in the following
Fig.2.

Fig.2 Principal Structure: MBIST and repair logic interface

Modeling and Simulation of Multi-Operation
Microcode-based Built-in Self Test for Memory

Fault Detection and Repair
Dr. R.K. Sharma and Aditi Sood

A
re

a
Sh

ar
e

mailto:mail2drrks@gmail.com
mailto:aditi.vlsi@gmail.com

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010

1793-8201

467

Fig.3. Microcode MBIST Controller Architecture

II. MICROCODE MBIST CONTROLLER

As shown in the previous section, the importance of

developing new fault models increases with the new memory

technologies.

Many well-known fault models, developed before late

1990s failed to explain the occurrence of complex faults.

These included faults that were observed during the DPM

screening of a large number of tests applied to a large number

of memory chips. This implied that new memory

technologies involving high density of shrinking devices lead

to newer faults and stimulated the introduction of new fault

models, based on defect injection and SPICE simulation.

Write Disturb Fault (WDF), Transition Coupling Fault (Cft),

Deceptive Read Disturb Coupling Fault (Cfdrd) etc. are

examples of some such newly defined fault models [2].

Another class of faults called Dynamic faults which require

more than one operation to be performed sequentially in time

in order to be sensitized have also been defined. [3-4]

Traditional tests, like March C-, are thus becoming

insufficient/inadequate for today‟s and the future high speed

memories. Therefore, more appropriate test algorithms have

been developed to deal with these new fault models like

March SS and March RAW. March SS covers some of the

new fault models like Deceptive Read Destructive fault

(DRDF), Write disturb fault (WDF), etc., whereas March

RAW covers some of the Dynamic faults.

Some of the recently developed architectures can perform

up to two march operations per march element [6]. As a result,

they are not capable to handle new test algorithms that

involve as many as six/seven operations per march element.

The proposed architecture has the ability to execute

algorithms with unlimited number of operations per March

element. Thus almost all of the recently developed March

algorithms can be successfully implemented and applied

using this architecture.

This has been illustrated in the present work by

implementing March SS algorithm. The same hardware has

been used to implement other new March algorithms. This

requires just changing the Instruction storage unit, or the

instruction codes and sequence inside the instruction storage

unit. The instruction storage unit is used to store

predetermined test pattern.

A) Methodology

The block diagram of the architecture is shown in Fig 3.

The BIST Control Circuitry consists of Clock Generator,

Pulse Generator, Instruction Pointer, Microcode Instruction

storage unit, Instruction Register. The Test Collar circuitry

consists of Address Generator, RW Control and Data

Control.

Clock Generator produces simulated clock waveforms

Clock2, Clock3, Clock4, Clock5, Clock6, for the rest of the

circuitry based on the input clock (named Clock1) as shown

in Fig. 4

Fig 4. Simulated waveform of Clock generator Module

Pulse Generator generates a „Start Pulse‟ at positive edge

of the „Start‟ signal marking the start of test cycle.

Instruction Pointer points to the next microword, that is

the next march operation to be applied to the memory under

test (MUT). Depending on the test algorithm, it is able to i)

point at the same address, ii) point to the next address, or iii)

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010

1793-8201

468

jump back to a previous address.

 The flowchart in Fig. 5 precisely describes the functioning

of the Instruction Pointer.

Fig. 5 Flowchart illustrating functional operation of Instruction Pointer

Here, „Run complete‟ indicates that a particular march test

operation has marched through the entire address space of

MUT in increasing or decreasing order as dictated by the

microcode.

Instruction Register holds the microword (containing the

test operation to be applied) pointed at by the Instruction

Pointer. The various relevant bits of microword are sent to

other blocks from IR.

Address Generator points to the next memory address in

MUT, according to the test pattern sequence. It can address

the memory in forwards as well as backwards direction.

RW Control generates read or write control signal for

MUT, depending on relevant microword bits.

Data Control generates data to be written to or expected to

be read out from the memory location being pointed at by the

Address Generator

The Address Generator, RW Control and Data Control

together constitute the Memory Test Collar.

Input Multiplexer directs the input to memory by switching

between test algorithm input and input given externally

during the normal mode. The control signal for this

multiplexer is also given externally by the user. If it indicates

test mode then internally generated test data by BIST

controller is given to the memory as input from the Test

Collar. In case of Normal mode the memory responds to the

external address, data and read/write signals.

