
International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

96

Abstract—The structure of a grid system should be such that

even a small personal computer can avail the facility of many

supercomputers at a time. A grid is formulated by the number of

supercomputers are used and participated in the computations.

Grid computing has no straightforward way to control and

administer grids dynamically. Grid operating systems bear the

promise to become the new frontier in management of complex

distributed computing systems and services that will offer for a

single node: abstraction from hardware, and secure resource

sharing with illusion dynamically by integrating grid

capabilities into the kernel. It will integrate existing host

operating system with a grid through an interoperating

interface with expert dynamic OS on different versions of Grid

virtual machine implementing grid nodes. Its goal is the

creation of parallel processing pervasive grid computing

platform that facilitates the rapid deployment and easy

maintenance of grids of preferring peer to peer topology.

Index Terms—Grid operating systems, distributed

computing, host operating system, Expert dynamic OS, Grid

virtual machine.

I. INTRODUCTION

Grid is a type of parallel and distributed system [1] that

enables the sharing, selection, and aggregation of

geographically distributed "autonomous" resources

dynamically at runtime depending on their availability,

capability, performance, cost, and users' quality-of-service

requirements.

Today Grid middleware is used to address the complexity of

GRID environments and to help users in using GRID

resources in an integrated way. This role in conventional

computers is played by operating systems. Now it is time to

develop a GRID operating system that may offer an integrated

support for efficient management of local and remote

resources available on a GRID environment to which a

machine is connected. Without an operating system, Grids can

fail the goal to enter mainstream computing and will not

exploit all their functionality. As a conventional operating

system provides an abstraction layer on top of the underlying

physical resources of a computer, a GRID operating system

must be designed to provide a virtual machine interface

layered over the distributed, heterogeneous, autonomous, and

dynamically available resources that compose a GRID.

Resource sharing is the main objective of Grids and operating

systems is the more appropriate environment for providing

GRID users access to resource sharing facilities in a secure

and transparent way.

A GRID OS should

 Provide simple connection to the GRID, Tolerating node

failures and allowing application checkpoint

 Offer access to GRID resources, and Resource

distribution transparency: Offering processes transparent

access to all resources, and resource sharing between

processes whatever the resource and process location.

 Define policies for providing local resource to a GRID.

 High performance; High availability.

 Scalability: Dynamic system reconfiguration, node

addition and eviction, transparently to applications.

Grid operating systems support properties and provide

functionalities that are usually addressed at middleware level

to enable seamless integration and management of distributed

resources while providing a uniform interface to applications

and services. We believe that the Grid infrastructure must

absolutely reduce the burden on the application developer

investing on the open source operating systems and extending

them towards Grid, simplifying the life of the high-level Grid

services implementers because they could rely on the native

services of the operating system kernel for tasks such as

resource or process management.

A Grid is assumed to be made of an uncountable number of

computers that are called Grid nodes (or simply nodes). Grid

OS aims to be a first step towards the creation of a true open

source operating system for Grid platforms supporting

distributed resources, by embedding some important basic

services or functionalities directly into the operating system

kernel Grid OS aims at making VO management easy for

administrators and work within VOs easy for users. The cost

of administering and operating a VO (e.g., adding or removing

nodes, changing access policy, authenticating and authorizing

users) should be minimized to a bounded value rather than

simply increase with the number of users and resources

participating in the VO.

Deployment of Grids with existing Grid middleware [2, 3]

involves the installation of multiple layers of software.

Mathews et al [7] have highlighted similar issues. Multiple

software layers in a Grid do not ensure fault tolerance. For

example, with the popular cluster execution service Condor

[8], a centralized cluster middleware can be liable to complete

failure if a central server crashes. Active research is being

pursued into more robust, flexible and fault tolerant Grid

architectures, by converging Grid and Peer to Peer (P2P)

topologies. However no Grid as of yet, has shown the

advantages of such convergence.

It is clear that in order to facilitate the adoption of Grid

Grid Operating System: Making Dynamic

Virtual Services in Organizations

Sanjeev Puri and. Dr. Qamas Abbas

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

97

computing to new domains and make it user-friendly for

existing users‟ latent drawbacks in its architecture must be

addressed. Our proposed Grid Operating system, aims at

developing a pervasive Grid computing dynamic platform

which addresses the drawbacks of the existing infrastructure,

leading to a fault tolerant, flexible and easy to use stacks for

rapid deployment of Grids. Grid OS aims to transparently

Grid-enable all types of modern computations from traditional

batch oriented to interactive, without requiring customization

to applications in order to deploy them over a Grid. It is an

operating system with built in support for Grid Computing. It

is also an integrated Grid stack, that builds on and extends

existing Grid technologies with expert dynamic OS interface

with local host OS to enable rapid deployment of Grids, and

enabling “plug and play” Grid computing on a fault tolerant

resource discovery architecture.

