
International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

17



Abstract— Estimating software development effort is an

important task in the management of large software projects.

The task is challenging and it has been receiving the attentions

of researchers ever since software was developed for

commercial purpose. A number of estimation models exist for

effort prediction. However, there is a need for novel model to

obtain more accurate estimations. The primary purpose of this

study is to propose a precise method of estimation by selecting

the most popular models in order to improve accuracy. In this

paper, we explore the use of Soft Computing Techniques to build

a suitable model structure to utilize improved estimation of

software effort for NASA software projects. A comparison

between Artificial-Neural-Network Based Model (ANN) and

Halstead, Walston-Felix, Bailey-Basili and Doty models were

provided. The evaluation criteria are based upon MRE and

MMRE. Consequently, the final results are very precise and

reliable when they are applied to a real dataset in a software

project. .The results show that ANNs are effective in effort

estimation.

Index Terms—Effort Estimation, Neural Network, Halstead

Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.

I. INTRODUCTION

In the last three decades, many quantitative software cost

estimation models have been developed. According to Marco,

Reliable prediction of size and effort in software development

projects is a necessary prerequisite to developing reliable cost

and schedule estimates. The size and development effort

measures, such as function points or lines of code developed

per person-month, act as technical productivity and

performance indicators that facilitate the tracking and control

of software developments.

An empirical model uses data from previous projects to

evaluate the current project and derives the basic formulae

from analysis of the particular database available. An

analytical model, on the other hand, uses formulae based on

Manuscript received August 12, 2009.

Jaswinder Kaur is doing M.Tech. from department of Computer Science &

Engineering & I.T. of Baba Banda Singh Bahadur Engineering College, Fateh

Garh Sahib, Punjab, India.

Satwinder Singh is working as Lecturer in department of Computer Science

& Engineering & I.T. of Baba Banda Singh Bahadur Engineering College, Fateh

Garh Sahib, Punjab, India.

Dr. Karanjeet Singh Kahlon is working as Professor with the Computer

Science & Engineering Department, Guru Nanak Dev University, Amritsar,

Punjab, India.

Pourush Bassi is working as Lecturer in department of Computer Science &

Engineering of Rayat Bahra Institute of Engineering & Bio-Technology,

Sahauran, Mohali, Punjab, India

global assumptions, such as the rate at which developer solve

problems and the number of problems available. Evaluation of

many software models were presented in [1], [2], [3].

Numerous models were explored to provide better effort

estimation [4], [5], [6], [7]. In [8], [9], authors provided a

survey on the effort and cost estimation models.

Typical major models that are being used as benchmarks for

software effort estimation are:

 Halstead,

 Walston-Felix

 Bailey-Basili

 Doty (for KLOC > 9)

These models have been derived by studying large number

of completed software projects from various organizations and

applications to explore how project sizes mapped into project

effort. But still these models are not able to predict the Effort

Estimation accurately.

As the exact relationship between the attributes of the effort

estimation is difficult to establish so a Neural Network

approach could serve as an automatic tool to generate model

by formulating the relationship based on its training. When

one designs with Neural Networks alone, the network is a

black box that needs to be defined; this is a highly

compute-intensive process. One must develop a good sense,

after extensive experimentation and practice, of the

complexity of the network and the learning algorithm to be

used.

As Neural based system is able to approximate the

non-linear function with more precision and non of the

researcher have explored Neuro approach for the Effort

Estimation and there is still scope of exploring more statistical

modeling approaches. So, in this proposed study, it is tried to

use Neural Network Based Approach to build a more accurate

model that can improve accuracy estimates of effort required

to build a software system.

In this paper, however, the main focus is on investigating

the accuracy of the predictions using ANN-based model. A

study was performed to examine the potential of above given

approaches and neural network based approach.

II. PROPOSED METHODOLOGY

The following steps are used for the comparative study:

A. Preliminary Study

First, Survey of the existing Models of Effort Estimation

that are discussed in the literature.

Neural Network-A Novel Technique

for Software Effort Estimation

Jaswinder Kaur, Satwinder Singh, Dr. Karanjeet Singh Kahlon, Pourush Bassi

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

18

B. Data Collection

Collect the historical software estimation data so that the

same data can be used for experimentation evaluation.

C. Calculate Effort using Different Modes

The following models are used for the data collected in the

previous step and calculate the effort for each developed

model:

 Halstead,

 Walston-Felix

 Bailey-Basili

 Doty (for KLOC > 9).

 Neural Network Based System.

