
International Journal of Computer Theory and Engineering, Vol. 2, No. 2 April, 2010
1793-8201

166

Abstract— Software system should be reliable and available

failing which huge losses may incur. To achieve these objectives
a thorough testing is required. Adequacy of test cases is the key
to the success. Despite the availability of a number of adequacy
criteria, deterministic approaches to testing are not sufficient
consequential to the need of automatic random and
anti-random testing. Our research uses a novel method for the
development of n-version of the software by creating the
different mutation in software and test cases generation using
the Genetic Algorithm. Its purpose is to eliminate software
faults as possible by using lesser test cases in the testing phase.
The test case generated by the use of Genetic Algorithm (GA) is
compared with the results of totally random generated test
cases. The method was applied to the specification of a sorting
of array problem. The advantage of this analysis is that when
we produce multiple versions, reliability of the software is likely
to be better than if a single version is developed. The N-version
software testing will helps to reduce the possibility of mistakes
and inconsistencies in the process of software development and
testing and the number of test cases required during the testing
phase of the software system. In this paper a technique of
generating the test cases and doing the testing automatically,
employing genetic algorithm and Back-to-Back testing has been
discussed.

Index Terms— Anti-random testing, Back-to-Back testing,
Genetic algorithm, N-Version Programming, Random testing.

I. INTRODUCTION
According to [1] testing is the process of executing a

program with the intent of finding errors. It includes activities
aimed at evaluating an attribute of a program and verifying
that it meets its required results [2]. Effectively detecting the
failures using the limited resource is a challenging task. A
study conducted by National Institute of Standards and
Technology (NIST) in 2002 reported that software bugs cost
$59.5 billion to U.S. economy, a third of which could be
avoided if a better testing would be done. Software faults will
always exist in any software module of moderate size
because the complexity of software is generally intractable
and humans have limited capability to manage complexity.

Manuscript received November 4, 2009.
Rakesh Kumar is with the Department of Computer Science and

Applications (D.C.S.A), Kurukshetra University, Kurukshetra (K.U.K),
India- 136 119(Phone: +91-98963-36145; e-mail: rsagwal@rediffmail.com)

Kulvinder Singh is with Department of Computer Science and
Engineering, University Institute of Engineering & Technology (U.I.E.T),
Kurukshetra University, Kurukshetra (K.U.K), India- 136 119 (Phone:
+91-94162-24353, e-mail: kshanda@rediffmail.com).

Identifying faults in software is easier said than done because
software is not continuous, so testing boundary values as
suggested in Boundary Value Analysis or selecting test cases
using criteria such as path coverage are not ample to assure
correctness and moreover exhaustive testing is infeasible.
Thing are further complicated by the dynamic nature of
programs. If a failure occurs during preliminary testing and
the code is changed, then behavior of S/W on pre-error test
cases that it passed before can no longer is guaranteed. So
testing should be restarted.

An interesting analogy parallels the intricacy in software
testing with the pesticide, referred to as the Pesticide Paradox
[3]: Every method you use to prevent or find bugs leaves a
residue of subtler bugs against which those methods are
ineffectual. But this alone will not guarantee to make the
software better, because the Complexity Barrier [3] principle
states: Software complexity (and therefore that of bugs)
grows to the limits of our ability to manage that complexity.
Eliminating the easy bugs results into another escalation of
features and complexity, but this time there are subtler bugs
to face, just to retain the reliability you had before.

Software is being used now in mission critical situations
where failure is simply intolerable. From the point of view of
a software development organization also, delivering
products with defects results in loss of goodwill. Thus, the
only alternative is to do it right the first time, before
delivering the product to the customer [4]. In this paper, a
technique of automatic test case generation using genetic
algorithm (GA), back to back testing and mutation adequacy
criteria has been purposed and the result were compared with
random testing. Section 2 deals with importance of testing
and test adequacy criteria including mutation adequacy.
Section 3 gives a brief overview of back to back testing and
section 4 cover the issues in automatic test cases generation
using random and anti random testing. In Section 5, GA was
discussed and section 6 covers the proposed technique
followed by section 7 in which results were analyzed.