II. PREVIOUS WORK

Primary motivation for this work comes from the Anatomy

of the Grid: Enabling Scalable Virtual services in

Organizations, edited by Ian Foster et al [1], in which the

authors discuss the challenges in the operating system

interfaces for Grid architectures. The book discusses various

principles but stops short of implementation details. While

there has been little work on Operating System interfaces,

there has been tremendous development in Grid middleware.

Projects like Globus and Legion provide elaborate software

infrastructure for writing Grid applications. These tools and

libraries have to cope with the existing operating system

services that are not designed for high-performance computing.

As a result, they are forced to implement some commonly used

high-performance optimizations like multiple TCP streams

and TCP buffer size negotiation that more suitably should be

implemented in the operating system's kernel. These tools,

though quite different, often use the same set of low-level

services like resource management, process management, and

high-performance I/O.

Recently two major efforts in the direction of Grid

operating systems (Grid OS) have been launched: Vigne and

XtreemOS. The Vigne Grid Operating System [9] is a Grid OS

which aims to relieve users and programmers from the burden

of dealing with the highly distributed and volatile resources of

computational Grids. Vigne focuses on three issues: i) Grid

level single system; images to provide abstractions for users

and programmers to hide physical distribution of Grid

resources; ii) self-healing services to tolerate failure and

reconfigurations in the Grid and; iii) self-organization to

relieve administrators from manually configuring and

maintaining Vigne OS‟s services. Vigne plugs onto the

Kerrighed Cluster system [10] which supports cluster

middleware level issues. However Kerrighed has some

limitations which would limit wide scale deployment.

Kerrighed does not tolerate node failure; clusters cannot be

bigger than 32 nodes and provide no symmetric

multiprocessing and 64 bit architecture support.

The aims of XtreemOS [11] are Linux based and open

source to develop an OS level Grid solution with support for

Grid enabling applications and providing self-healing services

for large scale dynamic Grids. XtreemOS focuses additionally

on small-scale mobile devices as well as supporting

applications ranging from eScience, finance, and eCommerce

to multimedia.

Apple xGrid [12] is a part of the Apple Mac OSX operating

system, which enables an organization to create a Compute

Grid or compute cluster. Apple xGrid is perhaps one of the

first common-user oriented Grid computing systems. Jobs

submitted by a user to an Apple xGrid system are divided into

independent tasks by the „Controller‟, a machine set up to

coordinate the computations on the Grid. Furthermore, xGrid

has not been deployed in environments with large numbers of

machines in multiple domains which would give a true

indication of its scalability. Apple xGrid is not self-organizing,

which might be the single most important hurdle to its

transition towards a universal Grid platform.

III. VIRTUAL SERVICES IN ORGANIZATIONS

A virtual service can be seen as a temporary or permanent

coalition of geographically dispersed entities (individuals,

groups, organizational units or entire organizations) that pool

resources, capabilities and information to achieve common

objectives. There usually will be legal or contractual

arrangements between the entities. The resources can be

physical equipment such as computing or other facilities, or

other capabilities such as knowledge, information or data. In

an organization, information is stored and services and

applications are executed by a set of computers in a Grid.

Key components of a virtual services are an administrator of

the organizations, who is authorized to manage VO

membership and policies, a set of participating users (called

Grid users) in different participating domains, a set of roles

which users/resources can play in the VO, a set of

rules/policies on resource availability and access control, an

(renewable) expiry time of the VO. The main responsibilities

of node-level management include: translating from grid

identities into local identities; granting or denying access to

resources, checking limitations of resource usage (CPU wall

time, disk quotas, memory, etc.); protecting and separating of

resource usage by different users; logging and auditing of

resource usage, etc.. A VO and its implementation by an

operating system can reside in several stages of VO lifecycle:

VO identification, VO formation, VO operation, VO

evolution, and VO dissolution. In each stage a set of security

threats to the overall system exists.

