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Abstract—Many software tools and environments are 

developed for modeling discrete-event systems. Although, most 
of the existing tool are proposed for modeling with one or a few 
modeling languages. In this paper, we propose a meta-modeling 
approach for definition of a multi-formalism modeling 
framework for Petri nets and related formal modeling 
languages. The proposed framework and the related software 
tool facilitate the inclusion of formalisms in the framework in a 
unified manner. The proposed meta-modeling structure is 
designed in four layers such that the most abstract layer as the 
meta-formalism and the least abstract layer as the concrete 
model. The basic concepts of the meta-modeling structure and 
some examples of formalisms are presented based on the 
proposed structure. We explain the techniques and the 
architecture of the implemented tool based on the proposed 
meta-modeling structure for the framework. 

 
Index Terms—Modeling, meta-modeling, modeling language, 

formalism, tool, discrete-event systems.  

I. INTRODUCTION 
A model is an abstract representation of a system and a 
meta-model is an abstract description of a model. The 
abstraction helps to neglect the less important aspects of a 
system, while concentrating on favorable parts that are 
desired to a specific study. However, abstraction helps us to 
study more phenomena and systems in a unified manner 
while they may seem to be completely different at first.  

Nowadays, there are many simulation and modeling tools 
supporting different kinds of modeling languages. The 
comprehensive list of the existing modeling tools is listed in 
[1], which most of them are dedicated to support only one or 
few modeling languages. Mostly, the models constructed by 
these tools are not interoperable, since this matter has not 
been the main concern of the tool developers. For example, a 
Petri net model constructed in SHARPE tool [2] cannot be 
used in CPN Tools [3] and vise-versa.  

Usually, tool developers’ main concerns are how to 
implement a tool for a new derived or proposed language and 
little work is done on how to develop modeling tools that are 
extensible enough to support different formalisms or solution 
techniques. Besides, systems and models are growing in 
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complexity and mostly a single formalism is not suitable for 
modeling all parts of a complex system. Therefore, we need 
an approach to construct models that are composed of several 
sub-models of diverse language types. Sometimes, some 
parts of a model are previously created and the issue is how to 
compose them into a single model. But, this integration is 
rarely supported by the existing modeling tools. 

The above mentioned concerns are motivations for 
exploiting meta-modeling in developing a new 
multi-formalism framework. The meta-models usage makes 
the framework flexible enough to support diverse modeling 
languages in an integrated and unified manner. We have used 
meta-modeling concepts in definition of formal modeling 
languages or formalisms, model-classes and models in a new 
modeling framework. 

In this paper, we propose a meta-modeling approach for 
definition of a multi-formalism modeling framework for Petri 
nets [4] and related formal modeling languages that can be 
represented using graphs, such as extensions of Petri nets. 
The proposed framework and the related software tool 
facilitate the inclusion of a wide range of formalisms in the 
framework in a unified manner. We explain the 
meta-modeling structure and discuss its implementation 
using the extensible markup language (XML). We present 
detailed definitions of some important parts of the framework 
to help understanding the whole framework. The complete 
formal definitions are already published in [5]. In this paper, 
we use XML as a base language for all of the definition 
regarded to meta-models structure, since some useful 
features, such as XSD and XSLT, are available with it, which 
suitably match to our needs in meta-model definition. There 
are also many accessible programming components 
implemented for XML documents’ manipulation, which is a 
considerable factor in developing a tool for the framework. 
We briefly discuss the architecture of the tool based on the 
meta-models defined in this paper.  

The rest of this paper is organized as follows. In section II, 
a brief survey on related works is presented. In section III, the 
proposed four layered meta-model structure and the related 
definitions are presented. In section IV, some sample 
formalisms are defined based on the proposed meta-modeling 
structure. In section V, the architecture and techniques used 
for implementing a tool based on the meta-modeling 
structure are introduced. Finally, in section VI, some 
concluding remarks are mentioned. 

II. RELATED WORKS 
Nowadays, models and meta-models are widely used in the 

area of software engineering. There are many researches 
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working on the topics related to model-driven engineering 
(MDE). The Meta-Object Facility standard [6] was 
originated by OMG as a meta-modeling architecture for 
definition of the unified modeling language (UML).  

