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Abstract—Multiple resource sharing has a complex nature in 

parallel manufacturing processes due to the competition of 

different operations for scarce resources. This paper presents 

the Petri net model for parallel manufacturing processes with 

shared resources called parallel process net with resources 

(PPNR). The structural characteristics of PPNR are discussed 

and siphon based characterizations of live and reversible PPNR 

are also presented. Simple structure based conditions and 

properties for conservative PPNR are presented for checking its 

liveness and reversibility. Finally, proposed method of net 

modeling is demonstrated by a practical example. 

 

Index Terms—Petri net, resource sharing, parallel 

processing flows, liveness.  

 

I. INTRODUCTION 

  Handling resource sharing becomes an important aspect 

during flexible manufacturing system (FMS) design and 

allocation of resources is always a challenging task in the 

modeling. Further, the resource-sharing among different 

operations to be performed does not imply its simultaneous 

usage because each operation utilizes a resource type 

exclusively and releases it after completion. Furthermore, a 

resource type held by one operation can not be preempted by 

another operation.  

The parallel flows of multiple products in a FMS can be 

identified as different jobs to be completed. For instance, 

parallel or concurrent processing of raw products of different 

types on limited number of resources such as machines, robots, 

buffers etc. is a common situation in FMS.  While sharing the 

limited number of  resources,   these jobs have  a  particular  

operation  routing  that  determines  the order  in  which  

resources  must  be  assigned  to  the  product. Therefore, 

allocation of limited number of resources to the different 

operations to achieve the efficient output of FMS is not a 

trivial task and requires the modeling of operation flows in 

FMS.  

Petri nets (PNs) have been extensively used for modeling, 

analysis and design of FMS [1]-[6] because of the ability of 

PNs for formal verification to detect the important behavioral 

properties of modeled systems. The PN model of a 

manufacturing system (MS) is either constructed by a 

top-down or bottom-up approach [7]. In a top-down approach 

[8]-[10], firstly the high-level description of system is 

presented and then model is stepwise refined by adding the 

subnets until a complete net model is achieved. For FMSs 

with shared resources, the top-down approach has a drawback 

that the subnets are strongly coupled and it is hard to find the 

small size of final expanded model. Where as, in bottom-up 

approach [11]-[13], the net modules of specified subsystems 

are constructed. Then, they are combined by sharing common 

places, transitions or subnets. However, the verification of 

desired set of properties for such type of integrated model is 

not straightforward. Consequently, the disadvantage of 

bottom-up approach is the great difficulty in the verification of 

desired behavior of the large-scale integrated model. 

To cope with these shortcomings of modeling approaches, 

this paper presents a new class of PNs called parallel process 

net with resources (PPNR) for FMSs having parallel 

processes. There are two stages which comprise the modeling 

procedure of PPNR. Firstly, the parallel process net (PPN) is 

constructed to specify the process flows of each part type in a 

MS without considering the resources. The step of PPN 

portraits the parallel processing of parts and depicts the order 

of different operations. Further, this step assists for the proper 

assignment of resources required to process each part type and 

provide the resource-allocation policy according to the given 

production plan. Thereafter, the marked resource places 

denoting the availability of resource types are added to the 

PPN. In this way, PPNR can model more complex 

resource-sharing and interacting parallel processes in FMSs. 

The main power of the PN as mathematical tool is its 

support for analysis to study important characteristics for 

synthesis after modeling of the physical MS has been 

performed. Structural analysis illuminates the important 

structural characteristics of the PN model and useful for its 

synthesis. One of the main advantages of the structural 

approach for characterization of the PN model is that it is 

independent of the reachable states of a system, which is 

computationally impractical for large-scale MSs. Moreover, 

structural approach for the analysis of FMSs is mainly based 

on minimal siphons [12], [14]-[19]. Although the number of 

siphons grows quickly and in the worst case grows 

exponentially fast with respect to the PN size [20], [21], even 

though it is practical because there is no need to generate the 

reachability graph which suffers from state-explosion problem 

[22]. 

This paper presents a number of characterizations of live 

and reversible PPNR based on siphons and minimal marked 

siphons. Further, several structural characteristics of PPN and 

then PPNR are described. These characteristics help to 

identify the requirements of the structure of PPNR and its 

behavior. Furthermore, main interest of the simple structural 

based conditions and properties, presented in this paper, is in 

Analysis of Parallel Manufacturing Processes 

with Resource Sharing 

Farooq Ahmad, Hejiao Huang and Xiao-long Wang 



International Journal of Computer Theory and Engineering, Vol. 2, No. 2 April, 2010 

1793-8201 

251 

 

 

their use for the synthesis of live and reversible PPNR. 

