
International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

647

Abstract—A good way of characterizing a parallel system is to

consider the synchronization granularity or frequency of
synchronization between processes in a system. The scientific
applications of the parallel system consist of multiple processes
running on different processors that communicate frequently.
The performance evaluation of such systems mainly depends on
how the processes are co scheduled. If the processes are not co
scheduled properly, then the system will lead to severe
performance penalties. The various co scheduling techniques
available are First Come First Served, Gang Scheduling and
Flexible Co Scheduling. First Come First Served and Gang
Scheduling suffer from internal and external fragmentation.
Flexible Co Scheduling saturates at heavy loads. The paper
focuses on a new co scheduling algorithm, which concentrates
on a detailed classification of the synchronization granularity,
and the new algorithm gives better results under heavy loads.

Index Terms— First Come First Served, Flexible Co
Scheduling, Gang Scheduling, Parallel Job Scheduling,
Performance Metrics.

I. INTRODUCTION
Scheduling parallel jobs for execution is similar to bin
packing. Each job needs a certain number of processors for a
certain time and the scheduler has to pack these jobs together
so that most of the processors will be utilized most of the time.
In job scheduling, Synchronization overhead could turn to be
key issue for utilizations of the processors[1]. If Scheduling
does not carefully address the synchronization overhead, the
utilization of each processor in a parallel system can end up
comparatively lower than a single processor system.[13]

 The domain, we will use is the scheduling of parallel jobs
for execution on a parallel system, Such Scheduling is
typically done by partitioning the machine’s processors and
running a job on each partition. This is similar to packing in
two dimensions [4][5]. Regarding one dimension as
representing processors and the other as representing time. A
Parallel job is a rectangle, representing the use of a certain
number of processors for certain duration of time. The
scheduler has to pack these rectangles as tightly as possible
within the space provided by the available resources.[12][14]
The sizes of the rectangles are known as each submitted job
comes with a specification of how many processors to use,

 Manuscript received August 14, 2009.
 S.V.Sudha ,working as Assistant Professor in the Department of

Information Technology, Kalignar Karunanidhi Institute of
Technology,Coimbatore 641 402 ,Tamil Nadu ,India (e-mail:
svsudha@rediffmail.com)

 K.Thanushkodi ,Principal ,f Akshaya College of Engineering and
Technology, Coimbatore -642 109,Tamil Nadu,India.

and an estimate of how long it will run. Due to the
synchronization between processes in a job, the jobs do not
pack perfectly; therefore holes are left in the schedule. If the
processes are not co scheduled properly, it will harm the
performance of the parallel algorithm.

The co scheduling algorithms available are First Come
First Serve, Gang Scheduling and Flexible Co
scheduling .The main drawback of First Come First Serve is
the central queue occupies a region of memory that must be
accessed in a manner that enforces mutual exclusion.
[10][11].Thus it may become a bottleneck if many processors
look for work at the same time. If all threads are treated as a
common pool of threads, it is unlikely that all of the threads
of a program will gain access to processors at the same time.

 If a high degree of coordination is required between the
threads of a program, the process switches involves many
seriously compromise performance [2][3]. Gang scheduling
requires that the schedule of communicating processes be
precomputed which complicated the co scheduling of client
server applications and requires pessimistic assumption
about which processes communicate with one another.
Flexible Co scheduling saturates at higher loads.[1]

In this paper, we show that it is possible to increase the
resource utilization with various synchronization
granularities between the processes. We introduce a new
methodology called Agile Scheduling which classifies a
detailed granularity of processes and shows better results
than the above mentioned ones.

II. EVALUATION METHODOLOGY
Before we present our results, we first need to describe our

methodology. In this section, we begin by describing the
characteristics of the workloads we use. Next we discuss
about the performance metrics we adopt to measure the
quality of service in the system

A. Agile Algorithm
The Algorithm concentrates on detailed classification of

the frequency of synchronization between processes in a
system. The processes are classified as[1][5]
1) Fine Grain

Fine Grained Parallelism represents a much more complex
use of parallelism .The processes communicate often and
must be co scheduled effectively due to their demanding
synchronization. [9]
2) Medium Grain

Medium Grain Parallelism represents enough
synchronization between the processes and the scheduling
algorithms should take care of the performance evaluation of

Process Grain Size Based Scheduling of Parallel
Jobs with Agile Algorithm

 S.V.Sudha, K.Thanushkodi ,Kalignar Karunanidhi Institute of Technology,Coimbatore

mailto:svsudha@rediffmail.com

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 648

the system.
3) Coarse Grain

With Coarse Grain, there is synchronization among
processes, but at a very gross level. This kind of situation is
easily handles as a set of concurrent processes running on a
multiprogrammed uniprocessor and can be supported on a
multiprocessor with little or no change to the software.
4) Independent

With Independent parallelism, there is no explicit
synchronization among processes . Each represents a
separate, independent application or job.