Several powerful modeling tools are available for 
modeling with UML. Rational Rose Suite, PowerDesigner 
and ArgoUML [7] are some examples of commercial and 
non-commercial ones.  However there are many modeling 
and simulation tools, which most of them simply use de facto 
application development techniques for creating a modeling 
environment. UML is a standard supported by several tools 
that has an XMI Language [8] interface for exchanging UML 
models between different tools.  

The problem in the scope of formal modeling languages is 
that there is a variety of languages and a variety of tools 
supporting them, while there is not a comprehensive 
methodology and framework for composition of these 
models in an integrated environment. 

Also, some trends exist in introducing new techniques in 
creating multi-model multi-formalism environment. Möbius 
[9], AToM3 [10] and OsMoSys [11] are examples of 
multi-formalism modeling tools that are found in the 
literature. Among these works, OsMoSys is closer than the 
others to our work in using meta-models. It is intended to 
support multiple formalisms in a common framework. As the 
best of our knowledge, this framework has not a complete 
formal definition. In [10], the framework is defined in a 
semi-formal manner and it is not possible to precisely define 
new formalisms in the framework. OsMoSys model solution 
approach is based on a new formal language definition, 
named SPDL, which forces a modeler to learn its complex 
syntax.  

The Möbius modeling tool is the result of another try to 
create a multi-formalism framework. Its idea is based on 
defining an abstract function interface (AFI), which is a 
common application programming interface (API) for adding 
new formalisms to the framework and using its feature [12]. 
Möbius has respectful features in model composition and 
solution techniques, but adding a new formalism to the 
framework is not an easy task. Since its first version, which 
natively supports stochastic activity networks (SANs) [13, 
14], performance evaluation process algebra (PEPA) [15] 
and MoDeST [16] are the two only formalisms, which have 
been implemented in the framework.  

The final tool we discuss is AToM3 [10]. It uses 
meta-models to support modeling by different modeling 
languages. However, it does not offer model solution. For 
solving models, the modeler should transform them into 
DEVS [17], and then can apply DEVS solution techniques 
for evaluation of models. Hence, the modeler cannot use the 
original solution techniques for models, which may be more 
efficient and useful. Apart from the above mentioned tools, 
other famous tools, such as CPN Tools [3], do not support 
multiple formalisms and their extensibilities are mostly 
limited. Some multi-formalism tools, such as SHARPE [2], 
support a fixed set of models (ex. Markov models, queuing 
models, stochastic Petri nets, etc.), and some built-in 
steady-state or transient solvers and simulators. 

III. THE PROPOSED META-MODEL STRUCTURE 
In this section, we define a meta-model structure, which is 

used as a base for the definition of our modeling framework. 
The meta-model definition for the formalism should support 
the vast variety of formalisms for discrete-event systems. 
Therefore, when we abstract the formalisms structure like 
Petri nets, SANs, CPNs [18] and etc., we reach to a simple 
graph including some node and some edges. Fig. 1 illustrates 
this concept. We separate the behavior and structure of the 
formalism in the framework to add flexibilities into the 
framework. The properties of each element of the formalism 
distinguish it from the other formalisms. These properties are 
annotated to each element in the meta-model definition. This 
method makes the framework compatible with a wide range 
of existing formalisms. Every formalism is defined based on 
the meta-formalism definition. For example, for Petri nets, 
the place and transition elements are defined as nodes and 
arcs are defined as edges of a graph in the framework. The 
graphical notations, captions and tokens are defined as 
properties for each of the Petri net elements. 

 
 

Figure1 Examples of mapping the formalism elements onto the graph 
elements 

A model is an instance of the related formalism. It includes 
a number of elements with some valued properties. A model 
in the framework is considered as a model-class and is 
organized in separate layers in the meta-model structure. The 
model-classes are not solvable models and could be 
instantiated to make a solvable model.  

The proposed meta-model structure is shown in Fig. 2. As 
shown in this figure, there are four layers in the meta-model 
structure of the framework that are as follows:  
1) Meta-formalism layer, which is the top most abstract 

layer,  
2) Formalism layer, which is based on meta-formalism, 
3) Model-class layer, which should be defined based on a 

formalism that is defined in the formalism layer, and  
4) Model layer, which includes the final solvable models. 