The paper is organized as follows. Some related 

terminologies are introduced in Section 2. In Section 3, the 

formal definition and the characterization of PPN is presented. 

Section 4 introduces the PPNR and presents the 

characterization of live and reversible PPNR. The 

demonstration of the proposed modeling procedure is 

presented in Section 5 and concluding remarks are presented 

in Section 6. 

II. DEFINITIONS AND CONCEPTS 

In this section, some basic definitions and notations of 

ordinary (for the sake of simplicity) PN are described. The 

related terminology and notations are mostly taken from [23], 

[24]. 

Definition 1: (Petri net) A Petri net PN, is a five tuple, 

0( , , , , )PN P T I O M . Where, 1 2{ , , , }
P

P p p p   is a finite 

set of places, 0P  ; 1 2{ , , , }
T

T t t t    is a finite set of 

transitions, 0T  ; :I T P is the input function, which is a 

mapping from transitions to the set of places and it indicates 

the input places of transitions; :O T P is the output 

function,  which is a mapping from transitions to the set of 

places and it indicates the output places of 

transitions, P T   and P T  .  

Let ( )jI t  represent the set of input places of 

transition
jt T  and 

ip P  is an input place of a transition 

jt  if ( )i jp I t ; ( )jO t represents the set of output places, 

then
ip  is an output place of 

jt  if ( )i jp O t . 

The input and output functions can be extended to map the 

set of places P  into the set of transitions T  such as 

:I P T  and :O P T . Then, set ( )iI p  represents the 

set of input transitions of place 
ip P and set ( )iO p  

represents the set of output transitions of place
ip P . 

The incoming arc from
ip  to 

jt  is represented by 

( , ( ))i jp I t and outgoing arc from 
jt to 

ip be ( , ( ))i jp O t . 

Similarly, ( , ( ))j it I p  represents the incoming arc from 
jt to 

ip as ( )j it I p and arc ( , ( ))j it O p represents outgoing arc 

from ip  to 
jt as ( )j it O p  , when the set of places maps into 

the set of transitions; ,j it T p P    . 

The structure of a PN is defined by the set of places, set of 

transitions, input function and output function. A PN 

structure without 0M is denoted by ( , , , )N P T I O . A PN 

structure N is said to be strongly connected if and only if every 

node ix P T  is reachable from every other 

node jx P T   by a directed path. A PN structure N is said 

to be self-loop-free or pure if and only if
jt T  , 

( ) ( )j jI t O t  , i.e. no place can be both an input and an 

output of the same transition. A PN structure N is said to be 

state-machine if and only if, 
j

t T  , ( ) ( ) 1
j j

I t O t   and 

said to be marked graph if and only if 
i

p P  , 

( ) ( ) 1
i i

I p O p  . 

A marking is a function :M P   (non-negative integers) 

and initial marking is denoted by
0M . A PN with given initial 

marking is denoted by
0( , )N M . The set of all reachable 

markings from
0M  is denoted by 

0( )R M which is a definite 

set of markings of PN such that, if 
0( )kM R M  and 

jt

k kM M   for some
jt T , then

0( )kM R M  . 

Definition 2: (Firing rule) The firing rule identifies the 

transition enabling and the change of marking. Let ( )iM p be 

the number of tokens in place
ip , then for

jt T  ; 
jt  is 

enabled under marking M if and only if ( )i jp I t  : ( ) 1iM p  . 

The change of marking M to M  by firing the enabled 

transition
jt  is denoted by jt

M M   and defined for each 

place 
ip P  by 

( ) 1 for every ( )

( ) 1 for every ( )( )

( ) otherwise.

i i j

i i ji

i

M p p I t

M p p O tM p

M p

 


   



 

Definition 3: (P-invariant, T-invariant and 

conservativeness) For a PN 
0( , )N M , a P-invariant is a 

P -vector 0y   such that 0Ay  , where A  is the T P  

incidence matrix. Similarly, a T-invariant is a T -vector 

0x   such that 0TA x  . A PN is said to be conservative if 

and only if there exists a P-invariant 0y  . 

Definition 4: (Siphons, traps and minimal siphons) A set 

of places S P  is called a siphon if ( ) ( )I S O S  and it is 

called a trap if ( ) ( )O S I S . A siphon S  is called minimal if 

there does not exits S  such that S S  . 

