
International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010 

1793-8201 

52 

 

Abstract—In this paper, RSA type of Public key cryptosystem 

is designed based on Solovay-Stressen test known as S-RSA 

Cryptosytem. The efficiency of the S-RSA cryptosystem is nearly 

twice of the efficiency   of basic RSA cryptosystem which is 

proved mathematically and is shown graphically with an 

illustration. Also, the Performance of this system is measured in 

terms of    big theta   notation for best approximation. This paper 

also describes and measures the capability of four basic attacks 

on S-RSA cryptosystem. 

 

Key words—Knapsack problem, Legendre symbol, 

congruence, in congruence, Factorization of numbers, Euler 

theorem, Solovay-Strassen test. 

I. INTRODUCTION 

The concept of public key cryptosystem is a recent one: it was 

invented by Diffie, Hellman, and Merkle in 1976[1].In public 

key  cryptosystems, the encryption key is different from 

decryption key, and further , it is infeasible to obtain the 

decryption key from the encryption key. Usually, the 

encryption key is made public. For this reason, the encryption 

key is also known as the public key and the decryption key is 

known as the private key. There are only a few public key 

cryptosystems that are both efficient and believed to be secure 

at present. The most popular among these is RSA 

cryptosystem [4] .It is the first practical realization of a Public 

key cryptosystem was accomplished by Rivest, Shamir and 

Adleman in 1978. The first public-key algorithm was 

proposed based on a hard-to-solve problem (known as 

knapsack problem) and it became insecure. In fact, there have 

been many systems proposed based on the same problem (such 

systems are called Knapsack ciphers) but nearly all of them 

have been shown to be insecure.  

The additional hurdle in the design of a public-key system 

is that the decryption key should be difficult to obtain from the 

encryption key. At the same time, the encryption key should be 

easily obtainable from the decryption key. The Latter 
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condition is needed for generating a new pair of keys easily 

(simple choose a random decryption key and compute the 

corresponding encryption key). These two conditions are 

naturally termed as functions .They are easy to compute but 

hard to inverse- the decryption key. Designing of an efficient 

and secure Public key cryptosystem is depended on a number 

of hard and complex mathematical problems in Algebraic 

Number theory. Most of these problems are based on the 

exponential and factorization of Numbers. Almost all of the 

public key cryptosystems of    encryption space, key space and 

decryption space are represented by a multiplicative group 
*/( )Z n  (the set of positive integers which are less than n  

and relatively prime to n  ). The RSA cryptosystem   also 

based on the same space. The elements in this space satisfy 

only a single condition, called as relatively prime. According 

to the elementary set theory,   the method to find an element, 

which is either a member of the given set or not followed by a 

single condition, is less complex than a set followed by more 

than one independent condition.  Therefore, any public key   

cryptosystem based on any space in which the elements satisfy 

the more than one independent condition is high complex than 

that of the public key cryptosystem based on any space with 

only single condition.  

Keeping it in view, we will design a high efficient Public 

key cryptosystem known as S-RSA cryptosystem with the 

space ( )E n  in which the elements satisfy two conditions:  

solovay-strassen test condition and relatively prime condition. 

There are different approaches to measure the efficiency of the 

Algorithm in which best approach is ―One possible approach 

is to count the number of times each of the algorithm‘s 

operations is executed‖.  Most of the researchers measure the 

efficiency of the Algorithm in this approach. Generally, this 

efficency equal to a polynomial in some variable ‗ n ‘. The 

big-O notation method which gives only the at most value of 

the efficiency but the big-   notation which gives both at 

least as well as at most efficiency value. So, we measure the 

efficiency interms of big-   notation method. 

The rest of the paper is organized as follows: In section 2: 

Explanation about the basic mathematical definitions, 

theorems with out proof and algorithms which are needed to 

our contribution. In section 3: Designing of   the S-RSA 

cryptosystem, measuring the performance of the algorithm in 

terms of big-   notation and the capability of the four 

important basic attacks are explained and measured. In section 

4: theoretical and graphical comparison of the efficiency of the 

RSA and S-RSA cryptosystems and finally, in section 5, 

Solovay-Strassen test in a RSA  Pubic key 

Cryptosystem 
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summary and conclusion are given. 

