
International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010
1793-8201

87

Abstract—Many software tools and environments are

developed for modeling discrete-event systems. Although, most
of the existing tool are proposed for modeling with one or a few
modeling languages. In this paper, we propose a meta-modeling
approach for definition of a multi-formalism modeling
framework for Petri nets and related formal modeling
languages. The proposed framework and the related software
tool facilitate the inclusion of formalisms in the framework in a
unified manner. The proposed meta-modeling structure is
designed in four layers such that the most abstract layer as the
meta-formalism and the least abstract layer as the concrete
model. The basic concepts of the meta-modeling structure and
some examples of formalisms are presented based on the
proposed structure. We explain the techniques and the
architecture of the implemented tool based on the proposed
meta-modeling structure for the framework.

Index Terms—Modeling, meta-modeling, modeling language,

formalism, tool, discrete-event systems.

I. INTRODUCTION
A model is an abstract representation of a system and a
meta-model is an abstract description of a model. The
abstraction helps to neglect the less important aspects of a
system, while concentrating on favorable parts that are
desired to a specific study. However, abstraction helps us to
study more phenomena and systems in a unified manner
while they may seem to be completely different at first.

Nowadays, there are many simulation and modeling tools
supporting different kinds of modeling languages. The
comprehensive list of the existing modeling tools is listed in
[1], which most of them are dedicated to support only one or
few modeling languages. Mostly, the models constructed by
these tools are not interoperable, since this matter has not
been the main concern of the tool developers. For example, a
Petri net model constructed in SHARPE tool [2] cannot be
used in CPN Tools [3] and vise-versa.

Usually, tool developers’ main concerns are how to
implement a tool for a new derived or proposed language and
little work is done on how to develop modeling tools that are
extensible enough to support different formalisms or solution
techniques. Besides, systems and models are growing in

Manuscript received July 21, 2009.
Hamid Mohammad Gholizadeh was with School of Computer

Engineering, Iran University of Science and Technology, Tehran, Iran
(corresponding author: phone: +98-21-77240540-50 (ext. 3325); fax:
+98-21-7724046; e-mail: hgholizadeh@comp.iust.ac.ir).

Mohammad Abdollahi Azgomi is with School of Computer Engineering,
Iran University of Science and Technology, Tehran, Iran. (e-mail:
azgomi@iust.ac.ir).

complexity and mostly a single formalism is not suitable for
modeling all parts of a complex system. Therefore, we need
an approach to construct models that are composed of several
sub-models of diverse language types. Sometimes, some
parts of a model are previously created and the issue is how to
compose them into a single model. But, this integration is
rarely supported by the existing modeling tools.

The above mentioned concerns are motivations for
exploiting meta-modeling in developing a new
multi-formalism framework. The meta-models usage makes
the framework flexible enough to support diverse modeling
languages in an integrated and unified manner. We have used
meta-modeling concepts in definition of formal modeling
languages or formalisms, model-classes and models in a new
modeling framework.

In this paper, we propose a meta-modeling approach for
definition of a multi-formalism modeling framework for Petri
nets [4] and related formal modeling languages that can be
represented using graphs, such as extensions of Petri nets.
The proposed framework and the related software tool
facilitate the inclusion of a wide range of formalisms in the
framework in a unified manner. We explain the
meta-modeling structure and discuss its implementation
using the extensible markup language (XML). We present
detailed definitions of some important parts of the framework
to help understanding the whole framework. The complete
formal definitions are already published in [5]. In this paper,
we use XML as a base language for all of the definition
regarded to meta-models structure, since some useful
features, such as XSD and XSLT, are available with it, which
suitably match to our needs in meta-model definition. There
are also many accessible programming components
implemented for XML documents’ manipulation, which is a
considerable factor in developing a tool for the framework.
We briefly discuss the architecture of the tool based on the
meta-models defined in this paper.

The rest of this paper is organized as follows. In section II,
a brief survey on related works is presented. In section III, the
proposed four layered meta-model structure and the related
definitions are presented. In section IV, some sample
formalisms are defined based on the proposed meta-modeling
structure. In section V, the architecture and techniques used
for implementing a tool based on the meta-modeling
structure are introduced. Finally, in section VI, some
concluding remarks are mentioned.