Definition 5: (Liveness) A transition
j

t T  is said to be 

live if 
0

( )
k

M R M  there is marking kM  reachable from 

kM such that kM   enables 
j

t and PN
0( , )N M is live if

j
t T  : 

j
t is live. 

Definition 6: (Reversibility) A marking 
kM  of PN 

0( , )N M is called reversible if and only if for every marking 

kM   reachable from kM there exist a firing sequence 

reproducing kM and 0( , )N M is called reversible if and only 

if 
0

M  is reversible. 

 

III. PARALLEL PROCESS NET 

The process flow of each part type (raw or in-process 

material) is represented by the token flow in a PN model. The 

places are used to model the different operations (e.g., 

machining, holding, assembling and transformation etc.) to be 

executed over the part types. The resource types (e.g., 

machines, buffers, robots, etc.) are also modeled by the 

initially marked places referring to the availability of 

resources.  

The transitions grant to advance a part type into the finished 
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product as they represent the start and termination of 

manufacturing processes in the PN model. There are output 

(input) arcs from resource places to those transitions that move 

a process to (from) the operation state by using these resources. 

The sequence of transition firing represents the production 

path in the PN model of a production plan and there may be 

several paths to achieve a final product in a same plan. 

The parallel process net (PPN) is constructed as a first step 

for the specification of parallel processing flows of each part 

type in a manufacturing system without considering the 

resources. The production plan in a manufacturing system has 

specific input point(s) for raw material and output point(s) for 

finished product(s). In a PPN, such input points are combined 

by the single transition with single marked input place as 

shown in Fig. 1(a). Such single transition, denoted by
0t , 

initiates the parallel execution of jobs in a modeled FMS. The 

single input place of transition 
0t is called initial place, 

denoted by
0p , and every cycle in parallel process net include 

it. In this way the PPN is strongly connected and self loop free. 

The output points for finished parallel jobs, which are 

modeled by places, are synchronized by single transition, 

called synchronizing transition and denoted by st , as depicted 

in Fig. 1(a). A token in a place
fp  in Fig. 1(a), called final 

place, represents the completion of processing. The transition 

which finishes the single production iteration is denoted by 

ft where
fp stands for its input place and

0p as its output place. 

For formal definition of PPN, the set of places excluding the 

initial place
0p  and final place

fp  is denoted by 
OPP  and the 

set of transitions representing the start and termination of 

different operations in PPN is denoted by 
OPT . 

Definition 7: The PPN is a PN 

0( , , , , )PN P T I O M such that  

i.   
0{ , }OP fP P p p   

ii.  
0{ , , }OP s fT T t t t   

iii. 
0( ) { }fI p t  and 

0 0( ) { }O p t  

iv. 
0 0( ) { }I t p  and 0( )O t  is the number of raw parts 

entering into the system 

v.  ( ) { }f s f OPI p t T T     and ( ) { }f fO p t  

vi. ( ) { }f fI t p  and 
0( ) { }fO t p  

vii. 0 0 0 0( ) 1 ( ) 0 \{ }i iM p M p p P p       

viii. 0( )kM R M  ; ( ) 1 ( ) 0k f k iM p M p    

   \{ }i fp P p   

Property 1: Every cycle in PPN contains the initial 

place 0p , final place 
fp and transition

ft . 

Proof: The proof for the statement of Property 1 is trivial, as 

by removing the initial place 0p  final place 
fp and transition 

ft  and its associated arcs, PPN is acyclic. 

Property 2: Each isolated parallel processing flow in PPN 

is executable. 

Proof: Every processing flow is a sequence of operations 

represented by the transitions for their beginning and 

termination, which can be fired if their input places 

representing the first operation in order are marked. Since 

0( )O t are the set of places representing the specific input 

points for the processing of parts entering into the system, 

which become marked by firing initial transition
0t . From (iv) 

and (vii) of Definition 7, 
0t is executable. 

Property 3: In PPN, an individual parallel processing flow 

is a T-invariant. 

Proof: An independent sequence of operations is for 

completing the processing of a part entering into the system, 

which is interpreted as production path. Each cycle in PPN 

contains such type of production path, which is executable in 

isolation due to Property 2. From Definition 7(vii), 

0 0( ) 1M p   and each cycle contains the initial place
0p , 

sequence of transitions in each cycle is a T-invariant. 

Property 4: Every cycle in PPN is a strongly connected 

state-machine. 