Fault Diagnosis module works during the test mode to

give the fault waveform which consists of positive pulses

whenever the value being read out of the memory does not

match the expected value as given by Test Collar. In addition,

it also gives the diagnostic information like the faulty

memory location address and the expected/correct data value.

This diagnostic information is used for programming the

repair redundancy array.

B) Microcode Instruction specification.

The microcode is a binary code that consists of a fixed

number of bits, each bit specifying a particular data or

operation value. As there is no standard in developing a

microcode MBIST instruction [7], the microcode instruction

fields can be structured by the designer depending on the test

pattern algorithm to be used.

 The microcode instruction developed in this work is

coded to denote one operation in a single microword. Thus a

five operation March element is made up by five micro-code

words. The format of 7-bit microcode MBIST instruction

word is as shown in Fig. 6. Its various fields are explained as

follows: Bit #1 (=1) indicates a valid microcode instruction,

otherwise, it indicates the end of test for BIST Controller.

Bits #2, #3 and #4 are used to specify first operation,

in-between operation and last operation of a multi-operation

March element, interpreted as shown in Fig. 6.

#1 #2 #3 #4 #5 #6 #7

Valid Fo Io Lo I/D R/W Data

Fo Io Lo Description

0 0 0 A single operation element

1 0 0 First operation of a

Multi-operation element

0 1 0 In-between Operation of a

Multi-operation element

0 0 1 Last Operation of a

Multi-operation element
Fig. 6 Format of Microcode Instruction word

Bit #5 (=1) notifies that the memory under test (MUT) is to

be addressed in decreasing order; else it is accessed in

increasing order. Bit #6 (=1) indicates that the test pattern

data is to be written into the MUT; else, it is retrieved from

the memory under test. Bit #7 (=1) signifies that a byte of 1s

is to be generated (written to MUT or expected to be read out

from the MUT); else byte containing all zeroes are generated.

The instruction word is so designed so that it can

accommodate any existing or future March algorithm. The

contents of Instruction storage unit for March SS algorithm

are shown in Table 1.

The first march element M0 is a single operation element,

which writes zero to all memory cells in any order, whereas

the second march element M1 is a multi-operation element,

which consists of five operations: i) R0, ii) R0, iii) W0, iv) R1

and v) W1. MUT is addressed in increasing order as each of

these five operations is performed on each memory location

before moving on to the next location.
TABLE 1

#
1

 V
al

id

#
2

 F
o

#
3

 I
o

#
4

 L
o

#
5

 I
/D

(0
/1

)

#
6

 R
/W

(0
/1

)

#
7

 D
at

a

(0
/1

)

M0: χ W0 1 0 0 0 0 1 0

M1: ↑{ R0 1 1 0 0 0 0 0

R0 1 0 1 0 0 0 0

 W0 1 0 1 0 0 1 0

R1 1 0 1 0 0 0 0

W1} 1 0 0 1 0 1 1

M2: ↑ {R1 1 1 0 0 0 0 1

R1 1 0 1 0 0 0 1

Single

operation

element?

First

Operatio

n

In-betwe

en

operatio

n

Run

complete?

Next

Address

Save

Address

 as ‘A’

Jump to

address

‘A’

Same

Address

No No

No

No

Yes

Yes

Yes Yes

Last

Oper-

ation

No

Run

complete

?

Yes

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010

1793-8201

469

W1 1 0 1 0 0 1 1

R1 1 0 1 0 0 0 1

W0 1 0 0 1 0 1 0

M3: ↓{R0 1 1 0 0 1 0 0

R0 1 0 1 0 1 0 0

W0 1 0 1 0 1 1 0

R0 1 0 1 0 1 0 0

W1} 1 0 0 1 1 1 1

M4: ↓{ R1 1 1 0 0 1 0 1

R1 1 0 1 0 1 0 1

W1 1 0 1 0 1 1 1

R1 1 0 1 0 1 0 1

W0} 1 0 0 1 1 1 0

M5: χ R0 1 0 0 0 1 0 0

 0 X X X X X X

III. WORD REDUNDANCY MBISR

The BISR mechanism used here [17] employs an array of

redundant words placed in parallel with the memory. These

redundant words are used in place of faulty words in

memory.