II. THE BASIC CONCEPTS WHICH ARE NEEDED TO OUR 

CONTRIBUTION 

Here some of the basic concepts are explained. For more 

details we refer [4],[5],[6],[7],[8]. 

 

For all 1n   with prime factorization 
1

ir

i in p


 . 

We define the following functions: 

( )p n  is the maximal power of p in n, 

 i.e., 
( ) { : }i

p n max i p divides n 
 

( )n
 is the number of positive integer 

n
 relatively 

prime to n, i.e. ( ) { : gcd( , ) 1}n x x nand x n    . 

( )n  is the number of primes p n . 

A. The Legendre symbol   

For a prime p  and an integer a  ,  

 The Legendre symbol ( )a
p  is defined by 

                 

2

0 if gcd(a,p)>1
a

 := 1 if a x (mod ) int
p

1

p for some eger x

otherwise


  

 
  

 The Legendre symbol can be computed by (1), which was 

discovered by Euler. This is defined in the form. 

( 1) / 2 (mod )pa
a p

p

 
 

 
         (1) 

B. Definition 

 Two integers a  and b  leave same  remainders  when 

dividing by m ,we say that a  is congruent to b  modulo 

m ,and write   (mod )a b m .If the remainders are 

different, we say that a  and b  are incongruent  modulo 

m , and write (mod )a b m . 

C. Definition 

 Let  f  and g  be two functions from the set of integers or 

the set of real numbers to the set of real numbers. We say that 

( )f x  is  ( )O g x  if there are constants  c  and k such  

that ( ) ( )f x cg x  Whenever x k .This is read as 

― ( )f x  is  big-oh of ( )g x ‖.The constants c  and k  in the 

definition of big- O  notation are called witness to the 

relationship ( )f x  is  ( )O g x  

D. Note  

(i) if c  and k  are one pair of witnesses, then any pair  
1c  

and  
1k , where 

1c c  and 
1k k , is also a pair of 

witnesses, since  

1( ) ( ) ( )f x cg x c g x   whenever 
1x k k  . 

(ii)  when there is one pair of witnesses to the relationship 

( )f x  is  ( )O g x , there are infinitely many pairs of 

witnesses. 

E. Definition  

Let  
f

 and 
g

 be two functions from the set of integers or 

the set of real  numbers to the set of real numbers. We say that 

( )f x  is  ( )g x  if there are constants  c  and k  such 

that    ( ) ( )f x cg x  Whenever x k .This is read as 

― ( )f x  is  big-omega of ( )g x ‖. 

F. Definition  

Let  f  and g  be two functions from the set of integers or 

the set of real  numbers to the set of real numbers. We say that 

( )f x  is  ( )g x  if  ( )f x  is  ( )O g x and ( )f x  is 

 ( )g x . When ( )f x  is  ( )g x  ,we say that ― ( )f x  

is big-Theta of ( )g x ‖. 

G. Theorem  

* 1( ) { /( ) : 1( mod ) }nF n b Z n b n    is a 

subgroup of 
*/( )Z n . 

H. The solovay- strassen test 

 If n  is an odd prime and b  is relatively prime to n  then            

 

2

( 1) / 2 1(mod ) 1(mod )n nb b
b n implies b n

n n

    
     
   

… (2) 

The Solovay-strassen test is based on this equation. 

 

Solovay Strassen test : 

Input: Two integers n and b  such that gcd( , ) 1n b   

Step 1: If 
( 1) / 2 (mod )n b

b n
n

  
  
 

 then return ― n  is 

composite‖ else return    ― n  is a probable Prime ‖.  

 

 Let ( )E n  denote the set of bases satisfying equation (2) 

 i.e.,
* ( 1) / 2( ) { /( ) : (mod )}n b

E n b Z n b n
n

  
    

 
 

 ( 1) / 2 (mod )n b
b n

n

  
  
 

  

2

1 (mod )n b
b n

n

  
  
 

  

I. Corollary 

1
# ( ) ( ) .

