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Abstract—Edges characterize boundaries and are therefore 

considered for prime importance in image processing. Edge 
detection filters out useless data, noise and frequencies while 
preserving the important structural properties in an image. 
Since edge detection is in the forefront of image processing for 
object detection, it is crucial to have a good understanding of 
edge detection methods. In this paper the comparative analysis 
of various Image Edge Detection methods is presented. The 
evidence for the best detector type is judged by studying 
the edge maps relative to each other through statistical 
evaluation. Upon this evaluation, an edge detection method can 
be employed to characterize edges to represent the image for 
further analysis and implementation. It has been shown that 
the Canny’s edge detection algorithm performs better than all 
these operators under almost all scenarios.  

Index Terms—About four key words or phrases in 
alphabetical order, separated by commas.  
 

I. INTRODUCTION 

Edges are boundaries between different textures. Edge also 
can be defined as discontinuities in image intensity from one 
pixel to another. The edges for an image are always the 
important characteristics that offer an indication for a higher 
frequency. Detection of edges for an image may help for 
image segmentation, data compression, and also help for 
well matching, such as image reconstruction and so on[3]. 
Variables involved in the selection of an edge detection 
operator include Edge orientation, Noise environment and 
Edge structure[1]. The geometry of the operator determines a 
characteristic direction in which it is most sensitive to edges. 
Operators can be optimized to look for horizontal, vertical, or 
diagonal edges. Edge detection is difficult in noisy images, 
since both the noise and the edges contain high-frequency 
content. Attempts to reduce the noise result in blurred and 
distorted edges[2]. Operators used on noisy images are 
typically larger in scope, so they can average enough data to 
discount localized noisy pixels. This results in less accurate 
localization of the detected edges. Not all edges involve a step 
change in intensity. Effects such as refraction or poor focus 
can result in objects with boundaries defined by a gradual 
change in intensity [4]. 

The operator needs to be chosen to be responsive to such a 
gradual change in those cases. So, there are problems of false 
edge detection, missing true edges, edge localization, high 
computational time and problems due to noise etc. Therefore, 
the objective is to do the comparison of various edge 

 
 

detection techniques and analyze the performance of the 
various techniques in different conditions 

A. Theoretical Concepts:  
There are many ways to perform edge detection. However, 

the majority of different methods may be grouped into two 
categories: 

  First Order Derivative Based Edge Detection 
(Gradient method): It detects the edges by looking for the 
maximum and minimum in the first derivative of the image. 
Sharpening an image results in the detection of fine details as 
well as enhancing blurred ones. The magnitude of the 
gradient is the most powerful technique that forms the basis 
for various approaches to sharpening. The gradient vector 
points in the direction of maximum rate of change. For a 
function fix, y), the magnitude of the gradient of f 
at coordinates (x, y) is defined as 
 

( )( 22 ),()),(),( yxfyxfyxf yx ∂+∂=∇                    (1) 

while the gradient orientation is given by 
( )),(),(),( yxfyxfArcTanyxf xy ∂∂=∠∇                

(2) 
Second Order Derivative Based Edge Detection 

(Laplacian based Edge Detection):  The Laplacian method 
searches for zero crossings in the second derivative of the 
image to find edges. An edge has the one-dimensional shape 
of a ramp and calculating the derivative of the image can 
highlight its location. Suppose we have the following signal, 
with an edge shown by the jump in intensity below: 

 
 

If we take the gradient of this signal (which, in one 
dimension, is just the first derivative with respect to t) we get 
the following:  

 
Clearly, the derivative shows a maximum located at the 
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center of the edge in the original signal. This method of 
locating an edge is characteristic of the “gradient filter” 
family of edge detection filters and includes the Sobel method. 
A pixel location is declared an edge location if the value of 
the gradient exceeds some threshold. As mentioned before, 
edges will have higher pixel intensity values than those 
surrounding it. So once a threshold is set, you can compare 
the gradient value to the threshold value and detect an edge 
whenever the threshold is exceeded [5]. Furthermore, when 
the first derivative is at a maximum, the second derivative is 
zero. As a result, another alternative to finding the location of 
an edge is to locate the zeros in the second derivative. This 
method is known as the Laplacian and the second derivative 
of the signal is shown below:  

 

 
 

This approach uses the zero-crossing operator which acts 
by locating zeros of the second derivatives of f(x, y). The 
differential operator is used in the so-called 
zero-crossing edge detectors. 
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Thresholding allocates a range of pixel values to each 
object of interest. It works best with grayscale images that 
utilize the whole range of the grayscale. For the image f(x, 
y), the threshold image g(x, y) is defined as 
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Where T is the threshold value. 
 