Grid OS, that is to say, the operating system is fully

Grid-enabled. Once the Grid OS system has been installed on

a machine, this machine is ready to participate in a VO with no

need to install additional system software. Modifications to

Linux to natively support VOs are done with a careful design

to keep backward compatibility while providing build-in VO

management interfaces [4, 5] that are as secure and simple to

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

98

use as possible. System services and utilities such as login and

shell programs, together with libraries, are extended in a

modular approach so as to favor VO-level resource sharing

requirements while keeping maximal transparency to users.

Access security in Grid OS will be policy driven. This

means that for each resource (which includes VOs,

applications, hosts, etc., in fact anything that requires

protection) there will be a policy specifying who can access it

and what they can do with it. In the case of a resource such as

a file, the who could be a list of individuals and/or VOs, and

the what could be read, write or execute actions similar to the

conventional Linux file permissions (with a VO being

considered as a sort of group). However, in a distributed and

VO-based environment access will typically involve more than

one entity, each with its own policies. The idea to monitor the

operating system running on a PC is to execute the backdoor

and the monitored OS in different virtual machines on top of a

virtual machine monitor. The main issue to be tackled in the

implementation is the extraction of OS state from the memory.

A. Application Management

As all layers will be integrated, the system will be able to

offer information about the progress of the job, accurate

monitoring of the used resources, error information, etc. In the

current Grid world, given that the managers for the different

layers are not integrated, a lot of information is lost in the way

and the one that survives it is not correlated making it very

difficult to use. For instance, in current Grid systems it is

difficult to know why an application failed, when and with

exactly what resources it run, etc. The integration of all

services in a single OS will remove the lack of integration and

offer users an execution environment with plenty of

monitoring information and a powerful control of execution.

As the computational system are very large number in nature

so it is planned in the present work to allocate the type of

programming in a particular node hence when a user desires to

avail the grid facility; the host local OS should handover the

problem to the expert dynamic OS when software is loaded.

The other types of a program which is complex in nature and

requires the participation of many nodes. The host local OS

computer evaluates the problem and transfers the modules to

the participated computers. The third types of software used to

such that it is divided in modules equal to the number of

different grid OS and all the participating computers

processing paralleled, then the responses of each computer are

integrated in the host local OS node and which transfers the

result to the originating PC interface with expert dynamic OS.

However, when multiple users launch applications on the

same cluster, it may happen that the workload exceeds the

cluster capacity. To avoid this situation, a solution is to

execute a batch system on top of the grid operating system.

When an application is launched with the fork-delay

capability enabled, its processes are queued if the cluster is

overloaded. When a process terminates its execution, the

global scheduler resumes the execution of the delayed

processes, if any. At any time, if the cluster load is too high,

the global scheduler may decide and use grid stacks that only

suspend the execution of a very few or no processes.

B. Data Management

It should support extended meta-data, hierarchical names

(the traditional directory structure), private, shared and

collaboration data, and data archives. It should also support

named Grid pipes, used by workflows where different

processes produce data and some others consume it, the

various processes being located on different nodes. Access

rights should be managed in a manner such that file access

could be granted to Grid users according to VO policies.

IV. ARCHITECTURE OF GRID OS

Super peer paradigms have recently gained popularity as

they enable Grids to integrate some of the advantages of peer

to peer systems making a Grid infrastructure more robust,

scalable and fault tolerant [14]. The toolkits require a common

set of services from the underlying operating system. The key

principle in Grid OS is to provide modularity. The modules

provide a policy-free API which can be used to develop high

level services like GridFTP. Grid OS provides a basic set of

abstract dynamic services that are common to prevalent Grid

software infrastructures with minimal Core Operating System

Changes.

Architectural components of Grid OS are designed to be

self configuring and plug-and-play in order to facilitate the

rapid deployment of a Grid e.g. adding a node to a site involves

a simple sign-in peer, adding a site to a remote region, involves

registration process with a remote peer. The OS can be seen

from two perspectives: First an integrated Grid Stack allowing

rapid deployment of Grids, whilst making administration of

Grids in an operating system which provides built in support

for Grid computing. There is overlap between both kernel and

use modes.

If an organization chooses to use the stack configuration,

they can easily unload the kernel space modifications and use

Grid computing from a user and middleware level. The lowest

layer in Grid OS is the kernel layer and includes modules

which facilitate Grid enabling of interactive application and

fine resource management in Grids. Grid OS however makes

use of process migration which transfers the execution context

of processes to nodes where enhanced processing capabilities

are available. Process migrations allow the transparent Grid

enabling of existing applications without any need to modify

them.