2
E n n for all odd composite n  

J. Theorem  

Let 1n   be odd. Then 
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/

1
# ( ) ( ) gcd( , 1)

2p n

n
E n n p


   Where                           

2 2

2 2

2 ( 1) ( 1) /

1
( ) / ( 1) ( 1)& ( )

2

1

p

if p n p n

n if p n with p n n odd

other wise

 

   

   



    



 

K. Algorithms 

Analysis of algorithm means an investigation of an 

algorithm‘s efficiency with respect to two resources: running 

time and memory space. Time efficiency indicates how fast an 

algorithm in question runs. Space efficiency deals with the 

extra space the algorithm requires. An algorithm‘s efficiency 

as a function of some parameter n  indicating the algorithm‘s 

input size. The parameter will be the size (length) of the input. 

Computer scientists prefer measuring size by the number  b  

of bits in the 'n s  binary representation:
2log 1b n    . 

This metric usually gives a better idea about efficiency of 

algorithms. One possible approach is to count the number of 

times each of the algorithm‘s operations is executed. This 

approach is both executively difficult and, as we shall see, 

usually unnecessary. The thing to do is to identify the most 

important operation of the algorithm, called the basic 

operation, the operation contributing the most to the total 

running time, and compute the number of times the basic 

operation is executed. Let   0 pC  be the time of execution of 

an algorithm‘s basic operation on a particular computer and let  

( )C n  be the number of times this operation needs to be 

executed for this algorithm. Then we can estimate the running 

time ( )T n of a program implementing this algorithm on that 

computer by the formula 0( ) ( )pT n C C n . The count 

( )C n  does not contain any information about operation that 

is not basic, and, in fact, the count itself is often computes 

only approximately. The efficiency analysis framework 

ignores multiplicative constants and concentrates on the 

count‘s order of growth to within a constant multiple for 

large-size inputs. 

III. S-RSA PUBLIC KEY CRYPTOSYSTEM  

A. The designing of S-RSA Pubic key Cryptosystem 

The designing of S-RSA system is based on three aspects: 

key generation, encryption and decryption like basic RSA 

system [2],[3]. We describe these aspects as follows and then 

discuss the performance of the system and analyze its security. 

Key generation:  

The Key generation algorithm is depended on the spaces: 

encryption space, Key space and decryption space. In RSA 

system ,all the spaces: encryption space, Key space and 

decryption space are equal to 
*/( )Z n  but in this system 

encryption space and decryption space are equal to 
*/( )Z n  

like RSA and  Key space is a subset ( )E n  of 
*/( )Z n  which 

satisfies the solovay-strassen conditions. 

Step 1: The Key generation algorithm takes a security 

parameter n as input. 

Step 2: The algorithm generates two ( / 2)n  bit primes, 

p and  q ,and sets n pq . 

Step 3: Next, it picks some small value e that is relatively 

prime to ( ) ( 1)( 1)n p q     , 

1

2 (mod )

n
e

e n
n

 
 
   

  
 

. 

The value e  is called the encryption exponent. The public key 

consists of the two integers  ,n e . 

Step 4: The private key is an integer d   such that 

1

2 (mod )

n
d

d n
n

 
 
   

  
 

 and . 1 (mod ( ))e d n . 

Step 5: Typically, one sends the public key  ,n e  to a 

Certificate Authority (CA) to obtain a certificate for it. 

Encryption: 

Step 1: To encrypt a message X  using public key ,n e , 

one first assign X  to an integer M  in 

* ( 1) / 2( ) { /( ) : (mod )}n b
E n b Z n b n

n

  
    

 
.  

i.e.,  , 1M n   and 

1

2 (mod )

n
M

M n
n

 
 
   

  
 

 

Step 2: The ciphertext is then computed as 

( mod )eC M n  

Decryption: 

Step 1: To decrypt a ciphertext C  the receiver uses its 

private key d to compute a 'e th  root of C  by 

computing ( mod )dM C n . Science both d  and n  

are large numbers (each approximately n  bits long) this is a 

lengthy computation for the receiver.  

Step 2: The formatting operation from the encryption 

algorithm is then reversed to obtain the original bit-string X  

fromM . 

B. Performance 

In this section, we measure the efficiency of the Algorithms 

in terms of big-  notation. 

