
International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

6

Abstract—Organizations having a large number of employees

face several difficulties to separate job assignments to individual

users. The situation becomes more complex when job

assignments are delegated to those users who fulfill some

explicit conditions. The delegation models developed so far

discuss various issues regarding delegation of roles, but no

mechanism has been developed to specify and validate

constraints which are applied in course of temporary delegating

(temporal delegation) and revoking a role to and from a user.

This paper proposes a validation mechanism for flexible

delegation and revocation of job roles to and from users with

specific conditions. Also, we attempt to specify and validate

n-level delegation and cascading/non-cascading revocation

processes in an organization.

I. INTRODUCTION

Security has been a major issue in the development of software

for networked organizations. As the number of employees of

an organization may vary with variable job assignments,

therefore it becomes complicated to manage job assignments

to various users. To cope with such situations Role Based

Access Control Model (RBAC) [1] was proposed for

advanced access control as it reduces complexity and cost of

security administration in specifically those applications

which are networked and are accessed by large number of

users with variable job assignments. In various organizations,

users have permissions to delegate their job rights to other

users at specific time periods with some restrictions. In the

same way users can revoke the delegated rights after some time

period.

Almost all major organizations facilitate their users to

delegate their job assignments to other users when work load

of users cross certain limits or when the authorized user is

unavailable. Therefore, delegation of rights and roles are

followed by certain constraints which must be accomplished

and only after that, job assignments be delegated to other users.

For example, Ahmed delegates task “review voucher” to

Mariam on wednesdays during a staff meeting or Dr. Sohail

delegates “treat patient” task to a nurse when he is at home.

The delegation models developed by [3], [4], [5] deal with

on delegation of rights to other users, but have not specified

Mohsin Ali Memon* is with is with the Dept. of Computer Systems and

Software Engineering, Mehran University of Engineering and Technology,

Jamshoro, Pakistan, email: memohsin@gmail.com

Manzoor Hashmani** is with is with the Dept. of Computer Systems and

Software Engineering, Mehran University of Engineering and Technology,

Jamshoro, Pakistan, email: mhashmani@yahoo.com

Karsten Sohr*** is with Dept. of Mathematics & Computer Science,

University of Bremen, Germany, e-mail: sohr@tzi.de).

any constraint in a formal language which limit temporal

delegation of rights of one user to others. Therefore, it is

required to develop a mechanism to specify and validate

constraints applied on temporary delegation of roles and

revocation of roles, that is, for short period of time when the

actual user is engaged in some other activity or not available,

with the help of a formal language so as to ensure that job

assignments are granted and revoked accurately.

In this article, we propose a delegation/revocation

mechanism with the help of pre conditions and post

conditions applied on delegation and revocation methods of

an organization. In addition, the reason behind this paper is to

specify constraints on delegation in a formal language and

validate them with the help of a tool. We use the Unified

Modeling language (UML) and the Object Constraint

Language (OCL) for the specification of delegation and

revocation schemes. We validate the delegation constraints

with the help of the USE tool (UML-based specification

environment), a validation tool for UML models and OCL

constraints [2].

This paper is organized as follows. In Section 2, we briefly

describe related technologies. Section 3 discusses the

Specification and Validation of Delegation and Revocation of

Authority in USE. Several related works are discussed in

Section 4. Section 5 emphasizes on future work and concludes

the paper.

II. RELATED TECHNOLOGIES

A. Role-Based Access Control

Role-Based Access Control (RBAC) is a powerful access

control model introduced by Ferraiolo and Kuhn [13].

Furthermore, an ANSI standard proposed by the proposed by

the National Institute of Standards and Technologies (NIST)

in 2001 exists [1]. RBAC is one of the most pervasive security

models used these days which has replaced traditional

discretionary (DAC) and mandatory (MAC) access control. It

helps to reduce the complexity of access control

administration, specifically when dealing with large systems.

The RBAC model has four main components – users, roles,

permissions and sessions. A role is generally representation of

organizational functions. Users are assigned to roles and

permissions are assigned to roles as well. Users are assigned

all their permissions according to their role memberships.