Support for dynamic virtualization [15, 16] is another

central feature of the kernel layer with using expert dynamic

OS. Grid OS aims to investigate hardware based virtualization

in order to use a virtualization engine using fuzzy logic

algorithm which enables the rapid creation and destruction of

on-demand virtual machines. Both the QoS Management and

kernel level process checkpointing modules allow users to

regulate resource usage of applications and to autonomously

migrate them to different nodes within a site.

The User interface layer will also contain services which

extend existing cluster middleware like Condor, to be

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

99

self-healing, self-configuring and fault tolerant. Other crucial

components in this layer include the Resource controller for

interactive applications as well as the fault tolerance module

which wraps the kernel checkpointing functionality and

makes it available to the user applications. The Security

module builds on the kernel level virtualization engine and

allows users to configure its behavior. The Middleware level

includes components which allow Grid OS nodes to self

organize into sub-Grids. Interoperability with the existing

Grid infrastructure through standardized interfaces both in

terms of resource discovery and authentication and

authorization will also be provided.

V. MODULES DESCRIPTION

High-performance network I/O module are accessed and

analyzed data in peta bytes is the feature of grid OS. These

networks have high bandwidth and large round trip time. .

Gridos io and Gridos ftp are kernel modules that handle both

network and file system I/O, thus double copying can be

avoided.

 The delay can be measured by calculating the round trip

time (RTT) using ping or trace route. The TCP slow start and

Congestion avoidance algorithms determine the size of the

congestion window. The kernel buffers are allocated

depending on the maximum size of the congestion window.

Different communication methods differ in usage of

network interfaces, low-level protocols and data encodings

and may have different quality of service requirements. The

communication module also provided multi-threaded

communication which is used in implementing the FTP

module. Grid middleware have to locate and allocate resources

according to application requirements. They also have to

manage other activities like authentication and process

creation that are required to prepare a resource to use. Gridos

rm provides higher-level issues like co-allocation,

online-control etc. A global PID (GPID) for every process in

Grid OS and provides communication primitives which can be

used on top of Gridos comm for processes to communicate

among themselves [6].

The additional modules are gridos ftp server, gridos ftp

client are based on client server grid architecture behavior.

There are two thread pools. The first pool of threads is I/O or

cache-miss thread pool. These threads populate the buffers

asynchronously at the request of listener threads and gridos ftp

common includes parsing and handling of FTP request and its

responses.

Fig.1 Reading and Writing to a file

VI. IMPLEMENTATION

The globus IO module implementation is divided into two

APIs, one each for the network and the file system. The

network API includes functions to read and write data from a

Gridos managed socket.

 Gridos io async read: used to read data from a Gridos

managed socket in non-blocking mode

 Gridos io write: This function writes data to the

Gridos managed socket

 Gridos io buffer setopt: This function sets options

for buffer management. The options include setting

of TCP send and receive buffer sizes, maximum TCP

buffer size etc.

 Gridos io buffer getopt: This function returns the

current buffer management options.

Program 1: Illustrate through a program of file write

function listing

int Gridos_io_file_write(const char *buf, const char

*dest, int size)

{ struct file *f = NULL;

int flags, len;

mm_segment_t old;

int mode = 0600;

flags = O_WRONGLY;

if(!dest) {

printk(KERN_ERR "Destination file name is NULL\n");

return -1;

}

f = file_open(dest, flags, mode);

if (!f || !f->f_op || !f->f_op->write) {

printk(KERN_ERR "File (write) object is NULL \n");

return -1;

}

f->f_pos = 0;

old= get_fs();

set_fs(KERNEL_DS);

len = f->f_op->write(f, buf, size, &f->f_pos);

set_fs(old);

if (f->f_op && f->f_op->flush) {

lock_kernel();

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

100

f->f_op->flush(f);

unlock_kernel();

}

fput(f);

printk(KERN_INFO "Wrote %d bytes\n", len);

return len;

}

In library wrapper, there are three ways of controlling Gridos

behavior from user interface layer :

1. Through system call sys Gridos

2. Using ioctl on Gridos device

3. Using /proc interface

A. Dynamic Interactive Applications of Grid

The Grid OS mechanism of Grid enabling dynamic

interactive applications are multi threaded in nature. The

kernel of Grid OS will support thread migration, an extension

of the concept of process migration [19], which is popular in

cluster middleware. The Grid OS Kernel will be capable of

migrating a single thread to another system, which will be

selected by the resource controller as the best available site for

execution. Grid OS also provides for checkpointing of

remotely migrated processes in order to save execution states

and restarts them in the case of an event. The created

checkpoints will also be exported to the parent node of the

process at regular intervals. However, the frequency of exports

will be less than the frequency of checkpointing on the local

machine, in order to contain the network cost incurred when

transferring process checkpoints from local host OS

interfacing with expert dynamic OS. The following formula

has been used to calculate future checkpoint intervals and is

itself a function of previous intervals.