The time efficiency of the Key generation is  

( ) ( )opT n C C n  where 0 pC  is the unit time for the basic 

operation and   the number of basic operations in this 

algorithm is  
( ) ( ( ) 1)

( )
2

n n
C n

 

 

   or 

2( ) ( ( ))C n n  . 

The time efficiency of the encryption algorithm is 
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( ) ( )opT e C C e  where 0 pC  is the unit time for the basic 

operation and the number of basic operations in this algorithm 

is  ( ) 2( 1)C e e     or ( ) ( )C e e . 

The time efficiency of the decryption algorithm is 

( ) ( )opT d C C d  where 0 pC  is the unit time for the basic 

operation and the number of basic operations in this algorithm 

is ( ) 2( 1)C d d   or ( ) ( )C d d  

The time efficiency of this cryptosystem is  

0( , , ) ( , , )pT n e d C C n e d  where 0 pC  is the unit time for 

the basic operation and the number of basic operations is 

   
( ) ( ( ) 1)

( , , ) 2( 1) 2( 1)
2

n n
C n e d e d

  
      
 

 

                                    Or  

 2
( , , ) ( ( ) , ( ) , ( )C n e d Max n e d     

Note that if ( )n n e d    then  

2( , , ) ( )C n e d n  

C. Security 

1) Cipher text  only attack: 

If the public key ( , )e N is known then the attacker  decrypt    

the  cipher text as follows: Let ,i jC C for i j be the any 

two cipher text letters(values). Suppose   e

i jA C C   . 

Now  consider  

 
1/

1/

1 2

e
e eA C C 

1/
1/

e
e

j

i

A
C

C
 

1/
1/

e
e

j j

i

A
M C

C
    

Similarly we obtain

1/
1/

e
e

i i

j

A
M C

C
  . 

Here we observed that, the cipher text only attack is not 

useful to decrypt the cipher text with out decryption key. 

2) Known-plaintext attack: 

Let      1 1 2 2, , , ,... ,k kC M C M C M  be the known 

cipher text and plain text pairs. Let 

, 1i jC C for i j k    be the any two cipher text 

letters (values) 

Suppose   e

i jA C C   . 

Now, 

consider  
1/

1/

1 2

e
e eA C C 

1/
1/

e
e

j

i

A
C

C
 

1/
1/

e
e

j j

i

A
M C

C
    

1/ e

j iA M C   . 

Similarly we obtain 

1/
1/

e
e

i i

j

A
M C

C
   

Here we observed that, the known-plaintext attack is useful 

to decrypt the cipher text with out decryption key. 

3) Chosen-plaintext attack: 

This attack is useful to decrypt the cipher text with out 

decryption key if the key space is known to the attacker. The 

probability for decrypting the cipher text approximately is 

1

kS
  where the 

kS  is the key space. 

4) Chosen-cipher text attack: 

This attack is useful to decrypt the cipher text with out 

decryption key if the key space is known to the attacker. The 

probability for decrypting the cipher text approximately is 

1

kS
  where the kS  is the key space. 

Note that the security of this cryptosystem depends on the 

factorization of  N  like in RSA system. 

IV. THEORETICAL AND GRAPHICAL COMPARISON OF AN 

EFFICIENCY 

In RSA cryptosystem,  1 mod ( )e d n   

( ) 1e d k n     where, there exist k  is an integer. 

 In S-RSA cryptosystem,  1 mod ( )e d n   

( ) 1e d k n     where, there exist k  is an integer and  

1
1 mod

2

n
e d

   
    

  

1 1
1

2

n
e d k

 
    

 
 

where, there exist 
1k  is an integer. According to Number 

theory, 
1

( )
2

n
n

 
 

 
 for all .n p q  where 

2, 2p q    and 
1

2 ( )
2

n
n

 
 

 
. So, the constants 

k  and 
1k  are related such that 

12k k . In RSA 

cryptosystem: the number of binary operations are used in 

encryption is  2 1e  (  1e  multiplications and  1e  

modulo operations) and the number of binary operations are 

used in decryption is  2 1d  (  1d   multiplications 

and  1d   modulo operations). Thus the total number of 

binary operations in RSA cryptosystem is 

   2 1 2 1e d   .Similarly, in S-RSA cryptosystem the 

total number of binary operations are 

   2 1 2 1

2

e d   
 
 

 .Thus, the performance of S-RSA 

cryptosystem is nearly two times the performance of RSA 

cryptosystem. 
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1) Illustration for graphical explanation.  