II. RELATED WORKS
Nowadays, models and meta-models are widely used in the

area of software engineering. There are many researches

A Meta-Model Based Approach for Definition of
a Multi-Formalism Modeling Framework

Hamid Mohammad Gholizadeh and Mohammad Abdollahi Azgomi

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010
1793-8201

88

working on the topics related to model-driven engineering
(MDE). The Meta-Object Facility standard [6] was
originated by OMG as a meta-modeling architecture for
definition of the unified modeling language (UML).

Several powerful modeling tools are available for
modeling with UML. Rational Rose Suite, PowerDesigner
and ArgoUML [7] are some examples of commercial and
non-commercial ones. However there are many modeling
and simulation tools, which most of them simply use de facto
application development techniques for creating a modeling
environment. UML is a standard supported by several tools
that has an XMI Language [8] interface for exchanging UML
models between different tools.

The problem in the scope of formal modeling languages is
that there is a variety of languages and a variety of tools
supporting them, while there is not a comprehensive
methodology and framework for composition of these
models in an integrated environment.

Also, some trends exist in introducing new techniques in
creating multi-model multi-formalism environment. Möbius
[9], AToM3 [10] and OsMoSys [11] are examples of
multi-formalism modeling tools that are found in the
literature. Among these works, OsMoSys is closer than the
others to our work in using meta-models. It is intended to
support multiple formalisms in a common framework. As the
best of our knowledge, this framework has not a complete
formal definition. In [10], the framework is defined in a
semi-formal manner and it is not possible to precisely define
new formalisms in the framework. OsMoSys model solution
approach is based on a new formal language definition,
named SPDL, which forces a modeler to learn its complex
syntax.

The Möbius modeling tool is the result of another try to
create a multi-formalism framework. Its idea is based on
defining an abstract function interface (AFI), which is a
common application programming interface (API) for adding
new formalisms to the framework and using its feature [12].
Möbius has respectful features in model composition and
solution techniques, but adding a new formalism to the
framework is not an easy task. Since its first version, which
natively supports stochastic activity networks (SANs) [13,
14], performance evaluation process algebra (PEPA) [15]
and MoDeST [16] are the two only formalisms, which have
been implemented in the framework.

The final tool we discuss is AToM3 [10]. It uses
meta-models to support modeling by different modeling
languages. However, it does not offer model solution. For
solving models, the modeler should transform them into
DEVS [17], and then can apply DEVS solution techniques
for evaluation of models. Hence, the modeler cannot use the
original solution techniques for models, which may be more
efficient and useful. Apart from the above mentioned tools,
other famous tools, such as CPN Tools [3], do not support
multiple formalisms and their extensibilities are mostly
limited. Some multi-formalism tools, such as SHARPE [2],
support a fixed set of models (ex. Markov models, queuing
models, stochastic Petri nets, etc.), and some built-in
steady-state or transient solvers and simulators.

III. THE PROPOSED META-MODEL STRUCTURE
In this section, we define a meta-model structure, which is

used as a base for the definition of our modeling framework.
The meta-model definition for the formalism should support
the vast variety of formalisms for discrete-event systems.
Therefore, when we abstract the formalisms structure like
Petri nets, SANs, CPNs [18] and etc., we reach to a simple
graph including some node and some edges. Fig. 1 illustrates
this concept. We separate the behavior and structure of the
formalism in the framework to add flexibilities into the
framework. The properties of each element of the formalism
distinguish it from the other formalisms. These properties are
annotated to each element in the meta-model definition. This
method makes the framework compatible with a wide range
of existing formalisms. Every formalism is defined based on
the meta-formalism definition. For example, for Petri nets,
the place and transition elements are defined as nodes and
arcs are defined as edges of a graph in the framework. The
graphical notations, captions and tokens are defined as
properties for each of the Petri net elements.

Figure1 Examples of mapping the formalism elements onto the graph
elements

A model is an instance of the related formalism. It includes
a number of elements with some valued properties. A model
in the framework is considered as a model-class and is
organized in separate layers in the meta-model structure. The
model-classes are not solvable models and could be
instantiated to make a solvable model.

The proposed meta-model structure is shown in Fig. 2. As
shown in this figure, there are four layers in the meta-model
structure of the framework that are as follows:
1) Meta-formalism layer, which is the top most abstract

layer,
2) Formalism layer, which is based on meta-formalism,
3) Model-class layer, which should be defined based on a

formalism that is defined in the formalism layer, and
4) Model layer, which includes the final solvable models.