Fig. 2, also depicts the analogies between the framework 
meta-model structure and MOF [8] structure. It demonstrates 
how these four layers are mapped onto the four layers that 
exist in the MOF meta-model structure. For example, 
solvable models in the framework’s meta-model structure are 
similar to the object diagrams and the model-classes are also 
similar to the user-defined models. 
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Figure2 The meta-model structure of the framework and its mapping onto the MOF meta-model structure 

A. Meta-Model Structure Definitions 
The first top layer in the meta-model structure is the most 

abstract layer. In this layer, models are considered as a 
collection of elements with some properties. The Element 
Type can be of type Node, Edge or Model. There are some 
properties for every element. The type of these properties 
may be ordinary, enumeration, class, object, function or a set 
of them. Class types are data structures defined inside the 
formalism definition. If we define a property as an object 
type, we mean that this property refers to a class type that its 
definition is postponed to model-class layer. Simply, we can 
consider it like pointers in programming languages. Object 
type feature in the framework definition is useful in 
implementing some formalisms like CPNs [18] and CSANs 
[19], where the modeler can define a new structure inside the 
model itself and then assign the type to the coloured places.  

Now, we present two definitions: 
Definition 1. An element of a formalism in the framework 

is consisted of the following properties: 
1) A unique name of the element. 
2) A graphical representation of the element (provided to 

the related tool as a file in a standard graphical format). 
3) A type of the element. 

4) The name of the related formalism. 
5) A finite set of properties of the element. 
6) An OCL expression defining the element's constraints. 

In some formalism, such as SANs, CPNs and etc., there are 
some functions in the body of formalism's definitions. 
Definition of these functions as a property of type string is 
not precise. To clarify the subject, suppose the input function 
of input gates in SANs, which can only change the marking 
of connected places. It is required to have a way to express 
these constraints in formalism definitions in the framework. 
We consider such a function as a property of type 
FUNCTION and define its constraints using the object 
constraint language (OCL) [20]. The OCL expression in the 
framework is written based on components and relationships 
depicted as in Fig. 3.  

After defining an element in the framework, we are ready 
to define the formalism or formal language definition, which 
is a collection of elements:  

1..1

0..*

0..1
1..*

1..*
End

1..1

1..*
Start

1..1Node

Formalism

Edge

Element Properties

 

Figure3 Formalism meta-model illustrated in as a class diagram 

Definition 2. A formalism in the meta-modeling structure 
is consisted of the following properties: 
1) A unique name for the formalism. 
2) A graphical representative of the formalism (provided to 

the related tool as a file in a standard graphical format). 
3) A finite set of properties of the formalism. 
4) A set of formalism’s elements as in Definition 1. 
5) References to other defined formalisms in the context, 

which we may want to use their elements as an ancestor 
in current formalism definition. 

6) A collection of data structures defined inside the 
formalism. 

Considering the above definition, we can summarize a 
formalism definition in the framework in a UML-like class 
diagram as shown in Fig. 3. In this figure, it is clearly shown 
that the formalism can also contain other formalisms. A 
formalism in the proposed framework is a collection of 
elements with some properties for each one. 
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A. Model-Class Definitions 
The model-class layer is a layer just below the formalism 

layer in the meta-modeling structure. It is the models 
constructed based on previously defined formalisms in the 
framework. Now, we define this layer, but like before we 
need to firstly present some preliminary definitions. We 
define each element of model-class and next present a 
definition of the model-class itself. 

Definition 3. An element of a model-class in the 
meta-modeling structure is consisted of the following 
properties: 
1) The name of the model-class of the element. 
2) The type of element. Only those types, which are already 

defined in the corresponding formalism of the 
model-class of the element, are permitted. 

3) The properties of the element. Each property have the 
following information: 

• The name of the property. 
• The value of the property which should be 

compatible with the type of property defined in 
formalism definition. 

• The property visibility in model-class, which may be 
private or public. 

• The access modifier, which may be read-only or 
read-write. 

4) The visibility of the element.  
5) The access modifier of the element.  

