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Abstract—In this paper, we automate a segmentation 

technique known as intelligent scissors to segment the liver 

from volumetric MRI data. With this method, the user only 

needs to select an initial slice, and the method is executed 

automatically.  From the initial slice, the contour propagates 

inside the volume and segments the liver in every slice using a 

dynamic programming algorithm. 

 

Index Terms—Automatic segmentation, intelligent scissors, 

liver segmentation, MRI liver dataset.  

 

I. INTRODUCTION 

  The liver is located in the upper right portion of the 

abdominal cavity. This organ is the largest organ in the human 

body, and plays numerous vital roles in order to make the body 

functioning properly. This organ converts glucose to glycogen, 

produces bile, synthesises urea, destroys old blood cells, and 

has many other functions.  

Unfortunately, there are some deadly diseases associated 

with the liver, for example, cirrhosis and liver cancer. 

Cirrhosis is the condition of the liver where the scars caused 

by the infection of hepatitis C virus or alcoholic liver diseases, 

replace the healthy tissues of the liver, change the liver 

structure, and impair its performance. Cirrhosis is one of the 

main factors for hepatocellular carcinoma (HCC), which is the 

third most common cause of cancer-related death in the world. 

It is estimated that more than 50,000 HCC new cases 

diagnosed yearly, worldwide [1].  

Yet, in order to detect the abnormalities of the liver, or to 

plan the surgery, medical imaging is normally needed. Until 

now, there are three common imaging techniques used to 
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access the liver, i.e. ultrasonography, X-ray computed 

tomography (CT), and magnetic resonance imaging (MRI). 

However, MRI is well known to have better soft tissue contrast, 

which makes this modality superior compared with other 

imaging modalities in detecting early, as well as widespread 

liver diseases [2].  

The aim of this work is to segment the liver surface, 

automatically or at least with very minimal user intervention, 

from 3D MRI data. There are many possible advantages of 

segmenting the liver surface, such as to create 3D liver model, 

to separate the liver region from the surrounding organs (for 

better visual inspection), and to calculate the changes in liver 

volume due to diseases. Yet, the liver is the most difficult 

organ to be segmented automatically [3]. 

Most of liver segmentation methods available in literature, 

such as [3]-[7], deal with CT data. However, segmentation of 

CT data is relatively easier compared with the segmentation of 

MRI data because most of the tissues in CT can be identified 

based on a repeatable set of Hounsfield units [8]. Besides, 

neural networks-based methods [9], or model fitting-based 

methods [10]-[12], require a lot of training datasets for their 

implementation. 

II. INPUT DATASETS 

In this work, eight complete 3D MRI liver datasets have 

been used. These datasets were acquired on a SIEMENS 

Magnetom Vision Scanner at the CRC Clinical Magnetic 

Resonance Centre, Institute of Cancer Research, London. 

Eight datasets are enough for an evaluation purpose, as many 

researchers use less than five datasets in their work, (for 

example [13][14]). We refer to these datasets as Dataset01, 

Dataset02, . . . , Dataset08. 

Each testing dataset, except Dataset08, only consists of 

thirteen 256×256 axial slices (Dataset08 consists of eighteen 

axial slices). The dimensions of each voxel are 

1mm×1mm×8mm. However, with this slice thickness, our 

segmentation method described in Section III fails to segment 

the liver due to the violation of the basic assumption on which 

the presented work lies, namely that the slices are dense 

enough so the shape of the liver does not change significantly 

from one slice to the next. Thus, in order to increase the 

sampling rate of the datasets along the z direction, we 

interpolate two successive axial slices to produce seven new 

slices in between. (Hence, each dataset, except Dataset08, 

now consists of 97 axial slices. Dataset08 now consists of 137 

slices). After the interpolation, we can assume that each voxel 

Automatic Volumetric Liver Segmentation from 

MRI Data 

Haidi Ibrahim, Maria Petrou, Kevin Wells, Simon Doran, and Øystein Olsen 



International Journal of Computer Theory and Engineering, Vol. 2, No. 2 April, 2010 

1793-8201 

177 

 

 

in this dataset is 1mm×1mm×1mm in size.  The interpolation 

technique used is defined as follows: 

8
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where g(x,y) is the intensity of the interpolated slice at 

position (x,y), while f1(x,y) and f2(x,y) are the intensities of the 

first and the second input slices, respectively.  The value of r is 

the distance between g(x,y) and f1(x,y).  