B. Workload Characteristics
The simulation studies were performed using the Agile

Algorithm with workload logs available from Feitelson’s
Archive.[15][8]
1) Fine Grain Workload

The log considered for the experiment was The Los
Alamos National Lab (LANL) Log. This log contains two
years worth of accounting records produced by the DJM
software running on the 1024 node CM-5 at Los Alamos.
Total Number of jobs present in the Log is 2, 01,387 Jobs

The Log contains the following details 1) Job Id 2) Submit
Time 3) Start Time and Date 4) End Date and Time.
2) Medium Grain Workload

The Log Considered for the experiment was LLNL
Thunder Log. This log contains several months’ worth of
Accounting Records from a large Linux Cluster called
Thunder installed at Lawrence Livermore. Total Number of
jobs present in the Log is 1, 28,662 Jobs

The Log contains the following details 1) Job ID 2)User ID
3) Name 4) Job State 5)Start Time 6)End Time
3) Coarse Grain Workload

The Log considered for the experiment was The Lawrence
Livermore National Lab (LLNL) T3D Log. This Log
contains 4 months worth of Accounting Record at the
Lawrence Livermore National Lab (LLNL). Total Number of
jobs present in the Log is 21323 Jobs.

The Log contains the following details 1) Start Date 2)
Start Time 3) Process ID 4) Partition ID.
4) Independent

The Log considered for the experiment was LPC Log. This
Log contains 9 Months of Record .Total number of Jobs
present in the Log is 2, 44,821 Jobs.

The Log Contains the following details 1) Job ID 2)
Submit Time 3) Wait Time 4) Run Time.

C. Performance Metrics
The synthetic workload generated Feitelson’s archive are

used as input to the simulation of various scheduling
strategies. We monitor the following parameters the arrival
time, start time, execution time; finish time etc .Different
Scheduling algorithms have different properties and may
favor one class of processes over another. In choosing which
algorithm to use in a particular situation, we must consider
the properties of the various algorithms. Many criteria have
been suggested for scheduling algorithms. The criteria
includes the following

Mean Utilization:
We want to keep the CPU as busy as possible. CPU

Utilization may range from 0 to 100 percent. In a real system,
it should range from 40 percent (for a lightly loaded system)
to 90 percent (for a heavily loaded system).The mean
utilization is the ratio of cpu busy time to the number of
processors multiplied with Total time for execution.[1][6][7]

Mean Utilization= Σ CPU Busy Time (1)
 Number of Processors *Total Time

Mean Response Time
In an interactive system, Turnaround time may not be the

best criteria. Often, a process can produce some output fairly
early, and can continue computing new results while
previous results are being output to the user. Thus, another
measure is the time from the submission of a request until the
first response is produced. This measure is called response
time
Mean Response Time= Σ Job Finish Time-Job Submit Time

 (2)
Number of Jobs

Mean Reaction Time
 The mean job reaction time defined as the mean time

interval between the submission and the start of the job.
Mean Reaction Time = Σ Job Start Time-Job Submit Time

 (3)
 Number of Jobs

Mean Slowdown
Mean Slowdown is the sum of jobs response times divided

by the job’s execution times. This metric emerges as a
solution to normalize the high variation of the jobs response
time.
Mean Slow down= Σ Job Response Time/JobExecution time
 (4)
 Number of Jobs

Turn Around Time
From the point of view of a particular process, the

important criterion is how long it takes to execute that
process. The interval from the time of submission of a
process to the time of completion is the turn around time.
Turn around time is the sum of periods spent waiting to get
into memory, waiting in the ready queue, executing on the
CPU and doing I/O.

Waiting Time
The scheduling algorithm does not affect the amount of

time during which a process executes or does I/O;it affects
only the amount of time that a process spends waiting in the
ready queue. Waiting time is the sum of the periods spent
waiting in the ready queue.