For successful interfacing with already existing BIST

solutions as shown in Fig. 2, the following interface signals

are taken from the MBIST logic:

1) A fault pulse indicating a faulty location address

2) Fault address

3) Expected data or correct data that is compared with the

results of Memory under test

The MBISR logic used here can function in two modes

A) Mode 1: Test & Repair Mode

In this mode the input multiplexer connects test collar

input for memory under test as generated by the BIST

controller circuitry. As faulty memory locations are detected

by the fault diagnosis module of BIST Controller, the

redundancy array is programmed. A redundancy word is as

shown in Fig. 7.

Fig.7. Redundancy Word Line

The fault pulse acts as an activation signal for

programming the array. The redundancy word is divided into

three fields. The FA (fault asserted) indicates that a fault has

been detected. The address field of a word contains the faulty

address, whereas the data field is programmed to contain the

correct data which is compared with the memory output.

The IE and OE signals respectively act as control signals

for writing into and reading from the data field of the

redundant word.

An overflow signal indicates that memory can no longer be

repaired if all the redundancy words have been programmed.

The complete logic of programming of memory array is

shown by Fig. 8.

B) Mode 2: Normal Mode

During the normal mode each incoming address is

compared with the address field of programmed redundant

words. If there is a match, the data field of the

Fig. 7. Flowchart describing programming of redundancy array

redundant word is used along with the faulty memory

location for reading and writing data. The output multiplexer

of Redundant Array Logic then ensures that in case of a

match, the redundant word data field is selected over the data

read out (= 0) of the faulty location in case of a read

signal. This can be easily understood by the redundancy word

detail shown in Fig.7.

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010

1793-8201

470

Fig.9 shows the Repair Module including the redundancy

array and output multiplexer and its interfacing with the

existing BIST module.

Fig. 8 Redundancy Array Logic

IV. RESULTS

Mentor Graphic‟s ModelSim has been used to verify the

functionality and timing constraints of Verilog coded BIST

module, Repair redundancy array, and their interface.

The full architecture containing all these modules has been

successfully synthesized using Xilinx ISE 8.2i.

The simulation waveform of a fault-free SRAM is shown

in Fig.10.

The top module in the figure shows the interfacing of BIST

Controller (including test collar), MUT and Comparator. As

the START signal goes high, indicating the start of test, the

first March element M0 of March SS algorithm is executed.

As this is a write signal, no values are read out from the

memory to be compared with expected or correct values and

hence the output FAULT waveform of comparator is high

impedance. As read operation starts at the beginning of

execution of M1 element, the values from MUT are read out

and compared with the expected values. The FAULT

waveform shows a „low‟ level throughout the test for a

fault-free SRAM

The SRAM model is also amended to be in defective state

by inserting faults. The simulated waveform is shown in Fig.

11.

The inserted faults are Deceptive Read Disturb fault

(DRDF) at location 11, Write Disturb Fault (WDF) at

location 13, Deceptive Read Disturb Coupling fault (CFdrd)

at location 9 (victim) due to location 10 (aggressor), Write

Disturb Coupling Fault (CFwd) at location 14 (victim) due to

location 15 (aggressor) [9].

The fault detect waveform shows 12 pulses due to the

above faults in given four locations, as the test elements

march through MUT to uncover these defects.

The above stated faults cannot be detected by March C-

algorithm but are easily detected by March SS Algorithm

which has been implemented by the architecture presented in

this work.

Fig. 12 is the simulated waveform of fault diagnosis

module. Fault pulse, faulty location address and correct data

signals are generated by this module for successful

interfacing with the Redundancy Array logic. This is clearly

illustrated by the simulated waveform (magnified) at the

seventh fault pulse given by fault diagnosis module.

Fig. 10 Simulated waveform of fault-free SRAM

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010

1793-8201

471

Fig. 11 Simulated waveform of faulty SRAM

Fig.12. Simulated waveform Fault Detection module magnified at the 7th Fault Pulse

International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 2010

1793-8201

472

V. CONCLUSION

The simulation results have shown that the micro-coded

MBIST architecture described here is an effective testing

method to test embedded memories as it provides a flexible

approach and better fault coverage. Just as March SS, any

other new march algorithm can also be implemented using

the same BIST hardware by changing the instructions in the

microcode storage unit, without the need to redesign the

entire circuitry. The word redundancy uses spare words in

place of spare rows and columns. This repair mechanism

avoids lengthy redundancy calculations as suggested by

some other authors in their works [18], [19], as it stores faulty

location addresses immediately supporting on-the-fly fault

repair. Moreover, it can be interfaced easily with existing

MBIST logic.