Users interact with the system through sessions and roles are

assigned to a particular sessions as well.

 In RBAC, roles represent functions within a given

Validation of Temporary Delegation and

Revocation of Roles with UML and OCL

Mohsin Ali Memon, Manzoor Hashmani Karsten Sohr and

mailto:memohsin@gmail.com
mailto:mhashmani@yahoo.com

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

7

organization; authorizations/permissions are granted to roles

instead of to single users. Authorization constraints are an

important aspect of RBAC and are sometimes argued to be the

principal motivation for RBAC. The common examples of

RBAC authorization constraints include static separation of

duty, dynamic separation of duty, prerequisite roles, and

cardinality constraints.

B. Object Constraint Language

OCL is a formal language used to describe expressions on

object-oriented models. These expressions typically define

invariant or pre- and postconditions that must hold for the

system being modeled or queries over objects described in a

model. OCL is used by UML modelers to specify application

specific constraints in their models. It is a text-based language

which makes it easier to comprehend and specify constraints

on UML models and thus reduces the ambiguity while

retaining the understandability of models. The use of OCL is

not limited to UML only as it can also be used by other

languages, notations, methods and software tools in order to

specify constraints and other expressions of their models.

There are different tools which support the specification of

UML models and the validation of OCL constraints applied on

these models [6]. In an OCL expression, the reserved word

self is used to refer to a contextual instance. The type of the

context instance of an OCL expression is written with the

context keyword, followed by the name of the type. The label

inv: declares the constraint to be an invariant. Invariants are

conditions that must be true during the lifetime of a system for

all instances of a given type.

C. USE Tool

The USE tool [7] allows software modelers to specifiy

UML models and validates OCL constraints by checking

snapshots of a system. USE is the only OCL tool which allows

interactive monitoring of OCL invariants and pre- and

postconditions and the automatic generation of non-trivial

system states [8]. It is available as Open Source and provides

the facility of executing state manipulation commands with

the help of the USE API's executeCmd() method available

in the MSystem class. The USE tool facilitates developers in

analyzing the model structure and model behavior by

generation of typical snapshots and by execution of typical

operation sequences. The constraints specified in the UML

model are formally checked by developers against their

expectations and as a result, they can derive formal model

properties.

The USE tool can be employed in various ways in the

context of RBAC policies. Specifically, it can be used for the

specification and for the validation of RBAC policies in the

design phase [9]. In the USE tool we specify our UML model

and OCL constraints using a textual description. When we

open that text file in USE, it checks the description and

verifies a specification against the grammar of the

specification language, basically a superset of OCL extended

with language constructs for defining the structure of the

model. After all these checks are passed, the model can be

displayed by the graphical user interface provided by the USE

system. USE also offers a project browser which displays all

the classes, associations, invariants, and pre- and

post-conditions of the current model.

The term delegation refers to the assignment of a particular

right or role to another user and revocation is the process by

which a delegation that was accepted is removed or retracted

[10], [11]. Delegation is a decentralized approach in modern

distributed and networked systems to authorize another entity

to access the resources in contrast to the traditional centralized

mechanism where a security officer was assigned the job to

manage sharing of resources and information. In large

role-based systems, the users may be in tens or hundreds of

thousands and the number of roles may be in the hundreds or

thousands. In addition, today‟s dynamic and collaborative

work environment may require users assuming temporary

roles.

Figure1 The USE Tool

Therefore, managing user assignments is a cumbersome task

and could not practically be centralized to a small group of

security officers. It is necessary to decentralize the

administration through a delegation mechanism in order to

increase the scalability of role-based systems. The basic idea

behind a role-based delegation is that users themselves may

delegate role authorities to other users to carry out some

functions authorized to the former.

D. Delegation and Revocation Model

This section provides a brief introduction of the delegation

and revocation model proposed by Nguyen et al. [4].