As described in [15], each testing dataset is then 

preprocessed by using the preprocessing chain shown in Fig. 1. 

The aims of this preprocessing chain are to reduce the bias 

field inhomogeneity problem, lower the noise level, and 

improve the strength of the liver edges. The preprocessed 

datasets become the input for the automatic segmentation 

method described in the next section. 

 
Fig. 1. The best preprocessing chain. 

III. AUTOMATIC SEGMENTATION 

Before we segment the liver, we apply another step which is 

designed to salienate the edges on the basis of their length, 

curvature and proximity. The algorithm proposed by Li [16] 

imitates the workings of the primary visual cortex (V1) in the 

human brain and it is based on the interactions between 

excitatory and inhibitory neurons. Its output is a saliency map 

where the liver contour is clearly distinct. An example is 

shown in Fig. 2. 

 

  
(a) (b) 

Fig. 2. (a) The input image. (b) The output of the salienation algorithm. 

 

In order to produce a closed contour defining the boundary 

of the hepatic region in each slice, we make use of an active 

contour technique known as intelligent scissors [17]. One of 

the features of this active contour is that the edge segments are 

estimated by computing the minimum edge cost, between two 

user-defined points, using a combination of edge magnitude 

and direction. However, we have adapted the usual cost 

function to be: 

)()(),( qfwqfwqpl GGSS                    (2) 

where l(p,q) is the cost of a path that connects points p and 

q, fS is the inverse of the saliency value along the path, fG is the 

inverse of the gradient magnitude along the path, both scaled 

in the range 0 to 1, while wS and wG are the corresponding 

weights such that wS +wG =1. Thus, low cost (and therefore, 

high likelihood of a valid edge) is the edge with maximum 

saliency and maximum edge strength. 

The segmentation process is initialized when the user 

selects one of the top most axial liver slices. This is the only 

human intervention needed, as all other remaining processes 

are executed automatically. This initial slice is selected based 

on visual inspection. The criteria for this selection are:  

1) The liver has a good contrast with its surroundings. 

2) The shape of the liver preferably has some resemblance to 

a circle or an ellipse. 

In order to estimate the seed points needed by the intelligent 

scissors in the initial slice, we threshold and skeletonize the 

corresponding salienation map. Because we know that the 

liver is on the left side of the image, we consider only the half 

left side edgels in our calculation. 

As the liver is supposed to be roughly circular in this slice, 

we can estimate its “centre” by performing a Hough transform 

for circle detection [18]. Hough transform is known to be 

robust to high levels of clutter, noise and outliers [18]. Fig. 3 

shows an example of the accumulator array created by the 

Hough transform. The peak identifies the coordinates of the 

centre of the detected circular arc. Once the centre of the liver 

arc has been identified, we proceed to the next stage. 

 

 
Fig. 3. The accumulator array of the Hough transform. The peak represents the 

coordinates of the “centre” of the detected circular arc. 

 

We project straight lines at regular intervals emanating from 

this centre. We have empirically found that an angular interval 

of 15 works well for this application. We identify as seed 

points the first intersection these lines have with the edge 

fragments. Using pairs of these seed points then, we segment 

the liver in the initial slice using intelligent scissors and (2). 

We assume that the shape of the liver does not change 

dramatically in the next adjacent slice because the gap 

between contiguous slices is relatively small. Thus, we export 

the detected contour to the neighbouring slice to use it for the 

construction of the landmarks there. A set of new seed points 

is then chosen based on the inflection points of this contour. 
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The inflection points are estimated by using the k-curvature 

described in [19]. Pairs of these seed points, defining the start 

and end points of each segment, provide the input to a 

recursive application of the intelligent scissors routine. This 

results in a boundary closely approximating the true liver 

boundary. 

In order to refine the segmentation result and take the 

advantage of the 3D nature of the dataset, we combine 

segmentation results from different orthogonal directions. 

First, using the method described previously, we segment the 

liver boundary in all axial slices. Then, this segmented volume 

of the liver, Va, is resliced to give approximations of the liver 

contour in the saggital and coronal directions.  

We use these contour approximations to segment the liver 

in the coronal orientation. The resultant volume by this 

segmentation is labelled as Vac. Similarly, we segment the liver 

in the sagittal orientation, producing Vas. The refined output 

segmented volume Vac&as is given by: 

asacasac VVV &                       (3) 

which means that we consider the voxels as valid liver 

voxels only when they are detected in both segmentations Vac 

and Vas. 