Fig. 2, also depicts the analogies between the framework
meta-model structure and MOF [8] structure. It demonstrates
how these four layers are mapped onto the four layers that
exist in the MOF meta-model structure. For example,
solvable models in the framework’s meta-model structure are
similar to the object diagrams and the model-classes are also
similar to the user-defined models.

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010
1793-8201

89

MOF Metamodel StructureMeta-Model Structure of
the Framework

Mata-Formalism

Formalism

Model-Class

Concrete Model

Meta-Metamodel (MOF)

Metamodel (UML)

User Defined Model(Class-Diagram)

Object-Diagram

Figure2 The meta-model structure of the framework and its mapping onto the MOF meta-model structure

A. Meta-Model Structure Definitions
The first top layer in the meta-model structure is the most

abstract layer. In this layer, models are considered as a
collection of elements with some properties. The Element
Type can be of type Node, Edge or Model. There are some
properties for every element. The type of these properties
may be ordinary, enumeration, class, object, function or a set
of them. Class types are data structures defined inside the
formalism definition. If we define a property as an object
type, we mean that this property refers to a class type that its
definition is postponed to model-class layer. Simply, we can
consider it like pointers in programming languages. Object
type feature in the framework definition is useful in
implementing some formalisms like CPNs [18] and CSANs
[19], where the modeler can define a new structure inside the
model itself and then assign the type to the coloured places.

Now, we present two definitions:
Definition 1. An element of a formalism in the framework

is consisted of the following properties:
1) A unique name of the element.
2) A graphical representation of the element (provided to

the related tool as a file in a standard graphical format).
3) A type of the element.

4) The name of the related formalism.
5) A finite set of properties of the element.
6) An OCL expression defining the element's constraints.

In some formalism, such as SANs, CPNs and etc., there are
some functions in the body of formalism's definitions.
Definition of these functions as a property of type string is
not precise. To clarify the subject, suppose the input function
of input gates in SANs, which can only change the marking
of connected places. It is required to have a way to express
these constraints in formalism definitions in the framework.
We consider such a function as a property of type
FUNCTION and define its constraints using the object
constraint language (OCL) [20]. The OCL expression in the
framework is written based on components and relationships
depicted as in Fig. 3.

After defining an element in the framework, we are ready
to define the formalism or formal language definition, which
is a collection of elements:

1..1

0..*

0..1
1..*

1..*
End

1..1

1..*
Start

1..1Node

Formalism

Edge

Element Properties

Figure3 Formalism meta-model illustrated in as a class diagram

Definition 2. A formalism in the meta-modeling structure
is consisted of the following properties:
1) A unique name for the formalism.
2) A graphical representative of the formalism (provided to

the related tool as a file in a standard graphical format).
3) A finite set of properties of the formalism.
4) A set of formalism’s elements as in Definition 1.
5) References to other defined formalisms in the context,

which we may want to use their elements as an ancestor
in current formalism definition.

6) A collection of data structures defined inside the
formalism.

Considering the above definition, we can summarize a
formalism definition in the framework in a UML-like class
diagram as shown in Fig. 3. In this figure, it is clearly shown
that the formalism can also contain other formalisms. A
formalism in the proposed framework is a collection of
elements with some properties for each one.

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010
1793-8201

90

A. Model-Class Definitions
The model-class layer is a layer just below the formalism

layer in the meta-modeling structure. It is the models
constructed based on previously defined formalisms in the
framework. Now, we define this layer, but like before we
need to firstly present some preliminary definitions. We
define each element of model-class and next present a
definition of the model-class itself.

Definition 3. An element of a model-class in the
meta-modeling structure is consisted of the following
properties:
1) The name of the model-class of the element.
2) The type of element. Only those types, which are already

defined in the corresponding formalism of the
model-class of the element, are permitted.

3) The properties of the element. Each property have the
following information:

• The name of the property.
• The value of the property which should be

compatible with the type of property defined in
formalism definition.

• The property visibility in model-class, which may be
private or public.

• The access modifier, which may be read-only or
read-write.

4) The visibility of the element.
5) The access modifier of the element.