II. IMPORTANCE OF TESTING
Dependable system should be reliable, available, safe and

secure. To achieve these objectives a number of techniques
are being used such as fault avoidance, fault tolerance, fault
removal, and fault evasion etc. Testing is an integral part for
fault removal and is usually performed for the following
purposes: (a) Quality assurance, (b) For Verification &
Validation (V&V): Testing is used as a tool in the V&V

Design Fault Tolerance System Using Genetic
Algorithm Employing Mutation and

 Back-to-Back Testing
Rakesh Kumar and Kulvinder Singh

International Journal of Computer Theory and Engineering, Vol. 2, No. 2 April, 2010
1793-8201

167

process. Testers can make claims based on interpretations of
the testing results whether the product works under certain
situations or not. Testing for the purpose of validating the
product works known as clean tests. The negative aspects are
that it can only validate that the software functions for the
specified test cases. A limited number of test cases cannot
validate that the software functions for all situations. On the
contrary, only one failed test is sufficient to show that the
software does not work. Dirty tests refer to the tests aiming at
breaking the software and software must have sufficient
exception handling capabilities to survive a significant level
of dirty tests. (c) For reliability estimation [5]: Software
reliability has important relations with many aspects of
software, including the structure, and the amount of testing it
has been subjected to. Based on an operational profile (an
estimate of the relative frequency of use of various inputs to
the program [5]), testing can serve as a statistical sampling
method to gain failure data for reliability estimation.

A. Adequacy of test cases
To locate the faults in the software, the test cases designed

should be adequate and effective enough. A number of
adequacy criteria have been proposed in the literature such as
statement coverage, branch coverage, path coverage, loop
coverage etc but studies reveal that no criterion is capable
enough to identify all the bugs except exhaustive testing
which is theoretically and practically not possible. Mutation
testing has been established as a powerful approach to
evaluate test cases and for comparing different testing
strategies. Empirical studies show that the generated mutants
provide a good indication of the fault detection ability of a
test suite [6]. Mutation testing is an approach to verify the
effectiveness of the test cases designed and has been proved
successful with some limitations.

B. Mutation Adequacy
The mutation method is a fault-based testing strategy that

measures the adequacy of testing by examining whether the
test set used in testing can reveal certain types of faults. The
core of a mutation-based testing is a set of operators that
modifies the source code to inject a fault. The modified
program is known as a mutant. A mutant is said to be killed
relative to a test data set, if at least one test case generates
different results between the mutant and the implementation.
Else, the mutant is live. If no test case can kill a mutant, then
it is either equivalent of the original implementation or a new
test case needs to be generated to kill the live mutant, a
method of enhancing a test data set. The adequacy of a test
data set is measured by a mutation score (MS), which is the
percentage of non-equivalent mutants killed by the test data.
The mutation score for a set of test cases is:

Mutation Score = 100 D
N E

×
−

 Where D = Dead

mutants, N = Number of mutants, and E = Number of
equivalent mutants. A set of test is mutation adequate if its
mutation score is 100%.

III. BACK-TO-BACK TESTING
In the systems where the reliability of the software is

critical, the software module is implemented in a number of
different versions by different teams, using common
specification, a technique called N-version programming.
Each version is executed in parallel. There outputs are
compared using a voting system and inconsistent outputs are
rejected. At least three versions of the module should be
available. The assumption is that it is unlikely that different
teams will make the same design or programming errors. [7,
8] describes this approach as fault avoidance. In
Back-to-back testing, using lessons learned from N-version
programming, [9] and [10] have suggested that that N version
of the software be developed even when only a single version
will be used. Test cases designed using other testing
techniques is provided as test input to each version and their
outputs can be compared by automatic tools. In case of the
differences in the output, each of the versions is analyzed to
identify the fault. This method depends on the basis that all
the versions have been developed independently so if any
version fails that will fail independently. In this paper total
three different version of the same sorting programs were
prepared independently from the same specification of the
software and then subjected to thousand of test cases. In this
research paper we use two types of test cases: one is totally
random numbers, and second one is using the concept of the
Genetic Algorithm. Both type of the test case are given to the
N-version software after placing the mutant in any one
version of the software.