REFERENCES

[1] International SEMATECH, “International Technology Roadmap for

Semiconductors (ITRS): Edition 2001”

[2] S. Hamdioui, G.N. Gaydadjiev, A.J .van de Goor, “State-of-art and

Future Trends in Testing Embedded Memories”, International

Workshop on Memory Technology, Design and Testing (MTDT’04),

2004.

[3] S. Hamdioui, Z. Al-Ars, A.J. van de Goor, “Testing Static and Dynamic

Faults in Random Access Memories”, In Proc. of IEEE VLSI Test

Symposium, pp. 395-400, 2002.

[4] S. Hamdioui, et. al, “Importance of Dynamic Faults for New SRAM

Technologies”, In IEEE Proc. Of European Test Workshop, pp. 29-34,

2003.

[5] S. Hamdioui, A.J. van de Goor and M. Rodgers, ”March SS: A Test for

All Static Simple RAM Faults”, In Proc. of IEEE International

Workshop on Memory Technology, Design, and Testing, pp. 95-100,

Bendor, France, 2002.

[6] N. Z. Haron, S.A.M. Junos, A.S.A. Aziz, “Modelling and Simulation of

Microcode Built-In Self test Architecture for Embedded Memories”, In

Proc. of IEEE International Symposium on Communications and

Information Technologies pp. 136-139, 2007.

[7] R. Dean Adams, “High Performance Memory Testing: Design

Principles, Fault Modeling and Self-Test”, Springer US, 2003.

[8] “Xilinx ISE 6 Software Manuals and help – PDF

Collection”,http://toolbox.xilinx.com/docsan/xilinx7/

books/manuals .pdf

[9] A.J. van de Goor and Z. Al-Ars, “Functional Fault Models: A Formal

Notation and Taxonomy”, In Proc. of IEEE VLSI Test Symposium, pp.

281-289, 2000.

[10] Zarrineh, K. and Upadhyaya, S.J., “On Programmable memory built-in

self test architectures,” Design, Automation and Test in Europe

Conference and Exhibition 1999. Proceedings , 1999, pp. 708 -713

[11] Sungju Park et al, “Microcode-Based Memory BIST Implementing

Modified March Algorithms”, Journal of the Korean Physical Society,

Vol. 40, No. 4, April 2002, pp. 749-753

[12] A.J. van de Goor, “Using March tests to test SRAMs”, Design & Test of

Computers, IEEE, Volume: 10, Issue: 1, March 1993 Pages: 8-14.

[13] R. Dekker, F. Beenker and L. Thijssen, “Fault Modeling and Test

Algorithm Development for StaticRandom Access Memories”, Proc.

IEEE Int. Test Conference, Washington D.C., 1988, 343-352.

[14] R.Dekker, F. Beenker, L. Thijssen. “A realistic fault model and test

algorithm for static random access memories”. IEEE Transactions on

CAD, Vol. 9(6), pp 567-572, June 1990.

[15] B. F. Cockburn: “Tutorial on Semiconductor Memory Testing” Journal

of Electronic Testing: Theory and Applications, 5, pp 321-336 1994

Kluwer Academic Publishers, Boston.

[16] A.J. van de Goor, “Testing Semiconductor Memories, Theory and

Practice” ComTex Publishing, Gouda, Netherlands.

[17] V. Schober, S. Paul, and O. Picot, “Memory built-in self-repair using

redundant words,” in Proc. Int. Test Conf. (ITC), Baltimore, Oct. 2001,

pp. 995-1001.

[18] C.-T. Huang, C.-F. Wu, J.-F. Li, and C.-W. Wu, “Built-in redundancy

analysis for memory yield improvement,” IEEE Trans. on Reliability,

vol. 52, no. 4, pp. 386-399, Dec. 2003.

[19] J.-F. Li, J.-C. Yeh, R.-F. Huang, and C.-W. Wu, “A built-in self-repair

design for RAMs with 2-D redundancies,” IEEE Trans. on VLSI

Systems, vol. 13, no. 6, pp. 742-745, June 2005.

http://www.springerlink.com/content/gh4222/?p=c81f211b04a1411c8336d0be1ed16054&pi=0
http://www.springerlink.com/content/gh4222/?p=c81f211b04a1411c8336d0be1ed16054&pi=0

