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 

Abstract— Estimating software development effort is an 

important task in the management of large software projects. 

The task is challenging and it has been receiving the attentions 

of researchers ever since software was developed for 

commercial purpose. A number of estimation models exist for 

effort prediction. However, there is a need for novel model to 

obtain more accurate estimations. The primary purpose of this 

study is to propose a precise method of estimation by selecting 

the most popular models in order to improve accuracy. In this 

paper, we explore the use of Soft Computing Techniques to build 

a suitable model structure to utilize improved estimation of 

software effort for NASA software projects. A comparison 

between Artificial-Neural-Network Based Model (ANN) and 

Halstead, Walston-Felix, Bailey-Basili and Doty models were 

provided.  The evaluation criteria are based upon MRE and 

MMRE. Consequently, the final results are very precise and 

reliable when they are applied to a real dataset in a software 

project. .The results show that ANNs are effective in effort 

estimation. 

 

Index Terms—Effort Estimation, Neural Network, Halstead 

Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.  

I. INTRODUCTION 

In the last three decades, many quantitative software cost 

estimation models have been developed. According to Marco, 

Reliable prediction of size and effort in software development 

projects is a necessary prerequisite to developing reliable cost 

and schedule estimates. The size and development effort 

measures, such as function points or lines of code developed 

per person-month, act as technical productivity and 

performance indicators that facilitate the tracking and control 

of software developments. 

An empirical model uses data from previous projects to 

evaluate the current project and derives the basic formulae 

from analysis of the particular database available. An 

analytical model, on the other hand, uses formulae based on 
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global assumptions, such as the rate at which developer solve 

problems and the number of problems available. Evaluation of 

many software models were presented in [1], [2], [3]. 

Numerous models were explored to provide better effort 

estimation [4], [5], [6], [7]. In [8], [9], authors provided a 

survey on the effort and cost estimation models.  

Typical major models that are being used as benchmarks for 

software effort estimation are: 

 Halstead,  

 Walston-Felix 

 Bailey-Basili  

 Doty (for KLOC > 9) 

These models have been derived by studying large number 

of completed software projects from various organizations and 

applications to explore how project sizes mapped into project 

effort. But still these models are not able to predict the Effort 

Estimation accurately. 

As the exact relationship between the attributes of the effort 

estimation is difficult to establish so a Neural Network 

approach could serve as an automatic tool to generate model 

by formulating the relationship based on its training. When 

one designs with Neural Networks alone, the network is a 

black box that needs to be defined; this is a highly 

compute-intensive process. One must develop a good sense, 

after extensive experimentation and practice, of the 

complexity of the network and the learning algorithm to be 

used.  

As Neural based system is able to approximate the 

non-linear function with more precision and non of the 

researcher have explored Neuro approach for the Effort 

Estimation and there is still scope of exploring more statistical 

modeling approaches. So, in this proposed study, it is tried to 

use Neural Network Based Approach to build a more accurate 

model that can improve accuracy estimates of effort required 

to build a software system. 

In this paper, however, the main focus is on investigating 

the accuracy of the predictions using ANN-based model. A 

study was performed to examine the potential of above given 

approaches and neural network based approach. 

II. PROPOSED METHODOLOGY 

The following steps are used for the comparative study: 

A. Preliminary Study 

First, Survey of the existing Models of Effort Estimation 

that are discussed in the literature.  
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B. Data Collection 

Collect the historical software estimation data so that the 

same data can be used for experimentation evaluation.  

C. Calculate Effort using Different Modes 

The following models are used for the data collected in the 

previous step and calculate the effort for each developed 

model: 

 Halstead,  

 Walston-Felix 

 Bailey-Basili  

 Doty (for KLOC > 9). 

 Neural Network Based System. 

Over the last 20 years, research efforts have focused on the 

development of techniques that are quantitatively based, in an 

effort to remove or reduce subjectivity in the estimation 

process. However, other techniques for the exploratory data 

analysis, such as clustering, case-based reasoning and ANN 

have been effective as a means of predicting software project 

effort. [11] describe the use of clustering to predict software 

quality. Wittig and Finnie [20] describe their use of back 

propagation learning algorithms on a multilayer perceptron in 

order to predict development effort. An overall error rate 

(MMRE) obtained which compares favorably with other 

methods 

In this work, the ANN methodology is used to predicting 

software development effort (in man-hour) from the project 

size (given by the amount of source code lines).  

Khoshgoftaar  [13] presented a case study considering real 

time software to predict the testability of each module from 

source code static measures. They consider ANNs as 

promising techniques to build predictive models, because they 

are capable of modeling non linear relationships. 

ANNs are massively parallel systems inspired by the 

architecture of biological neural networks, comprising simple 

interconnected units (artificial neurons). The neuron 

computes a weighted sum of its inputs and generates an output 

if the sum exceeds a certain threshold. This output then 

becomes an excitatory (positive) or inhibitory (negative) input 

to other neurons in the network. The process continues until 

one or more outputs are generated. 