Now we continue the meta-modeling structure definitions
by defining model-class:

Definition 4. A model-class is consisted of the following
properties:
1) A name for the model-class.
2) A reference to the corresponding formalism of the

model-class.
3) A set of elements, each one is defined as in Definition 3.
4) A set of model-class properties, each have the following

information:
• The name of the property.
• The value of the property, which should be

compatible with the type of property as defined in the
formalism definition.

• The visibility of property, which may be private or
public.

• The access modifier, which may be read-only or
read-write.

5) A data structure.
According to the above definitions, it is clear that the

model-class itself may have some properties just like its
elements. It means that the extra information can easily be
annotated to the elements of the model-class or the
model-class itself.

At the time of constructing a model in the framework, the
model is considered as a model-class and not a concrete
model. An instantiated model-class makes a solvable model
in the lower layer in the meta-modeling structure. This
approach enhances the reusability of models in the
framework. A model-class can be instantiated with different
values while it is being used as a standalone concrete model
or while it is being used as a sub-model in a composed model.
At the former situation, the values may be provided by the

user and at the latter situation, it may be provided by some
elements in the container model. The properties of a
model-class and its elements accept modifiers. These
modifiers are as follows:
• public: The element can be reached inside and outside of

the model.
• private: The element can only be accessed inside the model.
• readonly: The only reading the value of element is

permitted outside of the model.
• readwrite: Both reading and modifying the element is

permitted outside of the model.
A property can accept private or public and readonly or

readwrite. The readonly and readwrite modifiers are
meaningful when the property is public. We should mention
that all of these modifiers are considered in solution stage,
because it does not make any sense reading and writing a
value when we are not in the solution stage. Since varieties of
solvers may be used during the model solution stage by the
solution manager of the framework, these modifiers will be
quite useful. The solution manager is not discussed in this
paper.

IV. EXAMPLE OF FORMALISMS IMPLEMENTED IN THE
FRAMEWORK

Fig. 4 depicts how Petri net is defined in the framework
based on meta-modeling structure. Each element has some
properties for defining its position and image inside the
model, including x, y, width, height and image, respectively.
We have not shown these properties in Fig. 4 for conciseness.
The OCL expression of the arc element imposes a limitation.
The limitation is that it can only connect two elements of type
place and transition together. The dollar prefix for the name
in the definition means that it is a previously defined type in
the context of the framework. All the elements in the
framework are derived from the element type (as shown in
Fig. 3). Therefore, start and end properties for the arc
element are of type $Element in definition of Petri nets.
 <?xml version="1.0" encoding="UTF-8"?>
 <formalism image="petrinet.svg" name="Petrinet">
 <p name="eid" type="int"/>
 ……
 <p name="image" type="String"/>
 <element image="place.svg" name="Place"
 type="Node">
 <p name="eid" type="int"/>
 …
 <p name="token" type="int"/>
 </element>
 <element image="transition.svg"
 name="Transition" type="Node">
 …..
 </element>
 <element image="Arc.svg" name="Arc" type="Edge">
 <p name="eid" type="int"/>
 <p name="start" type="$Element"/>
 <p name="end" type="$Element"/>
 …….
 <ocl>
 context $Arc inv:(self.start=$Place
 implies self.end=$Transition) and
 (self.start=$Transition implies
 self.end=$Place)
 </ocl>
 </element>
</formalism>

Figure4 Definition of Petri nets formalism based on the meta-modeling
structure

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010
1793-8201

91

According to the definition of Petri nets, we define SANs
to show the flexibility of the meta-modeling structure and its
features in the formalism definitions. This definition is based
on the formal definition in [13]. As shown in Fig. 5, the timed
activity or Timed_Activity uses inheritance to extend a
previously defined element in the framework. A previously
defined formalism can be included by using ERef keyword in
the current definition. The OCL expression for the rate,
rateFun and reactivation properties of the timed activity
elements imposes some limitations on the function. It
indicates that it cannot change the state of the model after
execution of the gate functions related to the activity. Also,
there is similar OCL expression with a slight difference for
the instantaneous activity or IActivity. The gate functions for

input and output gates can only change the state according to
formal definitions of SANs [14].