Proof: Form Property 3, every cycle contains the individual 

parallel processing of a part represented by the sequence of 

operations. Further every cycle contains common initial 

place
0p , initial transition 

0t , synchronizing transition 
st , 

final place 
fp and final transition 

ft . According to the 

Property 1, by removing them, there are independent parallel 

processing flows represented by the sequence of operations, 

where every transition representing either beginning of an 

operation or end of operation has only one input and output 

place representing a specific operation. Hence every cycle is 

the strongly connected state-machine with the transitions 

representing the firing sequence that completes the processing 

of a part entering into the system. 

Property 5: Every cycle in PPN is a siphon with initial 

place 
0p , final place 

fp and transition
ft . 

Proof: Trivial, corresponding set of places in a cycle is a 

siphon. From Property 1, by removing initial place
0p , final 

place 
fp and transition

ft there is no cycle in PPN. Hence 

every cycle is a siphon in PPN containing
0p , final place 

fp and transition
ft . 

Property 6: A strongly connected PPN is reversible. 

Proof: Every cycle in PPN represents the production 

routing of parts entering into the system. Further, from 

Property 3, every cycle is a T-invariant representing the firing 

sequence that completes the processing of each part. Therefore, 

0M is reachable from any intermediate marking 0( )kM R M  

in PPN. 

Property 7: A strongly connected PPN is live. 

Proof: Property 5 follows that every cycle in PPN is a 

siphon with common place 0p , final place 
fp and 

transition ft . From Properties 2, 3 and 4, every cycle in PPN 

contains a production path for a part entering into the system 

and no other cycle exists in it, which follows that every cycle is 

not only a strongly connected state-machine but also a marked 

graph. This implies that every siphon in PPN is also a trap. 

From Definition 7(vii), every cycle is marked, which implies 

that every siphon has a marked trap. Hence PPN is live due to 
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[23].  

 
Fig. 1 (a) The sketch of a parallel process net and (b) assignment of a resource to the process 

 

It is extremely desirable that every transition in PPN models 

an actual event of process execution or termination and there 

is not a redundant transition in it. Further, every operation can 

proceed towards its completion without any interruption and 

execution of any additional operation. In order to make sure 

the existence of these requirements, the characterization of 

PPN illuminates that there is no dead transition in it and it is 

reversible. Since attention is focused on efficient 

resource-allocation to the parallel manufacturing processes, 

the complete characterization of the class of PPN is beyond 

the scope of this paper. 

 

IV. PARALLEL PROCESS NET WITH RESOURCES 

The step of PPN assists for the proper assignment of 

resources required to process each part type. Thereafter, the 

marked resource-places denoting the availability of resource 

types are added to the PPN such that input and output 

transitions of each operation-place act as its output and input 

transition respectively, as shown in Fig. 1(b). 

The PN model of parallel manufacturing processes with 

marked resources-places will be called, from now on, parallel 

process net with resources (PPNR).  

For the purpose of defining PPNR formally, the set of 

places P , excluding the initial place 0p and final place
fp , is 

divided into the set of operation-places OPP and the set of 

resource-places RP .  

Definition 8: The PPNR is a PN 

0( , , , , )PN P T I O M such that 

i.   
0{ , }OP R fP P P p p   and

OP RP P   

ii.  
0{ , , }OP s fT T t t t   

iii. 
0( ) { }fI p t  and 

0 0( ) { }O p t   

iv. 
0 0( ) { }I t p  and 

0( ) RO t P   

v.  ( ) { }f s f OPI p t T T    and ( ) { }f fO p t  

vi.  ( ) { }f fI t p  and 
0( ) { }fO t p  

vii. 
0 0 0( ) 1 ( ) 1 i i RM p M p p P      , while 

0 0( ) 0 ( ) 0 f i i OPM p M p p P      

viii. 
0( )kM R M   ; 

0( ) ( ) 1 ( ) 0k k f k iM p M p M p     

i OPp P   

ix. 
0

( \ , , , , )
R

PN P P T I O M   with  
0 0( ) 1M p   

and
0( ) 0 iM p  0\ { }i Rp P P p    is a strongly connected 

and self-loop free PPN. 

In the PPNR introduced by Definition 8, a token in place 

0p  represents the instance of waiting to initiate the parallel 

processing of multiple products while the initiation of a 

parallel processing is modeled by the firing of transition 0t . 

Similarly, token in a place
fp represents the completion of 

processing instances, while the event of a process completion 

is modeled by the firing of transition 
ft . Transition

ft   allows 

re-circulation of token from place 
fp  to place 0p   in order to 

model the iterative execution of PPNR to produce the required 

number of final products.  