Over the last 20 years, research efforts have focused on the

development of techniques that are quantitatively based, in an

effort to remove or reduce subjectivity in the estimation

process. However, other techniques for the exploratory data

analysis, such as clustering, case-based reasoning and ANN

have been effective as a means of predicting software project

effort. [11] describe the use of clustering to predict software

quality. Wittig and Finnie [20] describe their use of back

propagation learning algorithms on a multilayer perceptron in

order to predict development effort. An overall error rate

(MMRE) obtained which compares favorably with other

methods

In this work, the ANN methodology is used to predicting

software development effort (in man-hour) from the project

size (given by the amount of source code lines).

Khoshgoftaar [13] presented a case study considering real

time software to predict the testability of each module from

source code static measures. They consider ANNs as

promising techniques to build predictive models, because they

are capable of modeling non linear relationships.

ANNs are massively parallel systems inspired by the

architecture of biological neural networks, comprising simple

interconnected units (artificial neurons). The neuron

computes a weighted sum of its inputs and generates an output

if the sum exceeds a certain threshold. This output then

becomes an excitatory (positive) or inhibitory (negative) input

to other neurons in the network. The process continues until

one or more outputs are generated.

Figure 1 shows an artificial neuron that computes the

weighted sum of its n inputs, and generates an output of y. The

neural network results from the arrangement of such units in

layers, which are interconnected one to another. The resulting

architectures solve problems by learning the characteristics of

the available data of related to the problem

Figure1 Computations of a Neuron

For this study, backpropagation artificial neural network

models were used. Backpropagation networks are the most

generalized neural networks currently in use (Nelson &

Illingworth, 1991). The backpropagation network requires

data from which to learn. To learn the network calculates the

error, which is the difference between the desired response

and the actual response, and a portion of it is propagated

backward through the network. At each neuron in the network

the error is used to adjust weights and threshold values of the

neuron, so that at the next epoch the error in the network

response

D. Performance Criteria

Perform the comparison of the models on basis of:

 Mean Magnitude of Relative Error (MMRE)

 Root Mean Square Error (RMSSE)

RMSSE is frequently used measure of differences between

values predicted by a model or estimator and the values

actually observed from the thing being modeled or estimated.

It is just the square root of the mean square error as shown in

equation given below:

The mean-squared error is one of the most commonly used

measures of success for numeric prediction. This value is

computed by taking the average of the squared differences

between each computed value and its corresponding correct

value. The root mean-squared error is simply the square root of

the mean-squared-error.

The literature considered the mean magnitude of relative

error (MMRE) as the main performance measure. The value of

an effort predictor can be reported many ways including

MMRE. MMRE is computed from the relative error, or RE,

which is the relative size of the difference between the actual

and estimated value.

Given a data set of size "D", a "Training set of size

"(X=|Train|) <= D", and a "test" set of size "T=D-|Train|", then

the mean magnitude of the relative error, or MMRE, is the

percentage of the absolute values of the relative errors,

averaged over the "T" items in the "Test" set.

In other words, RMSSE is frequently used measure of

differences between values predicted by a model or estimator

and the values actually observed from the thing being modeled

or estimated. It is just the square root of the mean square error

as shown in equation given below:

 



N

i

yy iiN
RMSSE

1

2

)ˆ(
1

 (2)

Where yi represents the ith value of the effort and is the

estimated effort.

MMRE is another measure and is the percentage of the

absolute values of the relative errors, averaged over the N items

in the "Test" set and can be written as:

 





N

i
i

ii

y
yy

N
MMRE

1

ˆ1
 (3)

     
n

nnRMSE
cacaca  



222

...
2211

(1)

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

19

III. RESULTS AND DISCUSSION

The dataset of NASA [10] is used for the comparison of

different models. In this dataset, there is empirical data in

terms of DKLOC, Methodology and Effort values of 18

projects as shown in table I.

TABLEI. NASA DATA [10] OF EFFORT ESTIMATION

Project

No.