A formalism can include some other formalisms. In Fig. 6,
definition of HSANs in the framework is shown, which is
based on the definition of SANs. All the elements of HSANs
formalism are just like SANs and only a sub-model definition
is added. Furthermore, there is a new kind of arcs named
SubSANArc, which extends Arc element and connects SAN
sub-models to the container model elements. This kind of arc
makes it possible to construct hierarchical models. The
sub-model element is defined of type Model that is of type
Node and Element in a hierarchical form. Also, it contains a
property of type Objects, which means that it can contain any
kind of data structures as a property. We have only shown the

<?xml version="1.0"?>
<formalism image="SAN.svg" name="SAN" ERef="$Petrinet" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="SANSchema.xsd">
 <p name="eid" type="int"/>
 <p name="x" type="int"/>
 <p name="y" type="int"/>
 <p name="width" type="int"/>
 <p name="height" type="int"/>
 <p name="caption" type="String"/>
 <p name="image" type="String"/>
 <element extends="$Petrinet.$Place" image="place.svg" name="Place" type="Node">
 </element>
 <element extends="$Petrinet.$Transition" image="Timed_Activity.svg"
 name="Timed_Activity" type="Node">
 <p name="rate" type="@Type1"/>
 <p name=" reactivation" type="@Type2"/>
 <p name="rateFun" type="@Type3"/>
 </element>
 <element extends="$Petrinet.$Transition" image="Iactivity.svg" name="Iactivity" type="Node">
 <p name="probability" type="@Type4"/>
 </element>
 <element extends="$Petrinet.$Transition" image="IGate.svg" name="IGate" type="Node">
 <p name="predicate" type="@Type5"/>
 <p name="fun" type="@Type6"/>
 </element>
 <element extends="$Petrinet.$Transition" image="OGate.svg" name="OGate" type="Node">
 <p name="fun" type="@Type7"/>
 </element>
 <element extends="$Petrinet.$Arc" image="Arc.svg" name="Arc" type="Edge">
 <p name="func" type="@Type2"/>
 <ocl>
 context $Arc inv:let st=self.start,en=self.end in
 st=$Place implies en=$IGate) and
 st=$IGate implies (en=$Iactivity or en=$Timed_Activity) and
 ((st=$Iactivity or en=$Timed_Activity) implies en=$OGate) and (st=$OGate implies en=$Place)
 </ocl>
 </element>
 <type name="Type1" type="Function">
 <p name="input" type="null"/>
 <p name="output" type="float"/>
 <ocl>
 context $Timed_transition post:self.$SPN->forAll($elements=$elements@pre)
 </ocl> </type>
 <type name="Type2" type="Function">
 <p name="input" type="null"/>
 <p name="output" type="boolean"/>
 <ocl>
 context $Timed_Activity post: self.$SPN->forAll(elements=elements@pre)
 </ocl>
 </type>
 <type name="Type3" type="Function">
 <p name="input" type="null"/>
 <p name="output" type="enum(Exponentioal|Bernoulli|Poisson|Geometric)"/>
 <ocl>
 context $Timed_Activity post: self.$SPN->forAll(elements=elements@pre)
 </ocl>
 </type>
 <type name="Type4" type="Function">
 <p name="input" type="null"/>
 <p name="output" type="boolean"/>
 <ocl>
 context $Timed_Activity post: self.$SPN->forAll($elements=$elements@pre)
 </ocl>
 </type>
 <type name="Type5" type="Function">
 <p name="input" type="null"/>
 <p name="output" type="boolean"/>
 <ocl>
 context $IGate post: self.$SPN->forAll($elements=$elements@pre)
 </ocl>
 </type>
 <type name="Type6" type="Function">
 <p name="input" type="null"/>
 <p name="output" type="null"/>

Includes Petri nets
definition in the context

Place extends the place
element of Petri nets

"@Type1, 2,…, 7 are defined
later in the definition

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010
1793-8201

92

 <ocl>
 context $IGate post: let adjacentE:Set($element)=self.$SPN.$elements->select(e:$element|e.end=self),
 allToken:Set(int)=self.$SPN.$elements->collect($Place.token) in
 allToken->exclude(adjacentE->collect(P.token))=
 allToken->exclude(adjacentE->collect(P.token))@pre
 </ocl>
 </type>
 <type name="Type7" type="Function">
 <p name="input" type="null"/>
 <p name="output" type="null"/>
 <ocl>
 context $OGate post: let
 adjacentE:Set($element)=self.$SPN.$elements->select(e:$element|e.end=self),
 allToken:Set(int)=self.$SPN.$elements->collect($Place.token)in
 allToken->exclude(adjacentE->collect(P.token))= allToken->exclude(adjacentE->collect(P.token))@pre
 </ocl>
 </type>
</formalism>

Figure5 Definition of SAN formalism based on the meta-modeling structure and the definition of Petri nets

important parts in HSAN definition and neglected the
transitions, gates, places and corresponding arcs definition
for brevity.