Now we continue the meta-modeling structure definitions 
by defining model-class: 

Definition 4. A model-class is consisted of the following 
properties: 
1) A name for the model-class. 
2) A reference to the corresponding formalism of the 

model-class. 
3) A set of elements, each one is defined as in Definition 3. 
4) A set of model-class properties, each have the following 

information: 
• The name of the property. 
• The value of the property, which should be 

compatible with the type of property as defined in the 
formalism definition. 

• The visibility of property, which may be private or 
public. 

• The access modifier, which may be read-only or 
read-write. 

5) A data structure. 
According to the above definitions, it is clear that the 

model-class itself may have some properties just like its 
elements. It means that the extra information can easily be 
annotated to the elements of the model-class or the 
model-class itself. 

At the time of constructing a model in the framework, the 
model is considered as a model-class and not a concrete 
model. An instantiated model-class makes a solvable model 
in the lower layer in the meta-modeling structure. This 
approach enhances the reusability of models in the 
framework. A model-class can be instantiated with different 
values while it is being used as a standalone concrete model 
or while it is being used as a sub-model in a composed model. 
At the former situation, the values may be provided by the 

user and at the latter situation, it may be provided by some 
elements in the container model. The properties of a 
model-class and its elements accept modifiers. These 
modifiers are as follows: 
• public: The element can be reached inside and outside of 

the model. 
• private: The element can only be accessed inside the model. 
• readonly: The only reading the value of element is 

permitted outside of the model. 
• readwrite: Both reading and modifying the element is 

permitted outside of the model. 
A property can accept private or public and readonly or 

readwrite. The readonly and readwrite modifiers are 
meaningful when the property is public. We should mention 
that all of these modifiers are considered in solution stage, 
because it does not make any sense reading and writing a 
value when we are not in the solution stage. Since varieties of 
solvers may be used during the model solution stage by the 
solution manager of the framework, these modifiers will be 
quite useful. The solution manager is not discussed in this 
paper. 

IV. EXAMPLE OF FORMALISMS IMPLEMENTED IN THE 
FRAMEWORK 

Fig. 4 depicts how Petri net is defined in the framework 
based on meta-modeling structure. Each element has some 
properties for defining its position and image inside the 
model, including x, y, width, height and image, respectively. 
We have not shown these properties in Fig. 4 for conciseness. 
The OCL expression of the arc element imposes a limitation. 
The limitation is that it can only connect two elements of type 
place and transition together. The dollar prefix for the name 
in the definition means that it is a previously defined type in 
the context of the framework. All the elements in the 
framework are derived from the element type (as shown in 
Fig. 3). Therefore, start and end properties for the arc 
element are of type $Element in definition of Petri nets.  
 <?xml version="1.0" encoding="UTF-8"?> 
 <formalism image="petrinet.svg" name="Petrinet"> 
    <p name="eid" type="int"/> 
    …… 
    <p name="image" type="String"/> 
    <element image="place.svg" name="Place"     
   type="Node"> 
        <p name="eid" type="int"/> 
        … 
        <p name="token" type="int"/> 
    </element> 
    <element image="transition.svg"        
   name="Transition" type="Node"> 
        ….. 
    </element> 
    <element image="Arc.svg" name="Arc" type="Edge"> 
        <p name="eid" type="int"/> 
        <p name="start" type="$Element"/> 
        <p name="end" type="$Element"/> 
        ……. 
        <ocl> 
     context $Arc inv:(self.start=$Place   
     implies self.end=$Transition) and    
     (self.start=$Transition implies     
      self.end=$Place)            
        </ocl> 
    </element> 
</formalism> 

Figure4 Definition of Petri nets formalism based on the meta-modeling 
structure 
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According to the definition of Petri nets, we define SANs 
to show the flexibility of the meta-modeling structure and its 
features in the formalism definitions. This definition is based 
on the formal definition in [13]. As shown in Fig. 5, the timed 
activity or Timed_Activity uses inheritance to extend a 
previously defined element in the framework. A previously 
defined formalism can be included by using ERef keyword in 
the current definition. The OCL expression for the rate, 
rateFun and reactivation properties of the timed activity 
elements imposes some limitations on the function. It 
indicates that it cannot change the state of the model after 
execution of the gate functions related to the activity. Also, 
there is similar OCL expression with a slight difference for 
the instantaneous activity or IActivity. The gate functions for 

input and output gates can only change the state according to 
formal definitions of SANs [14]. 