Consider the set of primes which are less than 50 not 

including 2 is  

{3,5,7,11,13,17,19,23,29,31,37,41,43,47}S   

0

20

40

60

80

100

120

140

160

180

15 33 51 69 93 12
3

14
1

(p-1)(q-1)

n-1/2

 
                                Fig.1 

The X-axis indicates the value of the product of odd primes 

and Y-axis indicates the vales of  n  as well as 1/ 2n . 

Thus, the performance of the RSA crypto system is lesser 

(more than two times) than that of S-RSA cryptosystem. 

It is noticed that it has a weak security since if n is 

known than every one can easily find 
1

2

n  
 
 

 value and then 

find private key d  easily by using it‘s public key  ,n e .  

V. SUMMARY AND CONCLUSION 

In this article, it is shown how the solovay-strassen test used 

instead of Euler theorem in RSA cryptosystem and mesure the 

efficiency interms of big-   notation instead of big- O  

notation for the best approximate value .In this article, it is 

also shown the comparison  between the efficiency of  the 

RSA and the  S-RSA cryptosystem. It is also explained about 

the four possible important basic attacks on the  S-RSA 

cryptosystem. 
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ring theory and   Boolean algebra, Cayley Graphs and Arithmetic Graphs.  He 

participated and presented papers in the area of cryptography, Graph theory 

and Semi ring theory in various international and national conferences. 

 

Dr.K.Ramakrishna Prasad has been working as 

Professor in, Department of Mathematics at   Sri 

Venkateswara  University, Tirupati , Andra 

Pradesh ,India.He  was born in  the year 1954 at 

Ongole in Andra Pradesh. He  did his Ph.D at I.I.T 

Kanpur in 1979. Worked as Lecturer at NBKRIS, 

Vidyanagar, Nellore, A.P during 1979-1988, 

worked as Reader at S.V.U Engineering College, 

Tirupati during 1989-1995 and became as Professor 

of Mathematics from 1996 at S.V.Uinversity. He 

worked as co-coordinator of Engineering 

Mathematics  for 5 years and again worked as Head of the Department of 

Mathematics during 2005-2007. Presently ,he is Chairman of Board of Studies 

in the Department of Mathematics. He has published 25  research papers in 

various international and national journals and attended  20 international and 

national conferences. He is  interested in the areas of Hydrodynamics, 

Lubrications, Bio-informatics, Cryptography, Mathematical Modeling .  

 
Dr. N.Ch.S.N.Iyengar is a Senior Professor at the 

School Of Computing Sciences at VIT University, 

Vellore, Tamilnadu  India. He received M.Sc 

(Applied Mathematics) & PhD from Regional 

Engineering College Warangal (Presently known as 

NIT Warangal).Kakatiya University, Andhra 

Pradesh, India, & M.E. (Computer Science and 

Engineering) from Anna University, Chennai, India. 

His research interests include Fluid Dynamics 

(Porus Media), Agent based E- Business 

Applications, Data Privacy, Image Cryptography, Information security, Mobile 

Commerce and cryptography. He has authored several textbooks and had  

research Publications  in National , International Journals & Conferences. He is 

also   Editorial Board member for many National and International Journals. He 

chaired many International conferences‘ and delivered invited , technical 

lectures  along with keynote addresses beside being International programme 

committee  member.  

                                                                                                         
Dr.V. Ramachandran,    presently  

Vice–Chancellor of Anna University, Trichy (T.N). 

He served as Professor in the Department of 

Computer Science at the College of Engineering, 

Anna University, India. He received his ME and 

PhD Degrees from Anna University, India in 1982 

and 1991, with specialisation in Power Systems. 

He served as visiting professor in several national 

and international institutes. He has authored 

several research publications. He chaired many 

International conferences‘ and delivered invited  

technical lectures  along with keynote addresses .His research interests include 

power systems analysis in distributed environment, networks and web 

technologies. He is serving as an editorial member of many international and 

national journals. al hobbies will be deleted from the biography. 