According to them, a user can only delegate his role to other

user if the following four conditions are satisfied;

a The user (delegator) has the right to delegate his role

b The delegatee must satisfy certain restrictions before the

role is delegated to him. In our scenario discussed in

Section 3, the delegatee must belong to same research

group as of the delegator.

c The delegation depth of the delegatee must be less than

the delegation depth of the delegator.

d There should be a maximum validity period of delegation

made by the delegator.

In the same manner if a user needs to revoke a role from

other users, he can use cascading and non-cascading

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

8

revocation. In non-cascading revocation, the following four

conditions must be satisfied;

a The user (revoker) has the right to revoke the role.

b The revocation must satisfy certain restrictions before the

role is revoked from the user who owns it.For example,

the delegator must be a professor to revoke the role from

the delegatee.

c The revocation must not affect any existing delegation

that is dependent on the revoked delegation.

d There should be some time period defined after which the

revocation takes effect.

For cascading revocation, the following four conditions

must be satisfied,

a The user (revoker) has the right to revoke the role.The

revocation must satisfy certain restrictions before the role

is revoked from the user who owns it. For example, the

delegator must be a professor to revoke the role from the

delegatee.

b The revocation must remove all existing delegations that

are dependent on the revoked delegation.

c There should be some time period defined after which the

revocation takes effect.

The role-based delegation and revocation model proposed

by Zhang et al. [11], discusses two types of users,

 Original users are those users who are assigned to

the role r:

 Delegated users are those users who are delegated to

the role r:

This results in two types of user assignment, one is original

user assignment (UAO) which is a many-to-many user

assignment relation between original users and roles and the

second is delegated user assignment (UAD) which is a

many-to-many user assignment relation between delegated

users and roles.

III. SPECIFICATION AND VALIDATION OF DELEGATION AND

REVOCATION OF AUTHORITY IN USE

This section discusses our approach of specifying a model

example in OCL. Here we specify the delegation and

revocation schemes discussed in section 2.4 formally with

OCL and then with USE tool we validate our temporal

delegation/revocation mechanism with the USE tool. Here we

do not use the graphical user interface of USE, but in fact the

USE API for several reasons. First, we need to check the pre-

and post conditions of the delegation/revocation methods

called by a delegator. Secondly, we have to add some dynamic

invariants in the model to ensure that the roles are temporarily

delegated.

A. Specification of Delegation and Revocation of

Authority with OCL

In the following, we describe our formal approach for the

specification of delegation and revocation schemes with OCL.

Here we take an example scenario of a Research Group

containing several research members. The class diagram of this

example is shown in Fig. 2. This example will be used in the

rest of the paper. We specify our model in USE containing

User, Role, Role_Assignment and Research_Group as four

major classes used for explanation of our

delegation/revocation mechanism. Here, the User class is used

for creating objects of all research members and objects of

Role class contain sets of permissions to be assigned to

research members. The User class has two delegation methods

delegaterole_O() and delegaterole_D() for original role

assignment and delegated role assignment respectively. Each

research member must belong to a research group and

information regarding role assignment (both UAO and UAD)

to all members along with delegation level is retained by

objects of the Role_Assignment class. It is utilized for

multilevel delegation which contains all users with their roles

assignments along with the delegation level for each role.

Figure2 Class Diagram of the current Scenario

We specify the constraints for the delegation and revocation

model discussed in section 2.4 in OCL as pre- and

postconditions of a method named delegaterole_D()in

Fig.3.

Figure3 Pre-Postconditions of Delegation Method

Here the user with the UAO association with a role is

delegating his role to another user till he comes back from

vacation. Here delerolepre1, delerolepre2 and delerolepre3 are

the postconditions which satisfy the delegation condition „a‟

specified in section 2.4. The delerolepre4 ensures that the

delegatee has not been already assigned this role. The

delerolepre5 precondition restricts the assignment of the role

to that user who is the member of same research groups as the

delegator. The delegation condition „c‟ is satisfied by

delerolepre6 precondition which guarantees that the

delegation level of delegatee does not exceed the delegation

level of the delegator.