III. SCHEDULING STRATEGY

A. Fine Grain Application Algorithm

 for (all jobs in a queue)
 sort the jobs in accordance with the submit time
 divide the total number of jobs in to 1000 slots
 each job is given a time quantum so that a strict global
 round robin is followed.
 while (slots available)
 while (number of jobs available in the slot)

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

649

 Assign the jobs in the Scheduling Matrix. (ie) each job
 in a time slice.

B. Medium Grain Application Algorithm
 for (all jobs in a queue)
 sort the jobs in accordance with the submit time
 divide the total number of jobs in to 1000 slots
 each Job is given a time quantum so that a strict Global
 Round Robin is followed.
 while(slots available)
 Scheduling flag is ON
 Scheduling Count is 0.
 while(number of jobs available in the slot)
 if scheduling flag
 Primary jobs =5 jobs from the slot
 Assign the jobs in the primary slots of the scheduling
 matrix.
 Secondary slots =ideal processors not used by the
 primary jobs.
 Scheduling flag is off.
 Scheduling count is incremented.
 else
 Secondary jobs =next 5 jobs in the slot.
 if secondary slots available
 assign secondary jobs in the secondary slots.
 Scheduling flag is ON
 Scheduling count is incremented.
 if secondary jobs still available
 Schedule the first time slice jobs to the processor and
 make free to assign the remaining jobs.
 if scheduling count is 2
 Schedule the jobs to the processor
 Scheduling count is 0.
 Schedule the jobs to the Processor.

C. Coarse Grain Application Algorithm
 for (all jobs in a queue)
 sort the jobs in accordance with the submit time
 divide the total number of jobs in to 1000 slots.
 divide the 1000 slots in to two and name as slot head i
 and ii

 each slot head contains 500 slots in each slot head.
 each job is given a time quantum so that a strict Global
 Round Robin is followed.
 while (number of slots available in the slot head i and ii)
 scheduling flag is on
 scheduling count is 0.
 while (number of jobs available in the slots of the slot

head
 I and II)
 if scheduling flag
 primary jobs =5 jobs from the slots of the slot head I
 Assign the jobs in the primary slots of the scheduling
 matrix.
 Secondary slots =ideal processors not used by the primary
 jobs.
 Scheduling flag is off.
 Scheduling count is incremented
 else
 Secondary jobs = 5 jobs from the slot of the slot head II
 If secondary slots available assign secondary jobs in the
 secondary slots.
 Scheduling flag is ON
 Scheduling count is incremented
 if secondary jobs still available
 Schedule the first time slice jobs to the processor and make
 free to assign the remaining jobs
 if scheduling count is 2
 Schedule the jobs to the processor
 Scheduling count is 0.

D. Independent
 Any type of Grain Algorithm can be applied

IV. EXPERIMENTAL RESULTS
In this section, we present and analyze the performance of

Agile Algorithm. First, for each metric, we present the results
by simulation. All simulators are written in Java.

A. Fine Grain Workloads

AverageWaiting Time

0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

S c he dul i ng A l gor i t hms

Average_Wait ing_Time

Average_Wait ing_Time 0:48:56 0:35:10 0:35:10 0:35:10

FCFS Gang FCS Agile

(a)

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 650

Turn Around Time

0:00:00

2:24:00

4:48:00

7:12:00

9:36:00

S c he dul i ng A l gor i t hms

Turn_Around_Time

Turn_Around_Time 8:47:40 4:40:10 4:40:10 4:40:10

FCFS Gang FCS Agile

(b)

Mean Response Time

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

S c he dul i ng A l gor i t hms

Mean_response_Time

Mean_response_Time 1:35:52 0:55:50 0:55:50 0:55:50

FCFS Gang FCS Agile

(c)

Mean Reaction Time

0:00:00

0:28:48

0:57:36

1:26:24

S c he dul i ng A l gor i t hms

Mean_React ion_Time

Mean_React ion_Time 1:08:40 0:56:20 0:56:20 0:56:20

FCFS Gang FCS Agile

(d)

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

651

Mean Slowdown

0

20

40

60

80

S c he dul i ng A l gor i t hms

Mean_Slowdown

Mean_Slowdown 71.10486 49.2 49.2 49.2

FCFS Gang FCS Agile

(e)

Mean Utilization

0.45

0.5

0.55

0.6

0.65

S c he dul i ng Al gor i t hms

Mean_Ut ilizat ion

Mean_Ut ilizat ion 0.5 0.6 0.6 0.6

FCFS Gang FCS Agile

(f)