Int= W*Int-1 + (1-W)*Int-2;

Where the value of W is dictated by site level policy. Each

new checkpointing interval is a function of previous

checkpointing intervals along with a constant, W, which

determines the importance a subGrid needs to give to the most

recent checkpoint interval.

B. Resource Management and Security

Modern Cluster middleware provides “all or nothing”

resource control: a node is either completely available for

processing, or it is not. To allow for fine control over users‟

resources, Grid OS provides dynamic virtualization to control

resource usage and to provide security from foreign

computation, by creating virtual machines which use the

amount of resources the user is willing to provide to external

users interact with dynamic expert OS and makes use of a QoS

management module for local computations. Our resource

control algorithm is a dynamically distributed peer-to-peer

(P2P) network compute and data aware algorithm and

considers both network connectivity and computational

capability in scheduling decisions. It can be applied both at

the local site and large-scale levels.

C. Resource Discovery Service Structure

We introduce a super peer architecture [6] in which lowest

tier is a machine level granularity sub-Grid, which consists of

machines that have good network connectivity between them,

analogous to a traditional cluster. Each sub-Grid is

represented by a super-peer, which is the most available

machine within the vicinity of the sub-Grid. The regions are

represented by a region peer. A virtual organization (VO) in

this system can be at any level: it can consist of individual

machines or be an aggregation of entire sub-Grids or of entire

regions. Interactive applications will be handled at a

machine-level VO, whereas large-scale Grid applications will

require aggregations of entire sub-Grids. At the top-most tier

the granularity is in terms of sub-Grids, and these are grouped

into regions depending on geographical proximity of the super

peers where dynamic expert OS in upper layer interface with

lower layer host OS‟ so it is as easy with this grid pipelining

service structure for resource discovery.

The main features of adaptive grid OS will be works as

dynamic resource discovery service i.e.

1) To improve the network usage, by allowing a resource

request to propagate to peers in close proximity, thus

limiting the overall network traffic, and improving

response latency.

2) To improve the quality of results, by propagating the

request until a suitable resource has been found, while

limiting the network traffic as much as possible.

3) To provide a scalable and efficient framework

dynamically grouping nodes into sub-Grids, and

clustering sub-Grids into regions.

4) Once the requesting machine has a list of the machines

within the sub-Grid, the resource controller determines

the suitability of the discovered nodes to execute the user

application.

5) The job request is forwarded to them and then the

resource controlling and scheduling process takes place

within the new sub-Grid. If the region cannot satisfy the

resource requirements it then contacts other regions in a

Peer to Peer manner.

6) A self-healing behavior is crucial in widely distributed

architectures such as a Grid environment. To make

sub-Grids self-healing, a distributed leader election

algorithm [13] is deployed to elect a new super peer in a

sub-Grid.

VII. CONCLUSIONS AND FUTURE WORK

Grid operating system which provides extensive, flexible

services for Grid architectures and it also has planned to port

Globus libraries to Grid OS thus providing a complete

software infrastructure for Grid architectures. Grid OS is not

only aimed at adapting dynamic grid computing for frequently

related to the set up and administration of Grids but also it is

based on dynamic virtualization engine for Grid OS to provide

security and resource management to resource owners and

privacy to resource users. The creation of Grid applications

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

101

and the lack of general fault tolerance within the Grid

infrastructure are also issues of concern. Grid OS is a step

towards a “Plug and Play” pervasive Grid dynamic computing

environment. It is designed to support all types of modern

computations, including batch and interactive and dynamic

support the creation of Grids of any architecture. The main

contribution of this paper is that it presents a dynamic

structure for the development of adaptive Grid OS to extend

the discovery service to enable self-healing and self organizing

behavior. Furthermore we propose that the system should

embed the capability for interoperability with existing and

emerging Grid infrastructures interface with expert dynamic

OS interact with lower host layer local OS by making the

system compliant to evolving standards in Grid computing.

 REFERENCES

[1] A. Iamnitchi and D. Talia, "P2P Computing and Interaction with Grids",

Future Generation Computer Systems, North-Holland, vol. 21, no.3, pp.

331-332, 2005.