The postconditions delerolepost1 and delerolepost3 make

certain that the role is delegated and the delegation level of the

delegator is decremented respectively.

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

9

Now we have two types of revocation, cascading and

non-cascading. For non-cascading revocation we can specify

certain pre- and postconditions in the method

revokerole_noncascade() as shown in Fig.4. As discussed in

section 2.4.2, revokerolenpre1 satisfies condition „a‟ of

non-cascading revocation that the revoker must have the right

to revoke. The condition „b‟ is satisfied by revokerolenpre2

and revokerolepre3 by applying restrictions on the revoker

such as he must belong to the same research group as delegatee

and his designation must be „professor‟. The condition „c‟ can

be assured by not disturbing the delegations made by the

delegatee. The postcondition revokerolepost1 ensures that the

role is revoked.

Figure4 Pre-Postconditions of Noncascade Revocation Method

For cascading revocation, we have the method named

revokerole_cascade()shown in Fig.5, containing the

revokerolecpre1 precondition satisfying cascading revocation

condition „a‟ of section 2.4.3. The condition „b‟ is satisfied by

revokerolecpre2 and revokerolecpre3. The postcondition

revokerolecpost1 ensures that the role is revoked and

revokerolecpost2 makes it certain that all delegations which

are dependent on the revoked delegation are also removed by

checking them with the exists() operation.

Figure5 Pre-Postconditions of Cascade Revocation Method

The condition „d‟ of delegation and non-cascading

revocation along with condition „c‟ of cascading revocation

which formulates time based delegation and revocation of role

assignment can be checked by creating a dynamic invariant on

the delegator which checks the vacation status of the delegator

as shown in Fig.6. Dynamic invariants are those invariants

which are created at runtime on the objects of the classes.

Figure6 A dynamic invariant on object of User class

By adding a dynamic invariant here, we are able to restrict

the delegatee to retain the assigned role until the delegator

with id=‟mohsin‟ is on vacations. In the same way we can add

some more dynamic invariants on the delegator‟s work load

limit so as to ensure that the delegator‟s role is temporarily

delegated to the delegatee as shown in Fig.7. These invariants

are added with the help of the addClassInvariant() method of

the GModel class of the USE API to ensure that the delegation

is temporary and on failure of such constraints the revocation

process occurs which also follows some pre- and post

conditions

Figure7 A dynamic invariant on object of Role_Assignment class

The method of adding dynamic invariants in the model,

helps to delegate the rights to other users temporary as this can

only be the mechanism to delegate a role to another user for a

specific period of time following certain conditions.

B. Validation of Delegation and Revocation constraints

with Pre- and Postconditions

For validation of delegation/revocation constraints we have

the USE API which can be employed to load the model of the

class diagram discussed in Section 3.1 containing User, Role,

Research_Group and Role_Assignment classes and then using

the methods of delegation and revocation. After loading the

model in USE, we execute state manipulation commands for

the creation of objects. The UML object diagram in Fig. 8

shows User1 and User2 belonging to Research_Group1. User1

is the original user of Role1. Role_Assignment1 contains the

information regarding User1 such as the Role assigned to him

as well as the delegation level of that role which ensures that

User1 cannot delegate Role1 to more than three users.

Figure8 Object Diagram of current Scenario

In order to assign Role1 to User2 we have called upon the

delegaterole_D() method of the User class which has certain

pre- and postconditions, specified in section 3.1. These pre-

and postconditions must be satisfied for the role to be

delegated to User2. After delegation of role Role1 to User2 a

dynamic invariant is added to check the vacation status of

User1.

The Fig. 9 shows User1 who has delegated his Role1 to

User2 belonging to the same research group until he returns

from vacation. The vacation status of User1 is checked here by

the OCL expression evaluator showing that User1 has

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

10

returned from vacation such that the UAD made by User1 must

be revoked. The model is validated before and after the

delegation of roles to users by automatic snapshot generation

facility of USE tool.

The validation mechanism discussed here ensures that the

role is delegated temporary following the conditions, which

must be satisfied before delegating the role to another user.