Fig 1. Performance Evaluation of Agile Algorithm for
Fine Grain Application with First Come First Served, Gang
Scheduling, Flexible Co scheduling. (a) Average Waiting

Time (b) Turn Around Time (c) Mean Response Time (d)
Mean Reaction Time (e) Mean Slowdown (f) Mean
Utilization

B. Medium Grain Workloads

Average Waiting Time

0:00:00

4:48:00

9:36:00

14:24:00

S c he dul i ng A l gor i t hms

Avg_wait

Avg_wait 12:32:43 3:08:11 2:30:33 1:47:32

FCFS Gang FCS Agile

(a)

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 652

Mean Response Time

0:00

4:48

9:36

14:24

S c he dul i ng A l gor i t hms

Mean_Resp

Mean_Resp 12:46 3:11 2:33:18 1:49:30

FCFS Gang FCS Agile

(b)

Turn Around Time

0:00:00

2:24:00

4:48:00

7:12:00

9:36:00

S c he dul i ng A l gor i t hms

Turn_around

Turn_around 7:11:34 1:42:18 1:00:00 0:01:33

FCFS Gang FCS Agile

(c)

Mean Reaction Time

0:00

4:48

9:36

14:24

S c he dul i ng A l gor i t hms

Mean_React ion

Mean_React ion 12:32 3:08 2:30:33 1:47:32

FCFS Gang FCS Agile

(d)

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

653

 Mean Slowdown

0:00:00

12:00:00

24:00:00

36:00:00

48:00:00

S c he dul i ng Al gor i t hms

Mean Slowdown

Mean Slowdown 43:56:48 10:59:12 8:47:22 6:16:41

FCFS Gang FCS Agile

(e)

 Mean Utilization

0

0.2

0.4

0.6

0.8

S c he dul i ng Al gor i t hms

Mean_Ut ili

Mean_Ut ili 0.5 0.5 0.60 0.70

FCFS Gang FCS Agile

(f)

Fig 2. Performance Evaluation of Agile Algorithm for
Medium Grain Application with First Come First Served,
Gang Scheduling, Flexible Co scheduling. (a) Average

Waiting Time (b) Mean Response Time(c) Turn Around
Time (d) Mean Reaction Time (e) Mean Slowdown (f) Mean
Utilization.

C. Coarse Grain Workloads

Average Waiting Time

0:00:00

4:48:00

9:36:00

14:24:00

19:12:00

S c he dul i ng A l gor i t hms

Average_Wait ing_Time

Average_Wait ing_Time 14:43:22 3:40:51 0:11:03 0:03:41

FCFS Gang FCS Agile

(a)

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 654

Turn Around Time

0

10000000

20000000

30000000

40000000

S c he dul i ng A l gor i t hms

Turn_Around_Time

Turn_Around_Time 34018381 8504595.25 425229.7625 141743.2542

FCFS Gang FCS Agile

(b)

Mean response Time

0:00:00

4:48:00

9:36:00

14:24:00

19:12:00

S c he dul i ng A l gor i t hms

Mean_response_Time

Mean_response_Time 14:56:34 3:44:08 0:11:12 0:03:44

FCFS Gang FCS Agile

(c)

Mean Reaction Time

0:00:00

4:48:00

9:36:00

14:24:00

19:12:00

S c he dul i ng A l gor i t hms

Mean_React ion_Time

Mean_React ion_Time 14:43:22 3:40:51 0:11:03 0:03:41

FCFS Gang FCS Agile

(d)

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

655

Mean Slowdown

0:00:00

0:28:48

0:57:36

1:26:24

S c he dul i ng A l gor i t hms

Mean_Slowdown

Mean_Slowdown 1:21:54 0:20:29 0:01:01 0:00:20

FCFS Gang FCS Agile

(e)

Mean_Utilization

0

0.2

0.4

0.6

0.8

S c he dul i ng Al gor i t hms

Mean_Ut ilizat ion

Mean_Ut ilizat ion 0.5 0.6 0.7 0.7

FCFS Gang FCS Agile

(f)

Fig 3 Performance Evaluation of Agile Algorithm for
Coarse Grain Application with First Come First Served,
Gang Scheduling, Flexible Co scheduling. (a) Average

Waiting Time (b) Turn Around Time(c) Mean Response
Time (d) Mean Reaction Time (e) Mean Slowdown (f) Mean
Utilization