IV. AUTOMATIC TEST CASE GENERATION

A. Random Testing
Random Testing (RT) randomly selects test

cases/sequences of events from the input domain [1, 11]. The
advantages of RT include its low cost, ability to generate
numerous test cases automatically, generation of test cases in
the absence of the software specification and source code and
apart from these; it brings randomness into the testing
process. Such randomness can best reflect the chaos of
system operational environment; as a result, RT can detect
certain failures unable to be revealed by deterministic
approaches. All these advantages make RT irreplaceable in
industry for revealing software failures [12, 13, 14, 15, 16, 17,
18, 19, 20, 21]. This approach may produce a large number of
event sequences that are not legal & hence not executable,
wasting valuable resources. Moreover, the test designer has
no control over choice of event sequences; they may not have
acceptable test coverage. Random testing selects arbitrarily
test data from the input domain & then these test data are
applied to the program under test. The automatic production
of random test data, drawn from uniform distribution, should
be the default method by which other systems should be
judged, [22]. The random generation of tests identifies
members of the sub domains arbitrarily, with a homogeneous
probability which is related to the cardinality of the sub
domains. Under these circumstances, the chances of testing a
function, whose sub domain has a low cardinality with regard

International Journal of Computer Theory and Engineering, Vol. 2, No. 2 April, 2010
1793-8201

168

to the domain as a whole, is much reduced. A random number
generator generates the test data with no use of feedback
from previous tests. The tests are passed to the procedure
under test, in the hope that all branches will be traversed [23].

B. Adaptive Random Testing
Adaptive Random Testing (ART) is an enhancement of

Random Testing (RT). It has been introduced to improve the
fault detection effectiveness of RT for the situations where
failure-causing inputs are clustered together [24, 25]. Such
situations do occur frequently in real life programs as
reported in [26, 27, 28]. When failure-causing inputs are
concentrated in regions (Known as the failure regions [26]),
intuitively speaking, keeping test cases apart shall enhance
the effectiveness of RT. Therefore, ART does not just
randomly generate but also evenly spreads test cases or it
generates fewer duplicate test cases. Studies [29, 30, 31,
32,34] shows that ART can be very effective in detecting
failures when there exist continuous failure regions inside the
input domain as compared to RT. Since ART is as simple as
RT and preserves certain degree of randomness, ART could
be an effective replacement of RT.

V. GENETIC ALGORITHM (GA)
GA is a search technique used to find exact or approximate

solutions to optimization and search problems. GAs
represents a class of adaptive search techniques & procedures
based on the processes of natural genetics & Darwin's
principal of the survival of the fittest. There is a randomized
exchange of structured information among a population of
artificial chromosomes. When GAs are used to solve
optimizations problems, good results are obtained
surprisingly quickly. A problem is defined as maximization
of a function of the kind f(x1, x2, ... xm) where (x1, x2, ..., xm)
are variables which have to be adjusted towards a global
optimum. Three basic operators responsible for GA are (a)
selection, (b) crossover & (c) mutation. Crossover performs
recombination of different solutions to ensure that the genetic
information of a child life is made up of the genes from each
parent. GAs may be differentiated from more conventional
techniques as (a) in GA a representation for the sample
population must be derived, (b) GAs manipulates directly the
encoded representation of variables, rather than manipulation
of the variables themselves, (c) GAs use stochastic rather
then deterministic operators, (d) GAs search blindly by
sampling & ignoring all information except the outcome of
the sample, (e)GAs search from a population of points rather
than from a single point, thus reducing the probability of
being stuck at a local optimum, which make them suitable for
parallel processing. In the context of S/W testing, the basic
idea is to search the domain for input variables which satisfy
the goal of testing. With the above defined, GA is defined as
follows:

Procedure GA(φ, θ, n, r, m)
// φ is the fitness function for ranking individuals
// θ is the fitness threshold, which is used to determine when
to halt
// n is the population size in each generation (e.g., 100)

// r is the fraction of the population generated by crossover
(e.g., 0.6)
// m is the mutation rate (e.g., 0.001)
P:= generate n individuals at random// initial generation is
generated randomly
while max (φ (hi)) < θ do