A. A Sample Model-Class in the Meta-Modeling Structure
Fig. 7(a) is the model-class of a well-known

producer/consumer system modeled in Petri nets. It is based
on Petri nets definition in Fig. 4 .The token property of place
P1 is defined as a parameter and its value is provided in
initialization stage by the user or in solution stage by other
connected models. The token property of place P2 is defined
public and read-only, which means that its value can be
reached outside of these models, but can be modified only by
the model solver, not others. If not explicitly specified, the
default values for the visibility and access modifiers are
private and readonly, respectively. The graphical
representative of this model is depicted in Fig. 7(b).

V. ARCHITECTURE AND TECHNIQUES OF A TOOL FOR THE
FRAMEWORK

Any framework needs a software tool to make it possible
to define formalisms, construct the models and utilize the
solution or simulation techniques available in the framework.
We have implemented a modeling tool based on the proposed
meta-modeling structure of the framework. XML is an
infrastructure for storing all kinds of data, including the
formalism definition, model-class definition, transient data
between solvers and solver manager and so on. Using XML
simplifies importing models that are not defined exclusively
for the framework. For example by implementing a simple
extensible stylesheet language transformation (XSLT)
document, the models compatible with the Petri net markup
language (PNML) [21] can easily be imported to the
framework. However, we have used the scalable vector
graphics (SVG), which is an XML-based image format for
representing the images inside the tool.

We have used Java programming language and JavaEE
[22] features in implementation of the tool. The architecture
of the tool's packages is shown in Fig. 8. According to this
figure, the components of the tool are organized in three
packages: (1) framework package, (2) formalism package
and (3) editor package. The framework package includes all
of the framework related modules, which have not any
graphical representative. It mostly contains some controlling
classes. For example when a user defines a new framework
using a wizard inside the framework (as in Fig. 9), the editor

uses the classbuild package’s components to construct the
formalism related modules and compiles and deploys them
on-the-fly. Using Java Reflection API makes it possible not
to recompile the entire framework while the new formalism is
defined.

The formalism package includes the modules related to the
defined formalism in the framework. This package includes
some base classes for the whole formalisms as well as
on-the-fly created packages and classes produced by the
framework packages, as mentioned earlier. According to
each formalism definition, theses classes can differ (i.e. they
may contain different properties and methods). The last
package is the editor package. This package includes all the
modules related to the graphical representation of the tool.
For example the classes drawing the toolbox, property box
and main window, exist in this package. They manipulate the
dynamic change of view while the user switches between
models. They also completely handle the model creation and
design and use the formalism and the framework packages
for completing their functions. Finally, this package handles
all the interaction between the tool and the user as a modeler
or formalism definer.

The communications between the three main packages are
based on the model-view-controller (MVC) pattern [23]. The
mapping between these patterns’ components and the tool
modules are depicted in Fig. 10. The MVC pattern provides
flexibility in the tool construction and its functionality. When
the user changes the graphical representation of the model,
the change is reflected to the corresponding stored XML
document according to the pattern mechanism. The controller
imposes rules and constraints of the formalism definition
during the formalism definition wizard and of model
construction on models construction time, according to the
meta-modeling defined structure. The formalism should
conform to the meta-formalism layer and the model-classes
should conform to formalism in the tool, respectively. All of
these are controlled by the modules inside the framework
package.