D. Independent

Average Waiting Time

0

0.5

1

S c he dul i ng A l gor i t hms

Average_Wait ing_Time

Average_Wait ing_Time 0 0 0 0

FCFS Gang FCS Agile

(a)

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 656

Turn Around Time

0

20000000

40000000

60000000

80000000

100000000

S c he dul i ng A l gor i t hms

Turn_Around_Time

Turn_Around_Time 84192617 1202751.671 616043.539 205347.8463

FCFS Gang FCS Agile

(b)

Mean response Time

0

500

1000

1500

2000

2500

S c he dul i ng A l gor i t hms

Mean_response_Time

Mean_response_Time 2087.49288 29.82132686 15.27433815 5.091446049

FCFS Gang FCS Agile

(c)

Mean Reaction Time

0

100

200

300

400

S c he dul i ng A l gor i t hms

Mean_React ion_Time

Mean_React ion_Time 314.96696 4.499528 2.304636293 0.768212098

FCFS Gang FCS Agile

(d)

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

657

Mean Slowdown

0

20

40

60

S c he dul i ng Al gor i t hms

Mean_Slowdown

Mean_Slowdown 49.89102958 0.712728994 0.365056314 0.121685438

FCFS Gang FCS Agile

(e)

Mean Utilization

0.45

0.5

0.55

0.6

0.65

S c he dul i ng A l gor i t hms

Mean_Ut ilizat ion

Mean_Ut ilizat ion 0.5 0.5 0.6 0.6

FCFS Gang FCS Agile

(f)

Fig 4. Performance Evaluation of Agile Algorithm for
Independent Application with First Come First Served,
Gang Scheduling, Flexible Co scheduling. (a) Average
Waiting Time (b) Turn Around Time(c) Mean Response
Time (d) Mean Reaction Time (e) Mean Slowdown (f) Mean
Utilization

The Agile Algorithm concentrated on the detailed
classification of the granularity of the processes and
schedules jobs on the grain size. The results shows that the
algorithm behaves as same as the gang scheduling for the
fine synchronization of the jobs as shown in the Fig 1.For
the Medium grain, coarse grain and Independent
applications as shown in the figures 2,3, and 4 the algorithm
gives better results for the parameters we have considered
when compared to the other scheduling algorithms.

V. RESULTS & DISCUSSIONS
For the Log LANL i.e. for the fine grain application, the

overall running time with the First Come Served Algorithm
was 2 hours, 31 minutes and 6 seconds. The overall running
time with the Gang Scheduling was 17 minutes and 9

seconds. Flexible co scheduling and the Agile Algorithm
give the same figure as Gang Scheduling.

For the Log LLNL i.e. for the medium grain application,
the overall running time with the First Come Served
Algorithm was 7 hours, 11 minutes and 34 seconds. The
overall running time with the Gang Scheduling was 32
minutes and 27 seconds. The overall running time for the
Flexible co scheduling was 16 minutes and 33 seconds and
for the Agile Algorithm it was 1 minute and 33 seconds.

For the Log LLNL T3D i.e. for the coarse grain
application, the overall running time with the First Come
Served Algorithm was 2 hours, 21 minutes and 7 seconds.
The overall running time with the Gang Scheduling was 17
minutes and 9 seconds. The overall running time for the
Flexible co scheduling was 5 minutes and 13 seconds and for
the Agile Algorithm it was 35 seconds.

For the Log LPC Log i.e. for the Independent grain
application, the overall running time with the First Come
Served Algorithm was 5 hours, 56 minutes and 2 seconds.
The overall running time with the Gang Scheduling was 1
minutes and 10 seconds. The overall running time for the
Flexible co scheduling was 40 seconds and for the Agile

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 658

Algorithm it was 16 seconds.
All the comparisons are clearly analyzed and are shown in

the figures 1,2,3,4. Equations 1, 2,3 and 4 are being used for
the comparisons.

VI. CONCLUSIONS
We present a new Scheduling methodology Agile

Algorithm for different Grain Applications. The Algorithm
concentrates mainly on the frequency of synchronization
between the processes of the application and the
performance is improved and the agile algorithm is
compared with First Come First Served, Gang Scheduling
and Flexible Co scheduling. The real time workload for
various grains is considered for the calculation.