//define the next generation S (also of size n)
Reproduction step: Probabilistically select (1-r)n

individuals of P and add them to S, where the probability of
selecting individual hi is

Prob(hi)= φ (hi) / ∑(φ (hj))
Crossover step: Probabilistically select r*n/2 pairs of

individuals from P according to Prob(hi)
for each pair (h1, h2), produce two offspring by applying

the crossover operator and add these offspring to S
Mutate step: Choose m% of S and randomly invert one bit

in each
P := S
end_while
Find b such that φ (b) = max (φ (hi))
Return (b)
end_proc

VI. PURPOSED METHOD OF TESTING
Using GA is one proposed way to test application [33].

This method generates test cases based on the theory that
good test coverage can be attained by simulating a novice
user who would follow a more random path while an expert
user of a system will follow a predictable path through an
application ignoring many possible system states that would
never be achieved. Therefore, it is more desirable to create
test suites that simulate novice usage because they will test
more. The obscurity lies in generating test suites that simulate
‘novice’ system usage. Novice paths are not the random paths.
First, a novice user will learn over time and generally will not
make the same mistakes repeatedly and secondly, a novice
user is following a plan and probably has some domain or
system knowledge.

The algorithm of proposed automatic test case generation
approach using GA, mutation testing and back to back testing
is as under:
1) Write the module V// i.e. the module to be tested
2) Generate N versions of V i.e. V1…Vn.// for back to back

testing
3) P:=Generate Test Cases using structural and functional

testing techniques //Generate a test set of n test cases
4) FAIL:=FALSE // initialize the variable
5) While (Not (terminating condition)) do {

Generate the mutant of V
While (~FAIL)
 {

Generate the next generation S (of size n) from P using
Genetic Algorithm.

Perform back to back testing
If failure {
FAIL=TRUE
Then add the test case killing the mutant to the population

P
} } }

End.

International Journal of Computer Theory and Engineering, Vol. 2, No. 2 April, 2010
1793-8201

169

In order to make the experiment realistic, an attempt was
made to choose an application that would normally be a
candidate for the inclusion of fault tolerance. The problem
that was selected for programming is a simple and realistic
data structure sorting system. The N version program read
some data that represents as test cases an array (integer or
float). The outputs from the N-version software are compared

to check the correctness of the system. To check the
efficiency of N-version system and the completeness of the
test set, tests are performed by introducing the mutant in the
software. This program was originally written in MATLAB,
and the program has been subjected to several thousand test
cases. The figure 1 shows the block diagram for proposed
approach of test case generation.

Figure1 shows the block diagram for N-Version program development.

Assumptions made are as under:

A. Encoding
Direct value encoding can be used in problems where

some more complicated values such as real numbers are used.
In value encoding, each chromosome is a sequence of some
values. Values can be no matter which connected to the
problem, such as (real) numbers, chars or any objects.

B. Selection
From a population of individuals, we wish to give the fitter

individuals a better chance to survive to the next generation.
We not use the simple criterion "keep the best individuals." It
turns out the nature that it does not kill all the unfit genes.
They usually become recessive for a long period. Then they
may mutate to something useful. Therefore, there exists
tradeoff for better individuals and diversity. The individuals
are selected according to Rank selection criteria. Rank

selection ranks the population after that every chromosome
receives fitness value determined by this ranking. The worst
individual will have the fitness 1, the second worst 2 etc. and
the best individual will have fitness N (number of
chromosomes in population).

VII. RESULTS
Fault propagation spreads the faulty result in a problem to

the output and causes a failure of the program. It can be
revealed by an execution of the program. A fault may be any
occurrence of program in any particular version that causes
that version to fail when that software is executed on some
test case. The numbers of faults found in the individual
versions is shown in Table 1. All of these faults have been
found and corrected. Many of the faults were unique to
individual versions but several occurred in more than version.

Table 1 shows the numbers of mutant kill per no. of test case applied.