VI. CONCLUSION
In this paper, we introduced a meta-modeling approach

used in definition of a new multi-formalism modeling
framework. The proposed meta-modeling structure is
consisted of four abstract layers and constructs the
fundamental structure of the framework. It provides the

93

<?xml version="1.0"?>
<formalism image="HSAN.svg" name="HSAN"
 ERef="$SAN,$Petrinet" >
 ……
 <element extends="$SAN.$Place"

image="place.svg" name="Place" type="Node">
</element>
 ….
<element image="SubSAN.svg" name="SubSAN"

ERef="$SAN" type="Model">
 <p name="data" type="Object"/>
</element>
<element extends="$Petrinet.$Arc"
 image="SubSANArc.svg" name="SubSANArc"
 type="Edge">
 <p name="relFun" type="@Type1"/>
 </element>
 <type name="Type1" type="Function">
 <p name="input" type="null"/>
 <p name="output" type="null"/>
 <ocl>
 context $SubSANArc inv: let

 st:$element=self.start,en:
$element=self.end in
(st=$Place implies en=$SubSAN)
and (st=$SubSAN implies en=$Place)

</ocl>
</type>

</formalism>

Figure6 Definition of HSAN formalism based on the meta-modeling
structure and the definition of SANs

framework with the flexibility in defining diverse formalisms.
Therefore, the framework is adaptable by a large number of
formalisms to use their features.
The OCL expressions are exploited in the meta-modeling
structure to define formalisms efficiently and precisely. We
illustrated the applicability of the meta-modeling structure by
defining some sample formalisms using the features of the
framework. The innovative approach in defining a
framework for diverse formalisms provides an infrastructure
for defining a tool for constructing atomic or composed
models. The tool uses XML and its derivations like SVG as
data storage format and uses the MVC pattern as its core

interaction mechanism.
In the future, we intent to continue definition of model

composition approach inside the framework based on the
proposed meta-modeling structure. The solution strategy
should also be completed in the future. Furthermore, we
intent to develop some interchange formats for adapting
model solvers or simulators inside the proposed framework.
<?xml version="1.0" encoding="UTF-8"?>
<model formalism="Petrinet">
 <height>500</height>
 <x>0</x>
 <caption>untitled01</caption>
 <eid>1</eid>
 <width>600</width>
 
 <y>0</y>
 <element type="Place">
 <x>130</x>
 <height>50</height>
 <eid>8</eid>
 <caption>P1</caption>
 <token>$Param</token>
 <width>50</width>
 
 <y>99</y>
 </element>
 <element type="Place">
 <x>271</x>
 <height>50</height>
 <eid>9</eid>
 <caption>P2</caption>
 <token visibility="public"
 access="readonly">0

</token>
<width>50</width>

 
 <y>89</y>

</element>
...
</model>

(a)

(b)

Figure7 A sample model-class based on meta-modeling structure: (a) Producer/consumer model-class XML file, (b) The graphical representation of the
producer/consumer model

HSANs models may
contain some

sub-models of type

Token is defined as a
parameter for P1 element

Place property is defined
public and read-only

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010
1793-8201

94

framework
control

(framework)
classbuild
(control)

formalism

cpn
(formalism

petrinet
(formalism

sAN
(formalism

editor

event
(editor)

formalism
(editor)

handlers
(editor)

prop
(editor)

toolbox
(editor)

Figure8 The framework tool’s packages structure

Figure9 Formalism definition wizard inside the framework tool

Model

View

Controller

Model Folder

formalism
petrinetcpn

san

Model1.mdl Model2.mdl
Model3.mdl

editor

framework

 MVC pattern Components The Tool packages

Figure10 Mapping between the tool packages and the MVC pattern
components

REFERENCES
[1] "Petri Nets Tool Database" University of Hamburg, Available:

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html.
[2] R. A. Sahner, et al., An Example-Based Approach Using the SHARPE

Software Package, Performance and Reliability Analysis of Computer
Systems, Kluwer Academic Publisher, 1995.

[3] "CPN Tools: Computer Tool for CP-nets," University of Aarhus,
Available: http://www.daimi.au.dk/CPNtools.

[4] J. L. Peterson, Petri Net Theory and the Modeling of Systems,
Prentice-Hall, 1981.

[5] H. Mohammad Gholizadeh and M. Abdollahi Azgomi, "An
Object-Oriented Modeling Framework for Petri Nets and Related
Models," in Proc. of the 7th ACS/IEEE International Conference on
Computer Systems and Applications (AICCSA'09), Rabat, Morocco,
May 10-13, IEEE CS Press, 2009, pp. 546-549.

[6] "Meta Object Facility (MOF) Core Specification," OMG Available
Specification, Version 2.0, 2006.

[7] "List of Unified Modeling Language Tools," Available:
http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_to
ols.