A formalism can include some other formalisms. In Fig. 6, 
definition of HSANs in the framework is shown, which is 
based on the definition of SANs. All the elements of HSANs 
formalism are just like SANs and only a sub-model definition 
is added. Furthermore, there is a new kind of arcs named 
SubSANArc, which extends Arc element and connects SAN 
sub-models to the container model elements. This kind of arc 
makes it possible to construct hierarchical models. The 
sub-model element is defined of type Model that is of type 
Node and Element in a hierarchical form. Also, it contains a 
property of type Objects, which means that it can contain any 
kind of data structures as a property. We have only shown the  

<?xml version="1.0"?>  
<formalism image="SAN.svg" name="SAN" ERef="$Petrinet" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
 xsi:noNamespaceSchemaLocation="SANSchema.xsd"> 
   <p name="eid" type="int"/> 
   <p name="x" type="int"/> 
   <p name="y" type="int"/> 
   <p name="width" type="int"/> 
   <p name="height" type="int"/> 
   <p name="caption" type="String"/> 
   <p name="image" type="String"/> 
 <element extends="$Petrinet.$Place" image="place.svg" name="Place" type="Node"> 
  </element> 
  <element extends="$Petrinet.$Transition" image="Timed_Activity.svg"  
  name="Timed_Activity" type="Node"> 
     <p name="rate" type="@Type1"/> 
     <p name=" reactivation" type="@Type2"/> 
     <p name="rateFun" type="@Type3"/> 
   </element> 
   <element extends="$Petrinet.$Transition" image="Iactivity.svg" name="Iactivity" type="Node"> 
        <p name="probability" type="@Type4"/> 
   </element> 
   <element extends="$Petrinet.$Transition" image="IGate.svg" name="IGate" type="Node"> 
        <p name="predicate" type="@Type5"/> 
        <p name="fun" type="@Type6"/> 
   </element> 
   <element extends="$Petrinet.$Transition" image="OGate.svg" name="OGate" type="Node"> 
        <p name="fun" type="@Type7"/> 
   </element> 
   <element extends="$Petrinet.$Arc" image="Arc.svg" name="Arc" type="Edge"> 
        <p name="func" type="@Type2"/> 
        <ocl> 
    context $Arc inv:let st=self.start,en=self.end in  
    st=$Place implies en=$IGate) and 
    st=$IGate implies (en=$Iactivity or en=$Timed_Activity) and 
    ((st=$Iactivity or en=$Timed_Activity) implies en=$OGate) and (st=$OGate implies en=$Place)  
        </ocl> 
   </element> 
   <type name="Type1" type="Function"> 
        <p name="input" type="null"/> 
        <p name="output" type="float"/> 
        <ocl> 
    context $Timed_transition post:self.$SPN->forAll($elements=$elements@pre) 
        </ocl> </type> 
   <type name="Type2" type="Function"> 
        <p name="input" type="null"/> 
        <p name="output" type="boolean"/> 
        <ocl> 
    context $Timed_Activity post: self.$SPN->forAll(elements=elements@pre) 
        </ocl> 
    </type> 
    <type name="Type3" type="Function"> 
        <p name="input" type="null"/> 
        <p name="output" type="enum(Exponentioal|Bernoulli|Poisson|Geometric)"/> 
        <ocl> 
    context $Timed_Activity post: self.$SPN->forAll(elements=elements@pre) 
        </ocl> 
    </type> 
    <type name="Type4" type="Function"> 
        <p name="input" type="null"/> 
        <p name="output" type="boolean"/> 
        <ocl> 
    context $Timed_Activity post: self.$SPN->forAll($elements=$elements@pre) 
        </ocl> 
    </type> 
    <type name="Type5" type="Function"> 
        <p name="input" type="null"/> 
        <p name="output" type="boolean"/> 
        <ocl> 
    context $IGate post: self.$SPN->forAll($elements=$elements@pre) 
        </ocl> 
    </type> 
    <type name="Type6" type="Function"> 
        <p name="input" type="null"/> 
        <p name="output" type="null"/> 