Sr

. N
o

Original expression After Mutant expression

No. of mutant killed per No. of test cases applied

Random test case Generation

test case Generation by application of GA

10 50 100 1000 10 50 100 1000
1 X(j) < X(i) X(j) < X(i+1) 1 2 2 23 4 12 18 187
2 X(j) < X(i) X(j) > X(i) 6 33 60 581 10 48 98 978
3 Y(j+1) < Y(j) Y(j+1) > Y(j) 8 36 56 623 10 47 93 982
4 Y(j+1) < Y(j) Y(j+1) < Y(i) 0 4 37 45 6 11 16 164
5 (j>1)&Z(j-1) (j>1)&Z(j+1) 2 3 9 54 2 6 11 31
6 (j>1)&Z(j-1)>temp (j>1)&Z(j-1)<temp 3 30 51 582 10 48 99 921

Table2 shows the improvement (%age) of killing mutants in random vs. GA.

Add test case to test set

Mutant

Kill

Alive

Insert Mutant

Insert Mutant

Insert Mutant

Test set

Version1

Version 3

Apply crossover
& Mutation (GA)

Read two
test cases

Comparator Version2

International Journal of Computer Theory and Engineering, Vol. 2, No. 2 April, 2010
1793-8201

170

Sr. No N-Version Programs
selected

Original expression After Mutant
expression

Random test
case mutant
Kill(%age)

Proposed method
mutant Kill(%age)

Improvement
(%age)

1 Selection Sort X(j) < X(i) X(j) < X(i+1) 4.5 25.25 20.75%
2 X(j) < X(i) X(j) > X(i) 60.5 98 38.5%
3 Bubble Sort Y(j+1) < Y(j) Y(j+1) > Y(j) 67.5 96.25 28.75%
4 Y(j+1) < Y(j) Y(j+1) < Y(i) 12.37 28.6 16.23%
5 Insertion Sort (j>1)&Z(j-1) (j>1)&Z(j+1) 10.1 11.5 1.4%
6 (j>1)&Z(j-1)>temp (j>1)&Z(j-1)<temp 49.75 71.75 22%

The graphs depict the comparison approach of random vs.

Genetic Algorithm.

0
2
4
6
8

10
12

X
(j

)
<

X
(i+

1)

X
(j

)
>

X
(i)

Y
(j

+1
)

>
Y

(j
)

Y
(j

+1
)

<
Y

(i)

(j
>1

)&
Z

(j
+1

)

(j
>1

)&
Z

(j
-

1)
<t

em
pN

o.
of

 M
ut

an
t K

ill
ed

Mutant inserted
Random test cases Test case using Genetic Algorithm

Graph 1. Compare the numbers of mutant kill per 10 test cases in random

test vs.GA test cases.

0
10
20
30
40
50
60

X
(j

) <
 X

(i
+

1)

X
(j

) >
 X

(i
)

Y
(j

+
1)

 >
 Y

(j
)

Y
(j

+
1)

 <
 Y

(i
)

(j
>

1)
&

Z
(j

+
1)

(j
>

1)
&

Z
(j

-
1)

<
te

m
p

N
o

.o
f

M
u

ta
nt

 K
il

le
d

Inserted Mutant

Random test cases Test case using Genetic Algorithm

Graph2.Compare the numbers of mutant kill per 50 test cases in random
test vs.GA test cases

0
20
40
60
80

100
120

X
(j

) <
 X

(i
+

1)

X
(j

) >
 X

(i
)

Y
(j

+
1)

 >
 Y

(j
)

Y
(j

+
1)

 <
 Y

(i
)

(j
>

1)
&

Z
(j

+
1)

(j
>

1)
&

Z
(j

-
1)

<
te

m
p

N
o

.o
f

M
u

ta
n

t
K

il
le

d

Inserted Mutants

Random test cases Test case using Genetic Algorithm
Graph 3. Compare the numbers of mutant kill per 100 test cases in random

test vs.GA test cases.

0
200
400
600
800

1000
1200

X
(j)

 <
 X

(i+
1)

X
(j)

 >
 X

(i)

Y
(j+

1)
 >

 Y
(j)

Y
(j+

1)
 <

 Y
(i)

(j>
1)

&
Z(

j+
1)

(j>
1)

&
Z(

j-1
)<

te
m

p

N
o.

of
 M

ut
an

t K
ill

ed

Inserted Mutants

Random test cases Test case using Genetic Algorithm

Graph4. Compare the numbers of mutant kill per 1000 test cases in random
test vs.GA test cases.