IV. EVALUATION OF THE ALGORITHM 

We evaluate the quality of the segmentation by computing 

the segmentation errors based on the manually segmented 

ground truths. Over segmentation error (Eo), under 

segmentation error (Eu) and total segmentation error (Et), are 

defined by considering the Venn Diagram shown in Fig. 4. 

From this figure, Eo, Eu and Et are given by: 
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Fig. 4. The Venn Diagram to estimate the segmentation errors. Region (AB) 

represents the liver volume from the ground truth, while region (BC) 

represents the liver volume from the segmentation. 

 

In order to see the significance of the preprocessing to the 

segmentation result, we tried to segment the liver from the 

original unprocessed input of Dataset01. However, our 

segmentation method failed even to generate the seed points 

correctly in the initial slice. An example of how bad the 

saliency map is in the case of raw data is shown in Fig. 5. 

  
(a) (b) 

Fig. 5. Saliency maps of the initial slice to segment Dataset01. The saliency 

map shown in (b) is better compared with (a) because it contains fewer inner 

structures of the liver. 

Thus, in order to segment the liver, we placed the seed 

points manually on the initial slice of the unprocessed input 

dataset, using the seed points generated from the preprocessed 

dataset. Fig. 6 shows the shaded surface models constructed 

from the results and Table I shows the error values. As the 

unprocessed dataset has a very high Et, we deduce that 

preprocessing significantly improves the segmentation result. 

 

  
(a) (b) 

 
(c) 

Fig. 6. The 3D models represent the segmentation results of 

Dataset01. All models are shown in the same scale, and they 

are viewed from the same viewing direction. This figure shows 

that preprocessing improves the segmentation result 

significantly. 
 

 

TABLE I 

THE MEASUREMENTS OF SEGMENTATION ERRORS FOR DATASET01. 

Dataset01 Eo(%) Eu(%) Et(%) 

Without 

preprocessing 

0.0000 97.5467 97.5467 

With preprocessing 9.7835 1.3854 11.1689 

 

Table II gives the error values for every dataset used in this 

study. It must be stressed that the algorithm was run with all its 

parameter values fixed to be the same for all datasets. 
 

TABLE II 

THE MEASUREMENTS OF SEGMENTATION ERRORS FOR ALL DATASETS. 

Dataset Eo(%) Eu(%) Et(%) 

Dataset01 9.78 1.39 11.17 

Dataset02 8.21 3.46 11.67 

Dataset03 7.71 4.63 12.34 

Dataset04 17.84 7.83 25.67 

Dataset05 22.73 3.05 25.77 

Dataset06 14.03 47.73 61.75 

Dataset07 13.37 60.45 73.82 

Dataset08 24.25 39.92 64.16 
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(a) (b) 

Fig. 7. An axial slice from Dataset01. The ground truth, superimposed to the 

input image, is shown in (a). Image (b) shows the corresponding 3D 

preprocessed image. The white contour in (b) represents the segmentation 

result of this slice using (2). In (b), the segmentation produces a very close 

approximation to the ground truth. 

 

If we assume the outputs with Et less than 30% as the good 

segmentation results, from this table we can see that five out of 

eight datasets fall into this category. We can observe that all 

these good outputs have Eu less than Eo, indicating that these 

results overestimate the liver region. An example of a good 

segmentation result is shown in Fig. 7. 

On the other hand, the results with Et greater than 30%, 

underestimate the liver, as the internal structures of the liver in 

these datasets, such as the blood vessels, have relatively strong 

edges compared with the liver surface. Thus, this attracts the 

edge segments to lie on the blood vessels rather than the liver 

surface, as shown in Fig. 8. 
 

  
(a) (b) 

Fig. 8. An axial slice from Dataset07. Image (a) shows the ground truth 

superimposed to the unprocessed input image. Image (b) shows the 

corresponding 3D preprocessed image and the segmentation result. As shown 

in (b), for this dataset, almost half of the liver is not included in the result 

because the contour is more attracted to the blood vessels compared with the 

liver surface. 

 

V. CONCLUSION 

We presented a segmentation technique for 3D MRI liver 

data using intelligent scissors, with minimal user intervention. 

This method has been tested on eight datasets, and 62.5% of 

them produce an impressively close approximation to the true 

liver boundary, (with total segmentation error less than 30%), 

despite the large variation in edge quality and contrast.  
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