Property 8: For each i Rp P there exits a minimal 

P-invariant with only marked place i Rp P . 
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Proof: Since each resource-place 
i Rp P  is added to the 

PPN in such a way that input and output transitions of each 

operation-place 
j OPp P  act as its output and input transition 

respectively, as shown in Fig. 1(b). From Property 4, every 

individual parallel process is a state-machine. Further, 

 
0 0

( ) ( ) ( ) ( )
R R f R f R

I t P O t P I t P O t P        . 

Therefore, allocation of each resource place to each 

operation place is represented by directed cycle with only 

marked place 
i Rp P  representing the availability of a 

resource. Hence allocation of resources in PPN imposes the 

existence of minimal P-invariant for each
i Rp P . 

Property 8 directly follows that allocation of resources to 

the operations in PPNR is in conservative way, which implies 

that resources can neither be created nor destroyed. Moreover, 

the existence of P-invariant i
y

for each resource 

place i Rp P
follows that { }R i iP y p  , 

OP iP y  and 
0{ } ip y  . Property 8 depicts that 

resources can be iteratively used and released and appropriate 

for the actual requirement of the manufacturing system. 

Property 9: Every minimal P-invariant 
i

y  is a minimal 

siphon with 
0( ) 1iM p  , 

i Rp P  . 

Property 9 follows that for each resource place 
ip , there 

exists a minimal siphon with only marked place 
ip . 

Theorem 10: Let (
0,N M ) be a PPNR with “non-shared” 

resources, then it is live. 

Proof: Since there is not a dead transition in PPN, it is live. 

Property 9 implies that every resource added to PPN makes an 

initially marked minimal siphon with the operation place. 

Because every operation is performed on an independent 

resource, therefore every operation place along with a resource 

place in PPNR also makes a trap, which is marked due to 

Definition 8(vii). Minimal siphons thus obtained by 

independent resource places contain a marked trap which 

directly follows the liveness of PPNR due to [23].   

Theorem 10 follows that places representing the shared 

resources in PPNR have the potential of deadlock because 

each operation utilizes a resource exclusively and releases it 

after the completion. For the processing flow of a part, the 

transition between two operations represents the end of first 

operation and also the beginning of second operation in order. 

The utilization of a resource is represented by transferring of a 

token from resource place to operation place through a 

transition representing the beginning of an operation on that 

resource. A transition at any marking of PPNR is said to be 

enabled if its preceding operation place as well as its input 

resource place are marked by a token. 

Theorem 11: An PPNR is free from deadlocks, if and only 

if  0( )kM R M  such that ( ) 0k iM p  , for any of 

( )i jp I t , for each 
j OPt T  representing the beginning of 

operations at kM . 

Theorem 11 is related to the non-existence of a marking 

where the execution of operations is blocked due to the 

unavailability of resources. The input places of the transitions 

representing the beginning of operations are unmarked often 

representing the unavailability of resources. The 

unavailability of required resource is often due to the reason of 

holding of that resource by another operation. This situation 

of circular-waiting leads to the existence of a siphon whose 

resource places are unmarked. 

Theorem 12: An PPNR is live if and only if there does not 

exists a siphon S , such that
0( )kM R M  , 

( ) 0k iM p  i Rp P S   . 

Proof: Assume that PPNR is live and that there is siphon 

S and reachable marking
kM , for 

which ( ) 0k iM p  i Rp P S   . Properties 5 and 9 lead to 

the fact that every siphon contains an initial place 
0p , a final 

place 
fp or at least one resource place. From Theorem 11, 

( ) 0k iM p  i Rp P S    implies that ( ) 0k iM p   for any of 

( )i jp I t , for each 
j OPt T  representing the beginning of 

operations at 
kM . Therefore, siphon is deadly marked at 

kM  

and PPNR is not live, by contradiction, there does not exits a 

siphon S  which holds the condition given in the statement of 

the theorem. 

Conversely, for every siphon in PPNR, 
0( )kM R M  : 

( ) 0k iM p  i Rp P S   . This implies that resource places 

in siphons remain marked for each reachable marking in 

PPNR, every siphon would not eventually become empty, 

which directly follows that every siphon has a marked trap. 

Hence PPNR is live. 

Theorem 13: An PPNR is reversible if and only if it is live. 

The statement of Theorem 13 is straightforward, for the 

characterization point of view for PPNR, liveness is similar to 

the reversibility. 

The main requirement for PPNR is that every parallel 

processing flow in the system is able to complete, without any 

deadlock. The statements of the Theorems 10 to 13 depict the 

conditions under which this requirement is accomplished. 