Includes Petri nets 
definition in the context

Place extends the place 
element of Petri nets 

"@Type1, 2,…, 7 are defined 
later in the definition 
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        <ocl> 
    context $IGate post: let adjacentE:Set($element)=self.$SPN.$elements->select(e:$element|e.end=self), 
    allToken:Set(int)=self.$SPN.$elements->collect($Place.token) in  
    allToken->exclude(adjacentE->collect(P.token))= 
    allToken->exclude(adjacentE->collect(P.token))@pre 
        </ocl> 
    </type> 
    <type name="Type7" type="Function"> 
        <p name="input" type="null"/> 
        <p name="output" type="null"/> 
        <ocl> 
    context $OGate post: let 
    adjacentE:Set($element)=self.$SPN.$elements->select(e:$element|e.end=self), 
    allToken:Set(int)=self.$SPN.$elements->collect($Place.token)in  
    allToken->exclude(adjacentE->collect(P.token))=  allToken->exclude(adjacentE->collect(P.token))@pre 
        </ocl> 
    </type> 
</formalism> 

Figure5 Definition of SAN formalism based on the meta-modeling structure and the definition of Petri nets 

important parts in HSAN definition and neglected the 
transitions, gates, places and corresponding arcs definition 
for brevity. 

A. A Sample Model-Class in the Meta-Modeling Structure 
Fig. 7(a) is the model-class of a well-known 

producer/consumer system modeled in Petri nets. It is based 
on Petri nets definition in Fig. 4 .The token property of place 
P1 is defined as a parameter and its value is provided in 
initialization stage by the user or in solution stage by other 
connected models. The token property of place P2 is defined 
public and read-only, which means that its value can be 
reached outside of these models, but can be modified only by 
the model solver, not others. If not explicitly specified, the 
default values for the visibility and access modifiers are 
private and readonly, respectively. The graphical 
representative of this model is depicted in Fig. 7(b). 

V. ARCHITECTURE AND TECHNIQUES OF A TOOL FOR THE 
FRAMEWORK 

Any framework needs a software tool to make it possible 
to define formalisms, construct the models and utilize the 
solution or simulation techniques available in the framework. 
We have implemented a modeling tool based on the proposed 
meta-modeling structure of the framework. XML is an 
infrastructure for storing all kinds of data, including the 
formalism definition, model-class definition, transient data 
between solvers and solver manager and so on. Using XML 
simplifies importing models that are not defined exclusively 
for the framework. For example by implementing a simple 
extensible stylesheet language transformation (XSLT) 
document, the models compatible with the Petri net markup 
language (PNML) [21] can easily be imported to the 
framework. However, we have used the scalable vector 
graphics (SVG), which is an XML-based image format for 
representing the images inside the tool. 

We have used Java programming language and JavaEE 
[22] features in implementation of the tool. The architecture 
of the tool's packages is shown in Fig. 8. According to this 
figure, the components of the tool are organized in three 
packages: (1) framework package, (2) formalism package 
and (3) editor package. The framework package includes all 
of the framework related modules, which have not any 
graphical representative. It mostly contains some controlling 
classes. For example when a user defines a new framework 
using a wizard inside the framework (as in Fig. 9), the editor 

uses the classbuild package’s components to construct the 
formalism related modules and compiles and deploys them 
on-the-fly. Using Java Reflection API makes it possible not 
to recompile the entire framework while the new formalism is 
defined. 

The formalism package includes the modules related to the 
defined formalism in the framework. This package includes 
some base classes for the whole formalisms as well as 
on-the-fly created packages and classes produced by the 
framework packages, as mentioned earlier. According to 
each formalism definition, theses classes can differ (i.e. they 
may contain different properties and methods). The last 
package is the editor package. This package includes all the 
modules related to the graphical representation of the tool. 
For example the classes drawing the toolbox, property box 
and main window, exist in this package. They manipulate the 
dynamic change of view while the user switches between 
models. They also completely handle the model creation and 
design and use the formalism and the framework packages 
for completing their functions. Finally, this package handles 
all the interaction between the tool and the user as a modeler 
or formalism definer.  