Figure 1 shows an artificial neuron that computes the 

weighted sum of its n inputs, and generates an output of y. The 

neural network results from the arrangement of such units in 

layers, which are interconnected one to another. The resulting 

architectures solve problems by learning the characteristics of 

the available data of related to the problem 

 

Figure1 Computations of a Neuron 

For this study, backpropagation artificial neural network 

models were used. Backpropagation networks are the most 

generalized neural networks currently in use (Nelson & 

Illingworth, 1991). The backpropagation network requires 

data from which to learn. To learn the network calculates the 

error, which is the difference between the desired response 

and the actual response, and a portion of it is propagated 

backward through the network. At each neuron in the network 

the error is used to adjust weights and threshold values of the 

neuron, so that at the next epoch the error in the network 

response 

D. Performance Criteria 

Perform the comparison of the models on basis of: 

 Mean Magnitude of Relative Error (MMRE) 

 Root Mean Square Error (RMSSE) 

RMSSE is frequently used measure of differences between 

values predicted by a model or estimator and the values 

actually observed from the thing being modeled or estimated. 

It is just the square root of the mean square error as shown in 

equation given below: 

The mean-squared error is one of the most commonly used 

measures of success for numeric prediction. This value is 

computed by taking the average of the squared differences 

between each computed value and its corresponding correct 

value. The root mean-squared error is simply the square root of 

the mean-squared-error.  

The literature considered the mean magnitude of relative 

error (MMRE) as the main performance measure. The value of 

an effort predictor can be reported many ways including 

MMRE. MMRE is computed from the relative error, or RE, 

which is the relative size of the difference between the actual 

and estimated value.  

Given a data set of size "D", a "Training set of size 

"(X=|Train|) <= D", and a "test" set of size "T=D-|Train|", then 

the mean magnitude of the relative error, or MMRE, is the 

percentage of the absolute values of the relative errors, 

averaged over the "T" items in the "Test" set. 

In other words, RMSSE is frequently used measure of 

differences between values predicted by a model or estimator 

and the values actually observed from the thing being modeled 

or estimated. It is just the square root of the mean square error 

as shown in equation given below: 

 



N

i

yy iiN
RMSSE

1

2

)ˆ(
1

 (2) 

Where yi represents the ith value of the effort and  is the 

estimated effort. 

MMRE is another measure and is the percentage of the 

absolute values of the relative errors, averaged over the N items 

in the "Test" set and can be written as: 
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III. RESULTS AND DISCUSSION 

The dataset of NASA [10] is used for the comparison of 

different models. In this dataset, there is empirical data in 

terms of DKLOC, Methodology and Effort values of 18 

projects as shown in table I.  

TABLEI. NASA DATA [10] OF EFFORT  ESTIMATION 

Project 

No. 

KDLOC Methodology Actual 

Effort 

1 90.2 30 115.8 

2 46.2 20 96 

3 46.5 19 79 

4 54.5 20 90.8 

5 31.1 35 39.6 

6 67.5 29 98.4 

7 12.8 26 18.9 

8 10.5 34 10.3 

9 21.5 31 28.5 

10 3.1 26 7 

11 4.2 19 9 

12 7.8 31 7.3 

13 2.1 28 5 

14 5 29 8.4 

15 78.6 35 98.7 

16 9.7 27 15.6 

17 12.5 27 23.9 

18 100.8 34 138.3 

TABLEII. ACTUAL AND CALCULATED EFFORT USING DIFFERENT EFFORT 

ESTIMATION MODELS 

Actual 

Effort 

NN 

System  

Effort 

Halstead 

Model 

Effort 

Walston-

Felix 

Model 

Effort 

Bailey- 

Basili 

Model  

Effort 

Doty 

Model  

Effort 

8.4 7.9455 7.8262 22.494 10.222 28.518 

98.7 98.9744 487.79 275.95 120.85 510.27 

15.6 14.6092 21.147 41.112 15.685 57.074 

23.9 19.3829 30.936 51.783 19.169 74.431 

138.3 99.5649 708.42 346.06 189.43 662.09 

TABLEIII. ERRORS IN CALCULATED EFFORT USING DIFFERENT EFFORT 

ESTIMATION MODELS 

Perfor-

mance 

Criteria 

Model Used 

NN 

System 

Halstead 

Model 

Walston

-Felix 

Model 

Bailey- 

Basili 

Model 

Doty 

Model 

MMRE 11.7896 175.655 155.559 20.2885 302.502 

RMSSE 17.4475 308.7097 123.457 25.0224 299.474 

The data of first 13 projects is used as training data for the 

Neural Network and data of last 5 projects is used as testing 

data of the trained Neural Network. The neural network used 

is backpropagation based Neural Network that consists of two 

neurons in input layer, two neurons in the hidden layer and 

one neuron in the output layer. In the testing phase the 

calculated efforts and errors using different models is shown 

in table II and table III respectively. As evident from the table II, 

the predicted values of the efforts is very close to the expected 

or actual values e.g. in the second test case using Neural 

Network approach the predicted value of the effort is 98.9744, 

which is  very close to the actual  value i.e. 98.7. This thing is 

evident with very less values of MMRE and RMSSE as error 

values in prediction of test cases. 

IV. CONCLUSION 

The performance of the Neural Network based effort 

estimation system and the other existing Halstead Model, 

Walston-Felix Model, Bailey-Basili Model and Doty Model 

models is compared for effort dataset available in literature 

[10]. The results show that the Neural Network system has the 

lowest MMRE and RMSSE values i.e. 11.7896 and 17.4475 

respectively. The second best performance is shown by 

Bailey-Basili software estimation system with 20.2885 and 

25.0224 as MMRE and RMSSE values. Hence, the proposed 

Neuro based  system is able to provide good estimation 

capabilities. It is suggested to use of Neuro based technique to 

build suitable generalized type of model that can be used for 

the software effort estimation of all types of the projects. 
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