VIII. CONCLUSION
Genetic Algorithms are easy to apply to a wide range of

optimization problems, like the traveling salesperson
problem, inductive concept learning, scheduling, and layout
problems. Software testing is also an optimization problem
with the objective that the efforts consumed should be
minimized and the number of faults detected should be

maximized. Software testing is considered most effort
consuming activity in the software development. Although a
number of testing techniques and adequacy criteria have been
suggested in the literature but it has been observed that no
technique/criteria is sufficient enough to ensure the delivery
of fault free software consequential to the need of automatic
test case generation to minimize the cost of testing. As
discussed the techniques like random and anti-random testing
techniques have shown the good results. The proposed
technique using GA and employing back-to-back testing and
mutation adequacy criteria has shown the average 21% and
maximum 39% improvement over the random test case
generation. Although the cost incurred in producing N
versions of the same module will be large but by using the
technique judiciously in those modules only where a high
level of reliability is required, the benefits accrued override
the cost incurred.

REFERENCES
[1] Myers G. J., The Art of Software Testing. Wiley, New York, 2nd

edition, 1979.
[2] Hetzel, William C., The Complete Guide to Software Testing, 2nd ed.

Publication Wellesley, 1988. ISBN: 0894352423.
[3] Beizern Boris, Software Testing Techniques, Second Edition, 1990.
[4] Srinivasan Desikan, Gopalaswamy Ramesh, Software

Testing-Principles and Practices. Pearson Education, Fifth Impression,
2007.

[5] Lyu R. Michael, Handbook of Software Reliability Engineering.
McGraw-Hill publishing, 1995, ISBN 0-07-039400-8

[6] Andrews J., Briand L., Labiche Y., Is mutation an appropriate tool for
testing experiments?, Proc. Of the 27th International Conference on
Software Engineering. ACM Press, New York, NY, USA, 2005, pp.
402-411.

[7] Avizienis, A. (1985) The N-version approach to fault-tolerant
software. IEEE transaction on Software Engineering, SE-11 (12),
1491-501.

[8] Avizienis, A. (1995) A methodology of N-Version programming. In
Software Fault Tolerance (lyu, M. R., ed.) Chichester: John Wiley &
Sons, 23-46.

[9] Brilliant, S.S., J. C. Knight, “The consistent Comparison Problem in
N-Version Software”, ACM Software Engineering Notes, Vol. 12, no.
1, January 1987, pp. 29-34.

[10] Knight, J., and Ammann P., “Testing Software using Multiple
Versions”, Software Productivity Consortium, Report No. 89029N,
Reston VA, June 1989.

[11] Hamlet. R., Random testing. In J. Marciniak, editor, Encyclopedia of
Software Engineering. John Wiley & Sons, second edition, 2002.

[12] Cobb R. and Mills H. D., Engineering software under statistical quality
control. IEEE Software, 7(6):45–54, 1990.

[13] Dab’oczi T., Koll’ar I., Simon G., and Megyeri T., Automatic testing of
graphical user interfaces. In Proceedings of the 20th IEEE
Instrumentation and Measurement Technology Conference 2003
(IMTC ’03), pages 441–445, Vail, CO, USA, 2003.

[14] Forrester J. E. and Miller. B. P., An empirical study of the robustness of
Windows NT applications using random testing. In Proceedings of the
4th USENIX Windows Systems Symposium, pages 59–68, Seattle,
2000.

[15] Miller B. P., Fredriksen L., and So. B., An empirical study of the
reliability of UNIX utilities. Communications of the ACM,
33(12):32–44, 1990.

International Journal of Computer Theory and Engineering, Vol. 2, No. 2 April, 2010
1793-8201

171

[16] Miller B. P., Koski D., Lee C. P., Maganty V., Murthy R., Natarajan A.,
and Steidl J.. Fuzz revisited: A re-examination of the reliability of
UNIX utilities and services. Technical Report CS-TR-1995-1268,
University of Wisconsin, 1995.

