
International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

125

Abstract—Design for testability is an important issue in

software engineering. Measuring and assessing the testability

during the analysis or development phase of software

engineering would help in planning testing activities. Testability

becomes crucial in case of Aspect oriented software system

(AOS), where control flows are generally distributed over the

whole architecture because of the static structure and dynamic

behavior of Aspect. This paper presents a generic and extensible

measurement framework for Aspect oriented software

testability. We identify a set of design attributes that are helpful

to measure the testability of AOS. The goal of this framework is

to provide structured guidance for facilitating empirical

research on testability and point out parts of the design that

need to be improved to reduce the final testing effort.

Index Terms—Software testability, Software Testing, Aspect

Oriented Programming, Software design.

I. INTRODUCTION

As the size of software application increases it becomes more

complex. Effective testing is therefore required to achieve

adequate level of software quality and reliability. Any

technique that improves a software design at an early stage can

have highly beneficial impact on the final testing cost and

quality. Still Aspect Oriented system is not enough matured

field a lot of efforts are required for optimal testing. Testing is

not only depends on human factors, test techniques and test

tools but also on characteristics of the software development

artifacts. To maximize the impact of testing, we need to design

systems so that their testability is optimal. The degree to which

a software artifact facilitates test tasks in a given test context is

called testability [1]. ISO defines testability as a attribute of

software that bear on the effort needed to validate the software

product. To test any model or component one must be able to

control its input and analysis to output. Software testability

based on probability of faults in the software [2].

In this paper our goal is twofold:

1) To help measuring and assessing testability in a

practical manner, with a focus on the analysis and

design stages of Aspect Oriented development.

2) To define hypothesis to guide future empirical

research on testability.

Software testability is an external software attribute which

is used to evaluate the complexity and the effort required for

Sushil Garg is Assistant Professor & Head, CSE Dept., RIMT-Institute of

Engineering & Technology, Mandi Gobindgarh, Punjab,india. (email:

sushilgarg70@gmail.com).

Dr. K.S. Kahlon is Professor & Head of CSE Dept., Guru Nanak Dev

University, Amritsar, Punjab,india. (email: karanvkahlon@yahoo.com).

Dr. P.K. Bansal is ex-Principal, MIMIT, Punjab, india. (email:

pkbmimt@yahoo.com).

software testing. Testability is an impotent quality

characteristic of software. For improving the testing process

we need to optimize the testability. Some quality metric can be

used to locate part of software which contributes to a level of

testability. We know effective testing of the software can

improve the quality and reliability of the software [3]. But

testing is a major cost driven factor during design,

development & maintenance of the software.

In this paper we mainly focus on design phase of the

software [4]. The testability analyses can maximum effective

during the design phase. Testability analysis during the

analysis and design phase helps us in taking design decisions

to improve testability before implementation starts. Testability

is a very important issue in software engineering. Testability is

external software attribute the complexity and the effort

required for software testing. In AOP aspects interact and

change the behavior of the base system so it is very difficult to

pin point the area of code design directly or indirectly affected

by aspects in its dynamic behavior of overall system. Design

for testability is an important issue in software engineering.

Measuring and assessing the testability of early in the analysis

development phase of software engineering would help in

planning testing activities and improving the design.

Testability becomes essential in case of Aspect Oriented

software system [5]. Where control flows are generally

distributed over the whole architecture and the aspect have on

the static structure with dynamic behavior of the overall

system.

This paper presents generic and extensible measurement

framework for Aspect-Oriented software testability. We

identify some design attributes that are helpful to measure

testability of AOS. The goal of this framework is to provide

structured guidance for facilitating empirical research on

testability. And point out parts of the design or code that need

to be improved, driving structured modification to reduce the

final testing effort. A lack of testability contributes to a higher

testing cost and testing effort. It becomes crucial in the case of

Aspect Oriented Software system design (where control flows

are generally distributed over the whole architecture) due to

large impact that aspects have on the static structure and

dynamic behavior of the overall system.

In aspect oriented programming aspect spreads through the

program automatically and generates internal executions

details at run time. We have defined a Probe based testing

mechanism, Goel et. A [6] that observing internal execution

detail at different level of abstraction unit, integration and

system levels, during testing of aspect oriented programming.

Probes are pre built in the software during the design phase.

Testability Analysis of Aspect Oriented Software

Sushil Garg, Dr. K.S.Kahlon and Dr.P.K.Bansal

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

126

During testing, probes are externally activated or deactivated,

facilitating visual display of execution details. The internal

execution details displayed during testing consist of the

classes and aspect of the module invoked, value of parameters

or messages at entry/exit, and hierarchy of execution of classes

and aspects. In aspect oriented software, coverage of

inheritance hierarchy as well as dynamic binding relationship

is needed to ensure proper testing o these relationships.

During testing of inheritance hierarchy, the modification o

subclass requires testing of subclass and retesting of inherited

method of super class. In same way during modification of

aspect, require testing all the code in which aspect is directly

or indirectly related.

II. SOFTWARE TESTABILITY ATTRIBUTES

We describe the attributes that are part of the framework

and the hypotheses establishing their relationship to

testability.