The USE tool API helps inscribing the delegation and

revocation constraints using pre- and postconditions in OCL.

Figure9 Checking invariants with an OCL expression

Furthermore, the dynamic invariant addition facility of USE

tool makes it possible to delegate and revoke role to and from

the user at specific time intervals.

IV. RELATED WORK

There has been a significant work on the delegation and

revocation of roles and different models have been proposed

showing Delegation of rights to users on temporal basis such

as [3], [4], [10], [12].

The weakness of the permission based delegation models

proposed by Zhang et al. [3] is that they give a centralized

approach where a security officer is responsible for delegation

and revocation of rights to users. The delegation model in [4]

is very interesting as it supports direct role delegation and

attribute-based role delegation along with the capability of

defining maximum delegation depth that a delegatee can

further delegate a delegated role. However, they have not

specified the restrictions for delegation of a role in a formal

language so that they can be validated before the delegation

occurs.

In [10], Wainer et al. discusses the delegation mechanism

in a well mannered way but when comes across temporal

delegation of roles then the model only deals with the fixed

time periods and leaves the issue of those temporal delegations

where the exact time period of delegation is not known.

Similarly in [12], Zhang models a delegation mechanism with

fixed time duration and doesn‟t converse on temporal

delegations with variable time durations.

The framework by Barka and Sandhu [14] discusses various

issues regarding delegation and revocation of roles but lacks

multilevel delegation if the role is temporary delegated to a

user.

V. CONCLUSION AND FUTURE WORK

The proposed validation mechanism provides flexible

delegation and revocation of job roles to and from users with

specific conditions. Along with validation, we attempt to

specify and validate n-level delegation and

cascading/non-cascading revocation processes in an

organization following the delegation revocation model

discussed by Nguyen et al. [4] in section 2.4 of this paper. The

USE tool API is used for the validation of pre- and

postconditions of delegation and revocation methods and

dynamic invariants are added to formulate the job assignments

as temporary. We believe this work will help understand the

validation of temporary delegation and revocation of roles

with UML and OCL.

There is still a lot of work required in this field of research.

Other delegation and revocation models may also be validated

with the help of this mechanism as well as USE tool can be

further extended by creating a graphical user interface for

delegation and revocation of rights temporary.

ACKNOWLEDGMENT

The authors gratefully acknowledge Prof. Dr. A.Q.K.

Rajput, Vice Chancellor, Mehran UET, Jamshoro, Pakistan

for his kind support and guidance in this research work.

REFERENCES

[1] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli,

“Proposed NIST Standard for Role-Based Access Control,” ACM Trans.

Information and System Security, vol. 4, no. 3, pp. 224-274, Aug. 2001.

[2] M. Richters, “A Precise Approach to Validating UML Models and OCL

Constraints,” Ph.D. dissertation, Universitat Bremen, Fachbereich

Mathematik und Informatik, Logos Verlag, Berlin, BISS Monographs, No.

14, 2002.

[3] Zhang, X., Oh, S., and Sandhu, R. 2003. PBDM: a flexible delegation

model in RBAC. In Proceedings of the Eighth ACM Symposium on

Access Control Models and Technologies (Como, Italy, June 02 - 03,

2003). SACMAT '03. ACM, New York, NY, 149-157.

[4] Nguyen, T., Su, L., Inman, G., and Chadwick, D. 2007. Flexible and

Manageable Delegation of Authority in RBAC. In Proceedings of the 21st

international Conference on Advanced information Networking and

Applications Workshops - Volume 02 (May 21 - 23, 2007). AINAW.

IEEE Computer Society, Washington, DC, 453-458.

[5] Wei Qiu, Carlisle Adams, "Exploring User-to-Role Delegation in

Role-Based Access Control," wcmeb, p. 21, Eighth World Congress on

the Management of eBusiness (WCMeB 2007), 2007.

[6] http://www.um.es/giisw/ocltools/

[7] M. Richters. The USE tool: A UML-based specification environment,

2001.Internet: http://www.db.informatik.uni-bremen.de/projects/USE/.