[2] I. Foster, C. Kesselman., “Globus: A Metacomputing Infrastructure

Toolkit”, Intl J. Supercomputer Applications, 11(2):115-128, 1997

[3] E. Laure et al., Middleware for the Next Generation grid Infrastructure,

Proceedings of the Computing in High Energy Physics Conference, pages

826, 2004.

[4] I Foster and C. Kesselman, editors. The Grid: Blueprint for a new

computing infrastructure. Morgan Kaufmann, 1999.

[5] I. Foster, C. Kesselman, and S Tuecke. The anatomy of the grid: Enabling

scalable virtual organizations. International Journal of High

Performance Computing Applications, 15(3):200–222, 2001.

[6] OpenMOSIX,http://openmosix.sourceforge.net

[7] B. Mathews, “Towards a Knowledge Grid: Requirements for a Grid OS

to support Next Generation Grids”, Core Grid Workshop on NGN,

Belgium, 2005

[8] Litzkow, M. Livny, & M. Mutka, Condor – A Hunter of Idle Workstations,

Proceedings of the 8th Int. Conference of Distributed Computing Systems,

June 1988, pages 104-111.

[9] Jeanvoine, E., “Using Overlay Networks to Build Operating System

Services for Large Scale Grids”, The Fifth International Symposium on

Parallel and Distributed Computing, July 2006 Page(s):191–198

[10] Vallee, G., “A new approach to configurable dynamic scheduling in

clusters based on single system image technologies”, International

Parallel and Distributed Processing Symposium, 2003. 22-26 April 2003

Page(s):8

[11] C. Morin, “XtreemOS: A Grid Operating Sytem making your Computer

ready for Participating in Virtual Organizations”, 10th IEEE International

Symposium on Object/component/service-oriented Real-time distributed

Computing (ISORC 2007)-To appear

[12] ApplexGrid http://www.apple.com/acg/xgrid

[13] Stoller, S.D., Leader election in asynchronous distributed systems, IEEE

Transactions on Computers, Volume 49, Issue 3, March 2000

Page(s):283 - 284

[14] A. Iamnitchi, I. Foster, J. Weglarz, J. Nabrzyski, J. Schopf, M. Stroinski,

in: Grid Resource Management (ed.), A Peer-to-Peer Approach to

Resource Location in Grid Environments, Kluwer Publishing, 2003.

[15] Barham, P. et al. “Xen and the art of virtualization”. In Proceedings of the

Nineteenth ACM Symposium on Operating Systems Principles (Bolton

Landing, NY, USA, October 19 - 22, 2003) SOSP '03. ACM Press, New

York, NY, 164-177

[16] KernelVirtualMachine,http://kvm.qumranet.com/kvmwik

A. Author : Sanjeev Puri , Member of IACSIT, MSc. (CS) & MCA from MD

University, Rohtak, India-passed in 2001-02, MPhil (CS) from VMU, Salem,

PhD(CS) perusing currently from Integral university, Lucknow, U.P., India. The

author‟s major field of study is grid computing. He has the 8+ yrs academic

experience worked as Ass. Professor as well as industrial experience as SE of

C/C++ platform in Goyal computers, Lucknow Now He is ASS. PROFESSOR,

SITM, Deptt. of Computer Science & Engg., UP Technical University,

Lucknow, U.P., India. His articles have published in IJCIT: A Comprehensive

Framework for Value Service Innovation Using Knowledge Reengineering,

IJEE: An Adaptive Service Oriented Architecture for Value-Added Mobility

Services, IJGDC: Real-time Open Decisive Network Infrastructure for Smart

Grid. Mr. Sanjeev Puri is associate organization member of AIMA, New Delhi,

Best faculty award at SRMCEM, UPTU, Lucknow, India in 2003. Best Course

Coordinator by NIEC in 2006(e-mail:purispuri_2005@rediffmail.com)

B. Author : Dr. Qamar Abbas , PhD (CS) from University of U.P., India. The

author‟s major fields of study are distributed computing and software

engineering. He has the 22+ yrs academic experience worked as Professor as

well as 5 yrs industrial experience. Now He is DIRECTOR, AITM, UP

Technical University, Lucknow, U.P., India from 3+ yrs. He has also the

Research Advisor of Integral University, Lucknow. His so many articles have

published in international journals (22) and conferences (08) as well as books

of Java. Dr. Qamar Abbas is member of computer societies in India and RDC

member of other renowned universities.

Fig.2 Grid OS Architecture

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

102

Fig.3 Dynamic Virtualization of Grid OS