 

V. APPLICATION EXAMPLE 

This section illustrates the PN model of parallel 

manufacturing processes with shared resources in the form of 

PPNR. 

The manufacturing system given in this example produces 

the final product from three primitive parts by using four 

machining centers, two assembly stations 1A and 2A , two 

robots 1R and 2R and a buffer B . Each machining centre 

iMC contains a machine iM , 1,2,3,4i  . When either 

1A or 2A is ready to execute the assembly task, it requests both 

robots 1R and 2R and acquires them if they are available. When 

1A ( 2A ) completes the assembly task, it releases both the 

robots. 

It is assumed that input parts are always available to be 

fixture and that the finished product to be removed. Further, 

once the system is executed, it can not be interrupted and 
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system can not begin a new iteration before termination.  

The production plan is given as follows: 

1) Part 1 is machined by 
1M and part 2 is machined by

2M . 

Each part automatically fixtures to the pallet and loaded 

into a machine.  

2) After processing, parts 1 and 2 enter the assembly station 

1A for producing part S . 

3) Part 3 is machined first by 
3M and then by

4M . In
3M , 

part 3 automatically fixtures to the pallet and loaded into 

a machine. After processing, the robot 
1R unloads the 

intermediate part from
3

M  into the buffer B and 
3M is 

released. 

4)  From the buffer B , intermediate part is automatically 

loaded into 
4M and processed. When 

4M finishes 

processing a part, the robot 
1R unloads a product, a part 

T , and
4M is released. 

5) The assembly station 
2A assembles parts S and T to 

produce the final product. 

  

 
Fig. 2 (a) PPN and (b) PPNR of given manufacturing system 

Modeling PPNR for given manufacturing system: 

According to the explanation given in Section 3, firstly the 

PPN of production plan given above is constructed to indicate 

the process flow of each part type. Fig. 2(a) clearly depicts the 

parallel processing flows in manufacturing system as well as 

resource requirement for operations to be performed. 

The PPNR is constructed in second step by adding the 

resource places denoting the availability of resources and 

resources shared by several processes. Fig. 2(b) shows the 

resultant PPNR and its transitions denote starting or finishing 

of the operations. The places of PPNR in Fig. 2(b) represent 

the operations performed in the manufacturing system and 

resource types which are explained in Table 1. The shared 

robots 1R and 2R  are represented by places drawn in Fig. 2(b) 

by larger circles while the robot 
1R is drawn twice and 

represented by the places 9p and 9p  for clear presentation. In 

fact, both the places 9p and 9p  are representation of single 

place. 

From Property 9, every resource place has a marked minimal 

siphon. Further, For PPNR given in Fig. 2(b), every siphon 

contains a marked trap and would never become empty. 

Theorem 12 directly follows that given PPNR is live, which 

implies its reversibility. 
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VI. CONCLUSION 

A new class of nets, PPNR, is presented to model the 

parallel processing of multiple parts on shared resources. The 

proposed PPNR has the capability to model the real-life 

manufacturing systems having complex resource sharing. It 

has been presented that the more complex production plans of 

manufacturing systems implicated in resource-sharing can be 

modeled by PPNR. 

This paper further presents a number of characterizations of 

live and reversible PPNR based on siphons and minimal 

marked siphons. Simple structure based conditions and 

properties for conservative PPNR are presented for checking 

the liveness and reversibility. These characteristics help to 

identify the requirements of the structure of PPNR and its 

behavior. Furthermore, simple structural based conditions and 

properties, presented in this paper, are found practical for the 

synthesis of live and reversible PPNR. 

 

Table 1: Interpretation of places of Fig. 2(b) 

Operation 

places 

Interpretation Resource 

places 

Interpretation 

p0 Initial place of PPNR p3 Machine M1 available 

p1 Part 1 is available p6 Machine M2 available 

p2 Part 2 is available p7 Robot R1 available 

p4 Part 1 machined by M1 p9 Robot R2 available 

p5 Part 2 machined by M2 p13 Machine M3 available 

p8 Parts 1&2 assembled on A1 p16 Buffer B available 

p10 Part S is available p18 Machine M4 available 

p11 Part 3 is available  

p12 Part 3 machined by M3 

p14 Intermediate part unloaded by R1 

p15 Intermediate part in  buffer B 

p17 Intermediate part machined by M4 

p19 Intermediate part unloaded by R1 

p20 Part T is available 

pf Final place of PPNR 
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