The communications between the three main packages are 
based on the model-view-controller (MVC) pattern [23]. The 
mapping between these patterns’ components and the tool 
modules are depicted in Fig. 10. The MVC pattern provides 
flexibility in the tool construction and its functionality. When 
the user changes the graphical representation of the model, 
the change is reflected to the corresponding stored XML 
document according to the pattern mechanism. The controller 
imposes rules and constraints of the formalism definition 
during the formalism definition wizard and of model 
construction on models construction time, according to the 
meta-modeling defined structure. The formalism should 
conform to the meta-formalism layer and the model-classes 
should conform to formalism in the tool, respectively. All of 
these are controlled by the modules inside the framework 
package. 

VI. CONCLUSION 
In this paper, we introduced a meta-modeling approach 

used in definition of a new multi-formalism modeling 
framework. The proposed meta-modeling structure is 
consisted of four abstract layers and constructs the 
fundamental structure of the framework. It provides the 
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<?xml version="1.0"?>  
<formalism image="HSAN.svg" name="HSAN"     
 ERef="$SAN,$Petrinet" > 
 …… 
    <element extends="$SAN.$Place" 

image="place.svg" name="Place" type="Node"> 
</element> 
    …. 
<element image="SubSAN.svg" name="SubSAN"  

ERef="$SAN" type="Model"> 
  <p name="data" type="Object"/> 
</element> 
<element extends="$Petrinet.$Arc"  
 image="SubSANArc.svg" name="SubSANArc" 
 type="Edge"> 
 <p name="relFun" type="@Type1"/> 
 </element> 
 <type name="Type1" type="Function"> 
   <p name="input" type="null"/> 
    <p name="output" type="null"/> 
    <ocl> 
   context $SubSANArc inv: let 

  st:$element=self.start,en: 
$element=self.end in 
(st=$Place implies en=$SubSAN)  
and (st=$SubSAN implies en=$Place) 

</ocl> 
</type> 

</formalism> 

Figure6 Definition of HSAN formalism based on the meta-modeling 
structure and the definition of SANs 

framework with the flexibility in defining diverse formalisms. 
Therefore, the framework is adaptable by a large number of 
formalisms to use their features.  
The OCL expressions are exploited in the meta-modeling 
structure to define formalisms efficiently and precisely. We 
illustrated the applicability of the meta-modeling structure by 
defining some sample formalisms using the features of the 
framework. The innovative approach in defining a 
framework for diverse formalisms provides an infrastructure 
for defining a tool for constructing atomic or composed 
models. The tool uses XML and its derivations like SVG as 
data storage format and uses the MVC pattern as its core 

interaction mechanism.  
In the future, we intent to continue definition of model 

composition approach inside the framework based on the 
proposed meta-modeling structure. The solution strategy 
should also be completed in the future. Furthermore, we 
intent to develop some interchange formats for adapting 
model solvers or simulators inside the proposed framework.  
<?xml version="1.0" encoding="UTF-8"?> 
<model formalism="Petrinet"> 
    <height>500</height> 
    <x>0</x> 
    <caption>untitled01</caption> 
    <eid>1</eid> 
    <width>600</width> 
    <image>null</image> 
    <y>0</y> 
    <element type="Place"> 
        <x>130</x> 
        <height>50</height> 
        <eid>8</eid> 
        <caption>P1</caption> 
        <token>$Param</token> 
        <width>50</width> 
        <image>/im/place.svg</image> 
        <y>99</y> 
   </element> 
   <element type="Place"> 
        <x>271</x> 
        <height>50</height> 
        <eid>9</eid> 
        <caption>P2</caption> 
        <token visibility="public"  
    access="readonly">0 

</token> 
<width>50</width> 

   <image>/im/place.svg</image> 
 <y>89</y> 

</element> 
... 
</model> 

(a)  

 
 

 
(b)  

Figure7 A sample model-class based on meta-modeling structure: (a) Producer/consumer model-class XML file, (b) The graphical representation of the 
producer/consumer model  

HSANs models may 
contain some 

sub-models of type 

Token is defined as a 
parameter for P1 element 

Place property is defined 
public and read-only 
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Figure8 The framework tool’s packages structure 

 
Figure9 Formalism definition wizard inside the framework tool 
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Figure10 Mapping between the tool packages and the MVC pattern 
components 
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