20, 133, 147.

[8] Sohr, K., Ahn, G., and Migge, L. 2005. Articulating and enforcing

authorisation policies with UML and OCL. In Proceedings of the 2005

Workshop on Software Engineering For Secure

Systems&Mdash;Building Trustworthy Applications (St. Louis,

Missouri, May 15 - 16, 2005). SESS '05. ACM, New York, NY, 1-7.

[9] Karsten Sohr, Michael Drouineaud, Gail-Joon Ahn, Martin Gogolla,

"Analyzing and Managing Role-Based Access Control Policies," IEEE

Transactions on Knowledge and Data Engineering, vol. 20, no. 7, pp.

924-939, Jul., 2008.

[10] Wainer, J. and Kumar, A. 2005. A fine-grained, controllable, user-to-user

delegation method in RBAC. In Proceedings of the Tenth ACM

Symposium on Access Control Models and Technologies (Stockholm,

Sweden, June 01 - 03, 2005). SACMAT '05. ACM, New York, NY,

59-66.

http://www.um.es/giisw/ocltools/
http://www.db.informatik/

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010

1793-8201

11

[11] L. Zhang, G. J. Ahn, and B. T. Chu. A rule-based framework for

role-based delegation and revocation. ACM Transactions on Information

and System Security, 6(3):404–441, 2003.

[12] Zhang, L., Ahn, G., and Chu, B. 2002. A role-based delegation framework

for healthcare information systems. In Proceedings of the Seventh ACM

Symposium on Access Control Models and Technologies (Monterey,

California, USA, June 03 - 04, 2002). SACMAT '02. ACM, New York,

NY, 125-134.

[13] D.F. Ferraiolo and D.R. Kuhn (1992) "Role Based Access Control" 15th

National Computer Security Conference, Oct, 1992.

[14] Barka, E. and Sandhu, R. 2000. Framework for role-based delegation

models. In Proceedings of the 16th Annual Computer Security

Applications Conference (December 11 - 15, 2000). ACSAC. IEEE

Computer Society, Washington, DC, 168.

Mohsin Ali Memon was born in Hyderabad, Pakistan on 25th July, 1983. He

received his B.E. (Software Engineering) in 2005 and M.E. (Information

Technology) in 2009 from Mehran University of Engineering & Technology,

Jamshoro, Pakistan.

He is working as LECTURER in the Department of Computer Systems

and Software Engineering, Mehran University of Engineering & Technology,

Jamshoro, Pakistan since 2006. His research interest includes formal methods,

Software Verification techniques, Ubiquitous Computing and Interactive

Multimedia.

Mr. Memon is a member of International Association of Computer

Science and Information Technology (IACSIT) and Pakistan Engineering

Council.

Prof. Dr. Manzoor Hashmani was born in Hyderabad, Pakistan on 6th March,

1967. He received his B.E. (Computer Systems Engineering) from Mehran

University of Engineering & Technology, Jamshoro (Pakistan) in 1991, M.E in

1997 and Ph.D. in 1999 from Nara Institute of Science & Technology, Nara

(Japan).

He is working as FOREIGN PROFESSOR in the Department of Computer

Systems and Software Engineering, Mehran University of Engineering &

Technology, Jamshoro, Pakistan. He has authored and co-authored more than

30 research papers published in various journals and conferences of

international repute. He has also worked as lead research and development

person in a reputable Japanese company for five years. His research areas of

interest include High Speed Communication Networks, Software Engineering

and Alternative Engery.

Dr. Hashmani is a member of IEICE (Japan), IEEE Communications

Society (USA), and Pakistan Engineering Council.

Dr. Karsten Sohr received the doctorate degree from Universita ̈t Marburg,

Germany. He works in the Center for Computing Technologies (TZI),

Universita ̈ t Bremen, Germany, where he is currently a coordinator for the

security research area. His research interests include role-based access control

and security of mobile applications. He received research grants from the

German Federal Ministry of Education and Research (BMBF) and from the

German Research Foundation (DFG).