We first define the details of testing levels.

 Unit testing

 Integration testing

 System testing

Regression testing is applied at different levels of testing

because regression testing ensue that when we modifying a

software system, no side effects are introduced that would

result in failure of unchanged, previously working

functionality. Our aim at having an exhaustive coverage of all

design attributes that have an impact on testability. Now we

focus our work on the following effort-intensive testing

sub-activities:-

1) Chose test cases

This activity list all tasks that aim at defining the

specification of test cases based on software artifacts such as

specification & design.

2) Developing Drivers

This activity consists of writing the required code to execute

test cases.

3) Developing Oracles

This consists in writing the code required to assess whether

a test case execution is successful.

4) Metrics

Now we define metrics that help to answer the questions

described in the previous section:

First metric is that

Average Aspect Dependence (AAD)

AAD= 1/n x ∑i=1
n

ADi

Where n is number of Aspect in software, ADi is Aspect

dependency of Aspect i, the number of aspects the Aspect i

Depends on directly and indirectly.

The extent to which we have to take into account

dependence Aspects during test case design increases with the

overall number of dependence Aspect. For every activity and

sub-activity we identify design attributes that have an impact

on testability. A hypotheses is describes the cause effect

relationship between attributes and testability. Then identify

attributes and deriving the hypotheses is based on a through

and systematic review of the literature and our own experience

in performing testing experiments. All hypotheses are

described systematically by listing the impacted testing

activities and sub-activities and the reasons for the impact,

these hypotheses will be further tested and the theory refined

over time. [8]

Hypotheses 1

By increasing the size of non-overridden inherited features,

unit testing may be required to build and execute test. The cost

of unit testing directly depends upon the size of inherited

features as more effort and time is required to build and

execute test cases.

Hypotheses 2

In client server model, the higher the size of the inheritance

hierarchy rooted by the server class, test are more expensive

due to the dynamic dependences between client class and

server classes. Testing the interface is expensive then testing a

inheritance.

Hypotheses 3

Mainly unit testing techniques are based on exercising

different sequences of operations, like based on sequential

constraints, data flow, encapsulating unrelated operation will

increase number of test cases and a more complex driver. Unit

testing of Aspect Oriented software is different from

procedural or object oriented software. Unit testing is to test

each unit of the software to verify that the detail design for the

unit has been correctly implemented. This approach uses a

combination of these two types of testing to test aspects and

classes in aspect oriented software.

Hypotheses 4

More number of paths will lead to more test cases to specify

and longer paths will lead to more complex drivers.

Hypotheses 5

Direct and indirect dependencies of a component under test

on its dependence components have many effects on the time

and effort needed for testing as well as on the complexity of

the test tasks. Additional stubs have to be implemented if the

cycles shall be broken. A layered design without dependency

cycles is therefore better testable.

Hypotheses 6

In Aspect oriented software difficulty is there of

maintaining programs in the face of crosscutting concerns.

Khalid, Peter found that maintaining crosscutting concerns is

difficult due to invisibility of the crosscutting logic,

invisibility of the crosscutting will increase the maintenance

cost. These types of invisible tight coupling crosscutting affect

the testability [7,9].

Hypotheses 7

The polymorphism is a feature, which showed a new

technical challenge to tester. We know the method calls with

polymorphism, because of the dynamic binding characteristics,

the program code of the actual execution cannot be predict

[10]. It will be dynamic and decided at the run time. So it is

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

127

very difficult to observe and track executed path in test

processes from the test perspective, the aspect oriented

programming with polymorphism is hard to produce an

adequacy test case because we don’t know which type of

object will be executed in runtime and it is difficult to analyze

the testability of source code in static test. Jin-ChrngLin and

Yun-Liang suggest the metric of polymorphism for measure in

design stage [11].

III. TESTABILITY MEASURES

This section defines a set of potential measure for different

attributes. In this paper we consider only potentially useful

measures. All the measures are listed below.

A. Complexity Measures

In testability many attributes depend on the complexity of

the expression, which help in designing of Aspect Oriented

Modeling (AOM) diagram. Following we discuss some

important points that can be related to testability.

 Number of loops that lead to iterative operations.

 Iterative expressions are directly proportional to the

number of nodes, i.e. IE n, for sending any message

or a sequence of operations and to execute the sequence

of operations.

B. Interface Complexity & Use Case Model for AOM

Sequence numbers require handling of sequence

interleaving and loops, otherwise, the number of sequence is

either very large or sometimes may touch infinity.

Heuristically, we consider one possible interleaving for one

independent sequence pair taking one loop exactly once. In

our example, we consider use case open acc for which there

exist two message conditions:

Condition 1: actid -> exists

Condition 2: not actid -> exists

As seen from the activity diagram (Figure 1) & the above

heuristics we obtain the following possible sequences:

 8 1 6 4 5 3 7 10 9

 8 1 6 4 2 5 3 7 10 9

 8 1 6 4 2 5 4 3 7 10 9

In the sequence diagram (Figure 2), for use case open acc,

there are 2 scenarios, 9 messages & 3 classifiers.