[17] Miller. E., Website testing. http:// www.soft.com/ eValid/ Technology/
White. Papers/ website.testing.html, Software Research, Inc., 2005.

[18] Nyman. N., In defense of monkey testing: Random testing can find
bugs, even in well engineered software. http: // www.softtest.org
/sigs/material /nnyman2.htm, Microsoft Corporation.

[19] Sen K., Marinov D., and Agha G., Cute: a concolic unit testing engine
for c. In ESEC/FSE-13: Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering,
pages 263–272, New York, NY, USA, 2005.ACM Press.

[20] Slutz. D., Massive stochastic testing of SQL, In Proceedings of the 24th
International Conference on Very Large Databases (VLDB 98), pages
618–622, 1998.

[21] Yoshikawa T., Shimura K., and Ozawa T., Random program generator
for Java JIT compiler test system. In Proceedings of the 3rd
International Conference on Quality Software (QSIC 2003), pages
20–24. IEEE Computer Society Press, 2003.

[22] Ince, D.C.,”The automatic generation of test data”, The Computer
Journal, Vol. 30, No. 1, pp. 63-69, 1987.

[23] Watt D. A., Wichman B. A., Sayward F. G., & Findlay W., “ADA
language and methodology”, 1987.

[24] Chen T. Y., Leung H., and Mak I. K., Adaptive random testing. In
Proceedings of the 9th Asian Computing Science Conference, volume
3321 of Lecture Notes in Computer Science, pages 320–329, 2004.

[25] Mak. I. K., On the effectiveness of random testing. Master’s thesis,
Department of Computer Science, University of Melbourne, 1997.

[26] Ammann P. E. and Knight J. C.. Data diversity: an approach to software
fault tolerance. IEEE Transactions on Computers, 37(4):418–425,
1988.

[27] Bishop P. G.. The variation of software survival times for different
operational input profiles. In Proceedings of the 23rd International
Symposium on Fault-Tolerant Computing (FTCS-23), pages 98–107.
IEEE Computer Society Press, 1993.

[28] Finelli. G. B., Nasa software failure characterization experiments.
Reliability Engineering and System Safety, 32(1–2):155–169, 1991.

[29] Chen T. Y., Eddy G., Merkel R. G., and. Wong P. K. Adaptive random
testing through dynamic partitioning. 4th International Conference on
Quality Software (QSIC 04), pages 79–86, Braunschweig, Germany,
2004. IEEE Computer Society Press.

[30] Chen T. Y. and Huang D. H.. Adaptive random testing by localization.
In Proceedings of the 11th Asia-Pacific Software Engineering
Conference (APSEC’04), pages 292–298. IEEE Computer Society,
2004.

[31] Chen T. Y., Kuo F. C., Merkel R. G., and Ng S. P., Mirror adaptive
random testing. Information and Software Technology,
46(15):1001–1010, 2004.

[32] Chen T. Y., Kuo F. C., and Zhou Z. Q., On the relationships between
the distribution of failure-causing inputs and effectiveness of adaptive
random testing. In Proceedings of the 17th International Conference on
Software Engineering and Knowledge Engineering (SEKE 2005)),
pages 306–311, Taipei, Taiwan, 2005.

[33] Kasik, D.J. and George, H. G., Toward automatic generation of novice
user test scripts. Proceedings of the Conference on Human Factors in
Computing Systems: Common Ground, pages 244-251, New York,
13-18 Apr. 1996, ACM Press.

[34] Chan, K. P. Chen T. Y., and Towey D., Restricted random testing:
Adaptive random testing by exclusion. Accepted to appear in
International Journal of Software Engineering and Knowledge
Engineering, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FangSong_GB2312
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSTK--GBK1-0
 /FZYTK--GBK1-0
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi_GB2312
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LiSu
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MicrosoftYaHei
 /MingLiU
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /STCaiyun
 /Stencil
 /STFangsong
 /STHupo
 /STKaiti
 /STLiti
 /STSong
 /STXihei
 /STXingkai
 /STXinwei
 /STZhongsong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YouYuan
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