 Our Algorithm has overcome the traditional way in
parallel job scheduling algorithms that the specialization for
specific types of workloads, which results in poor
performance when the workload characteristics do not fit the
model for which they were designed. In all the scenarios,
Agile Algorithm performs equally well or better than the
other algorithm in terms of Turn around time; Average
waiting time, mean response time, mean reaction time, mean
slowdown and utilization

REFERENCES
[1] Eitan Frachtenberg, Dror G.Feitalson. Fabrizio Petrini,Juan

Fernandez,”Adaptive Parallel Job Scheduling with Flexible
Coscheduling”,IEEE Trans.Parallel and Distributed Systems,Vol
16,No 11, pp.1066-1077,November 2005.

[2] Dan Tsafrir, Yoav Etsion, Dror G.Feitelson, ” Backfilling Using
System –Generated Predictions Rather than User Runtime Estimates”,
IEEE Transaction on Parallel and Distributed Systems , Vol 18, No 6,
pp 789-803,June 2007.

[3] Avi Nissimov And Dror G.Feitelson, ” Probabilistic Backfilling”,
13th Workshop on Job Scheduling Strategies for Parallel Processing
In Conjuction with 21st ACM International Conference on Super
Computing ,pp 102-115,June 2007.

[4] C.Anglano , ”A Comparative Evaluation of Implicit Coscheduling
Strategies for Network of Workstations,”Proc. Ninth Int’l Symp. High
Performance Distributed Computing, pp 221-228,August 2000.

[5] C.D.Antonopoulos, D.S.Nikolopoulos and
T.S.Papatheodorou, ”Informing Algorithms for Efficient Scheduling
of Synchronizing Threads on Multiprogrammed SMPs”,Proc Int’l
Conf Parallel processing ,pp 123-130 ,Sept 2001.

[6] E.Franchtenberg,D.G.Feitelson ,J.Fernandez-Peinador and
F.Petrini , ”Parallel Job Scheduling under Dynamic Workloads
“,Proc.Ninth Workshop Job Scheduling Strategies for Parallel
Processing,pp 208-227,June 2003.

[7] U.Lublin and D.G.Feitelson , ”The Workload of Super
Computers”Modeling the Characteristics of Rigid Jobs” ,J.Parallel
and Distributed Computing ,vol 63,no 11,pp 1105-1122 ,Nov 2003.

[8] R.Kettimuthu,V.Subramani, .Srinivasan ,T.B.Gopalasamy,D.K.Pand
a and P.Sadayappa, ”Selective preemption Strategies for Parallel Job
Scheduling “,Proc Int’l Conf Parallel Processing ,pp 55-71,August
2002.

[9] [9] W.Lee ,M.Frank,V.Lee ,K.Mackenzie and L.Rudolph,
Implication of I/O for Gang Scheduled Workloads," Job Scheduling
Strategies for Parallel Processing ,pp 215-237, 1997.

[10] D.Kerbyson,H.Alme,A.Hoisie ,F.Petrini ,H.Waserman and
Miggints ,. ”Predictive Performance and Scalability Modeling of a
Large –Scale SMP Clusters”, Super Computing ,ACM/IEEE 2001
Conference,Volume ,issue 10-16 ,pp 30-39,Nov 2001.

[11] E.Frachtenberg, F.Petrini, J.Fernandez, S.Pakin and
S.Coll , ”STROM :Lightning –Fast Resource Management “,in
proceedings of the IEEE/ACM SC2002 Conference, pp 16-22,Nov
2002.

[12] D.G.Feitelson and L.Rudolph ,. ”Metric and Benchmarking for
Parallel Job Scheduling “,Job Scheduling Strategies for parallel
Processing in Springer Berlin ,Volume 1459/1998 pp 1-24, July 2006.

[13] S.Srinivasan ,R.Kettimathu,V.Subramani and
P.Sadayappan , ”Selective Reservation Strategies for Backfilling Job
Scheduling “,Job Scheduling Strategies for Parallel Processing ,PP
55-71, 2002.

[14] D.S.Nikolopoulos and C.D.Polychronopoulos , ”Adaptive
Scheduling Under Memory Constraints on Non-Dedicated
Computational Farme ,”Future Generation Computer Systems,Vol
19,no 4,pp 505-519,May 2003.

[15] D.G.Feitelson .Logs of real parallel workloads from production
systems.http://www.c s.hiji.ac.il/labs/parallel/workload/logs.html.
The access dates are Oct 1994- Dec 1993 for Fine grain Workloads.
The access dates are January 2007 to June 2007 for the Medium grain
Workloads .The access dates are June 2006 to September 2006.The
access dates are August 2004 to May 2005.

http://www.c