These measures like, Total number of declared attributes,

Number of overloaded operations, Number of inherited

operations, Number of inherited attribute, Number of

inherited dependency relationships for Unit Size attribute.

Number of non-complaint preconditions, ratio of non

complaint preconditions, Number of non-complaint invariants,

ratio of non complaint invariants, Pair of inherited and

overridden operation interactions, Depth and width of

inheritance hierarchy are for Inheritance design properties.

For Unit cohesion we measure lack of cohesion measure and

Ratio of cohesive interactions measures [12,13]. Unit

coupling can be measure by coupling between objects,

response for class/aspect, class method interaction,

class-aspect interaction and dynamic aspect coupling.

TABLE 1 MEASURES FOR TESTABILITY

Attribute Measure

Unit size Number of classes and aspects.

 Dynamic and static behavior of the

aspect on the system.
 Mapping of point cut and advice.
 Number of inherited operations.

Unit

Cohesion

 Class interaction.

 Interaction among the advice and the

method.

 Interaction among the aspects and

classes.

 Complexity of interaction between class

and aspect.
 Complexity of a path in a class

interaction.

Unit

Coupling

 Number of paths between classes.

 Number of messages between aspects.

 Inter-procedural aspect control flow.

 Interaction among aspect and modules.

 Inheritance complexity.

 Complexity of a path going through an

inheritance hierarchy.

Use case

structure

 Number of messages in sequence

diagrams.

 Number of scenarios in sequence

diagrams.

 Number of classifiers in sequence

diagrams.

Interface

complexity

 Number of use case.

 Number of factors.

 Number of operations.

 Number of messages per actor.

C. Model for testability:

1. Selected testing activity

2. Select relevant attribute

3. Select measure

4. Develop a list of final testability measure

IV. IMPROVING DESIGN TESTABILITY

Improving testability of a software design means avoiding

interactions between objects and parallel calls to common

objects. A solution may be devised to clarify the design to

make the code according to the requirements of the designer.

This can be easily achieved with the use of empty interface

classes, which is not possible for all the cases, by arranging the

classes in a step wise manner to avoid big-bang interaction and

minimize the number of stubs.

V. CONCLUSION

The features like Dynamic binding of Aspect oriented

software introduce new types of errors, resulting in some

testing issues of AO software to be different from the

conventional software testing issues. One reason is that there

are many potential factors that can affect testability. In order to

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

128

handle the testing issues of AO software, the conventional

software testing techniques require improvisation or new

techniques be developed. Testability of software is defined as

ease of performing testing. The purpose of this paper is to

increase our understanding of what makes code hard to test.

Our approach is based on an extensive survey of the literature

on software testability. In this paper we provide a set of

hypotheses that explain its expected relationship with

testability. This is important as an hypothesis can help decide,

in a design and testing strategies. From a research viewpoint,

this paper presents a number of precise hypotheses that can be

investigated through empirical means. Such type of framework

should help focus research efforts and motivate precise

research question.

REFERENCES

[1] IEEE press,” IEEE standard Glossary of software Engineering

Technology” ANSI/IEEE standard 610.12-1990,1990.

[2] J.M. Voas, K.W. Miller, Software Testability: The new verification,

IEEE Software 12 (3) (1995) 17-28.

[3] “A measurement framework for object-oriented software testability”

Samar Mouchawrab, Lionel C. Briand , Yvan Labiche Software Quality

Engineering Laboratory, Carleton University, 1125 Colonel by drive,

Ottawa, Canada K1S5B6 Available online 4 November 2005

[4] L.C. Briand and Y.Labiche,”A UML- Based Approach to system Testing

“, Software and system Modeling, vol.1(1),pp 10-42,2002.

[5] Filman,R., Elrad, T., Clarke, S,Akisit ,M., Aspect oriented software

development. Addison- Wesely,2004.

[6] Goel A, Gupta, S.C, & Wason, S.K,2003 Probe Mechanism for

object-oriented software testing in proceedings of FASE, LNCS

2621,Springer,Warsaw,Poland

[7] Testing Aspect Oriented Programs; an Approach based on the coverage

of the Interaction among advices and methods.

[8] PDL introduces a type a type system to detect meaningless pointcuts and

modify the semantic to provide a more appropriate behaviour.

[9] Bruno Harbulot, Johan R. Gurd., “ A Joinpoint for loops in Aspect J”,

AOSD 06, March 20-24, 2006, Bonn Germany.

[10] Client Morgan, Kris De Volder, Eric Wohlstadter “ A static Aspect

Language for checking Design Rules” AOSD’ 07 March 12-16

Vancouver Canada.

[11] A new method for estimating the testability of polymorphism in class

hierarchy by Jin-ChrngLin and Yun-Liang Hung in Int. Computer

Symposium, Dec 15-17,2007, Taipei, Taiwan.

[12] Suitability of object and aspect oriented languages for software

maintenance by Khalid Al-Jasser, Peter Schachte, Ed Kazmierczak, The

university o Melourne. (ASWEC’07) 2007 IEEE.

[13] The selection of join point or join point Designation Diagram should be

independent from aspect oriented programming languigage.

Fig.1 Activity Diagram for Open Account

Fig.2 Sequence Diagram for Open Account.