KDLOC Methodology Actual

Effort

1 90.2 30 115.8

2 46.2 20 96

3 46.5 19 79

4 54.5 20 90.8

5 31.1 35 39.6

6 67.5 29 98.4

7 12.8 26 18.9

8 10.5 34 10.3

9 21.5 31 28.5

10 3.1 26 7

11 4.2 19 9

12 7.8 31 7.3

13 2.1 28 5

14 5 29 8.4

15 78.6 35 98.7

16 9.7 27 15.6

17 12.5 27 23.9

18 100.8 34 138.3

TABLEII. ACTUAL AND CALCULATED EFFORT USING DIFFERENT EFFORT

ESTIMATION MODELS

Actual

Effort

NN

System

Effort

Halstead

Model

Effort

Walston-

Felix

Model

Effort

Bailey-

Basili

Model

Effort

Doty

Model

Effort

8.4 7.9455 7.8262 22.494 10.222 28.518

98.7 98.9744 487.79 275.95 120.85 510.27

15.6 14.6092 21.147 41.112 15.685 57.074

23.9 19.3829 30.936 51.783 19.169 74.431

138.3 99.5649 708.42 346.06 189.43 662.09

TABLEIII. ERRORS IN CALCULATED EFFORT USING DIFFERENT EFFORT

ESTIMATION MODELS

Perfor-

mance

Criteria

Model Used

NN

System

Halstead

Model

Walston

-Felix

Model

Bailey-

Basili

Model

Doty

Model

MMRE 11.7896 175.655 155.559 20.2885 302.502

RMSSE 17.4475 308.7097 123.457 25.0224 299.474

The data of first 13 projects is used as training data for the

Neural Network and data of last 5 projects is used as testing

data of the trained Neural Network. The neural network used

is backpropagation based Neural Network that consists of two

neurons in input layer, two neurons in the hidden layer and

one neuron in the output layer. In the testing phase the

calculated efforts and errors using different models is shown

in table II and table III respectively. As evident from the table II,

the predicted values of the efforts is very close to the expected

or actual values e.g. in the second test case using Neural

Network approach the predicted value of the effort is 98.9744,

which is very close to the actual value i.e. 98.7. This thing is

evident with very less values of MMRE and RMSSE as error

values in prediction of test cases.

IV. CONCLUSION

The performance of the Neural Network based effort

estimation system and the other existing Halstead Model,

Walston-Felix Model, Bailey-Basili Model and Doty Model

models is compared for effort dataset available in literature

[10]. The results show that the Neural Network system has the

lowest MMRE and RMSSE values i.e. 11.7896 and 17.4475

respectively. The second best performance is shown by

Bailey-Basili software estimation system with 20.2885 and

25.0224 as MMRE and RMSSE values. Hence, the proposed

Neuro based system is able to provide good estimation

capabilities. It is suggested to use of Neuro based technique to

build suitable generalized type of model that can be used for

the software effort estimation of all types of the projects.

REFERENCES

[1] M. Boraso, C. Montangero, and H. Sedehi, “Software cost estimation: An

experimental study of model performances,” tech. report, 1996.

[2] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes, “Validation methods

for calibrating software effort models,” in ICSE ’05: Proceedings of the

27th international conference on Software engineering, (New York, NY,

USA), pp. 587–595, ACM Press, 2005.

[3] O. Benediktsson, D. Dalcher, K. Reed, and M. Woodman, “COCOMO

based effort estimation for iterative and incremental software

development,” Software Quality Journal, vol. 11, pp. 265–281, 2003.

[4] S. Devnani-Chulani, “Modeling software defect introduction,” tech.

report.

[5] B. Clark, S. Devnani-Chulani, and B. Boehm, “Calibrating the COCOMO

II post-architecture model,” in ICSE ’98: Proceedings of the 20th

international conference on Software engineering, (Washington, DC,

USA), pp. 477–480, IEEE Computer Society, 1998.

[6] S. Chulani and B. Boehm, “Modeling software defect introduction and

removal: Coqualmo (constructive quality model),” tech. report.

[7] S. Chulani, B. Boehm, and B. Steece, “Calibrating software cost models

using bayesian analysis,” IEEE Trans. Software Engr., July-August 1999,

pp. 573–583, 1999.

[8] M. Shepper and C. Schofield, “Estimating software project effort using

analogies,” IEEE Tran. Software Engineering, vol. 23, pp. 736–743,

1997.

[9] G. Witting and G. Finnie, “Estimating software development effort with

connectionist models,” in Proceedings of the Information and Software

Technology Conference, pp. 469–476, 1997.

[10] J. W. Bailey and V. R. Basili, “A meta model for software development

resource expenditure,” in Proceedings of the International Conference on

Software Engineering, pp. 107–115, 1981.

[11] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris, “Software productivity

and effort prediction with ordinal regression,” Journal Information and

Software Technology, 2005, no. 47, pp.17-29.

[12] G. Witting, and G. Finnie, “Using Artificial Neural Networks and

Function Points to Estimate 4GL Software Development Effort”, J.

Information Systems, 1994, vol. 1, no. 2, pp. 87-9

[13] T. M. Khoshgoftaar, E.B. Allen, and Z. Xu, “Predicting testability of

program modules using a neural network,” Proc. 3rd IEEE Symposium on

Application-Specific Systems and Sof. Eng. Technology, 2000, pp.

57-60.