[8] "MOF 2.0/XMI Mapping," OMG Available Specification, Version
2.1.1, 2007.

[9] J. Peccoud, et al., "Möbius: An Integrated Discrete-Event Modeling
Environment" Bioinformatics, Vol. 23, No. 24, 2007, pp. 3412-3414.

[10] J. de Lara and H. L. Vangheluwe, "AToM3: A Tool for
Multi-Formalism and Metamodelling," in Proc. of the European Joint
Conference on Theory and Practice of Software (ETAPS'02),
Springer-Verlag, 2002.

[11] V. Vittorini, et al., "The OsMoSys Approach to Multi-formalism
Modeling of Systems," Software and Systems Modeling (SoSyM), Vol.
3, No. 1, Springer, 2004, pp. 68-81.

[12] "Möbuis Manual," PERFORM Group, University of Illinois at Urbana,
Champaign, 2007.

[13] A. Movaghar, "Stochastic Activity Networks: A New Definition and
Some Properties," Scientia Iranica, Vol. 8, No. 4, 2001, pp. 303-311.

[14] W. H. Sanders and J. F. Meyer, Stochastic Activity Networks: Formal
Definitions and Concepts, Lecture Notes in Computer Science, Vol.
2090, Springer-Verlag, 2001, pp. 315-343.

[15] G. Clark and W. H. Sanders, "Implementing a Stochastic Process
Algebra within the Möbius Modeling Framework," Lecture Notes in
Computer Science, Vol. 2165, 2001, pp.200-215.

[16] H. Bohnenkamp, H. Hermanns, J. P. Katoen and R. Klaren, "The
MoDeST Modeling Tool and its implementation," in Proc. of the
Computer Performance Evaluation Modelling Techniques and Tools
(TOOLS'03), Lecture Notes in Computer Science, Vol. 2794,
Springer-Verlag, 2003, pp. 116-133.

[17] S. Palaniappan, A. Sawheny, H. S. Sarjoughian, "Application of DEVS
Framework in Construction Simulation," in Proc. of Winter Simulation
Conference, Monterey, CA, 2006.

[18] K. Jensen, "Coloured Petri Nets: A High Level Language for System
Design and Analysis," Lecture Notes in Computer Science, Vol. 483
Springer-Verlag, 1990, pp. 342-416.

[19] M. Abdollahi Azgomi and A. Movaghar, "Towards an Object-Oriented
Extension for Stochastic Activity Networks," in Proc. of the 10th
Workshop on Algorithms and Tools for Petri Nets (AWPN'03),
Eichstaett, Germany, Sept. 26-27, 2003, pp. 144-155.

[20] "OCL 2.0 Specification Version 2.0," The Object Management Group,
2005.

[21] E. Kindler, "High-level Petri Nets–Transfer Format," Working Draft of
the International Standard ISO/IEC 15909, Part 2, University of
Paderborn, 2005.

[22] "Java EE at a Glance," Available: http://java.sun.com/javaee/.

95

[23] S. Burbeck, Applications Programming in Smalltalk-80 (TM): How to
Use Model-View-Controller, 1992.

Hamid Mohammad Gholizadeh received the B.Sc. degree in computer
engineering (software) from Azad University of Tabriz (2004) and M.Sc.
degree in information technology (design and development of software) from
Iran University of Science and Technology (June 2008). Title of his M.Sc.
thesis was "A New Framework Based on Petri Nets and Related Formalisms
for Modeling and Analysis of Systems," which has been done under
supervision of Dr. Abdollahi Azgomi.
 Mr. Gholizadeh’s professional activities include designing and developing
enterprise applications based on Java EE framework and his research
interests are in the area of software engineering, formal modeling and web
technologies. He has published several papers in International conferences.
Mohammad Abdollahi Azgomi received the B.Sc., M.Sc. and Ph.D.
degrees in computer engineering (software) (1991, 1996 and 2005,
respectively) from Sharif University of Technology, Tehran, Iran. His
research interests include performance and dependability modelling with
high-level modelling formalisms such as stochastic Petri nets, tools for
modelling and evaluation, verification and validation, object-oriented
modelling, web services, network and web security. He has published several
papers in International journals and conferences.
 Dr. Abdollahi Azgomi is currently an assistant professor at the school of
computer engineering, Iran University of Science and Technology, Tehran,
Iran.