Convolution operates on images of different sizes but of 
the same dimensionality. For an image of M rows and JV 
columns, and a kernel of m rows and n columns, the 
convolved image will have M - m + 1 rows, and N - n + 1 
columns, and the image is given by 
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Where i runs from 1 to M - m + 1 and j runs from 1 to JV - 11 
+ 1. The methodology implements many different operators, 
particularly spatial filters and feature detectors. 
1) Sobel Operator 

Sobel filter is a simple approximation to the concept of 
gradient with smoothing. The 3x3 convolution mask is 
usually used to detect gradients in X and Y directions. 

The operator consists of a pair of 3×3 convolution kernels 
as shown in Figure 1. One kernel is simply the other rotated 
by 90°. 
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 0 0 0  0 0 0 
-1 -2 -1  -1 -2 -1 

                 Gx                          Gy            
    Figure 1: Masks used by Sobel Operator 

These kernels are designed to respond maximally to edges 
running vertically and horizontally relative to the pixel grid, 
one kernel for each of the two perpendicular orientations. 
The kernels can be applied separately to the input image, to 
produce separate measurements of the gradient component in 
each orientation (call these Gx and Gy). These can then be 
combined together to find the absolute magnitude of the 
gradient at each point and the orientation of that gradient [6]. 
The gradient magnitude is given by:  

22
GyGxG +=  

Typically, an approximate magnitude is computed using:  
GyGxG +=  

which is much faster to compute.  
The angle of orientation of the edge (relative to the pixel grid) 

giving rise to the spatial gradient is given by: 
)/arctan( GxGy=θ  

2) Prewitt’s operator: 
The Prewitt filter[7] is very similar to Sobel filter. The 3x3 

total convolution mask is used to detect gradient in the X, Y 
directions as shown in Figure 2. Prewitt filter is a fast method 
for edge detection. The difference with respect to Sobel filter 
is the spectral response. It is only suitable for well-contrasted 
noiseless images.  
 

-1 0 +1  +1 +
1 

+1 

-1 0 +1  0 0 0 
-1 0 +1  -1 -1 -1 

              Gx                          Gy 
 
 Figure 2:  Masks for the Prewitt gradient edge detector  

3) Robert’s cross operator: 
The Roberts Cross operator performs a simple, quick to 

compute, 2-D spatial gradient measurement on an image. It 
thus highlights regions of high spatial frequency which often 
correspond to edges. In its most common usage, the input to 
the operator is a grayscale image, as is the output. Pixel 
values at each point in the output represent the estimated 
absolute magnitude of the spatial gradient of the input image 
at that point.It uses 22 convolution masks. The operator 
consists of a pair of 2×2 convolution kernels as shown in 
Figure 3. One kernel is simply the other rotated by 90°. This 
is very similar to the Sobel operator.  
 
 
   
 
              Gx                                 Gy 

Figure 3: Masks used for Robert operator. 
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These kernels are designed to respond maximally to edges 
running at 45° to the pixel grid, one kernel for each of the two 
perpendicular orientations. The kernels can be applied 
separately to the input image, to produce separate 
measurements of the gradient component in each orientation 
(call these Gx and Gy). These can then be combined together 
to find the absolute magnitude of the gradient at each point 
and the orientation of that gradient. The gradient magnitude 
is given by:  

22
GyGxG +=  

although typically, an approximate magnitude is computed 
using:  

GyGxG +=  
which is much faster to compute.  

The angle of orientation of the edge giving rise to the 
spatial gradient (relative to the pixel grid orientation) is 
given by: 4/3)/arctan( πθ −= GxGy  

4) Laplacian of Gaussian: 
Laplacian of a Gaussian[8] function is referred to as LoG. 

The filtering process can be seen as the application of a 
smoothing Filter, followed by a derivative operation. The 
smoothing is performed by a convolution with a Gaussian 
function. Usually a truncated Gaussian function is used when 
the convolution is calculated directly. The derivatives 
applied to a smoothed function can be obtained by applying a 
convolution with the derivative of the convolution mask. One 
of the interesting characteristics of Gaussian is its circular 
symmetry which is coherent with the implicit anisotropy of 
physical data The Laplacian is a 2-D isotropic measure of the 
2nd spatial derivative of an image. The Laplacian of an 
image highlights regions of rapid intensity change and is 
therefore often used for edge detection. The Laplacian is 
often applied to an image that has first been smoothed with 
something approximating a Gaussian Smoothing filter in 
order to reduce its sensitivity to noise. The operator normally 
takes a single gray level image as input and produces another 
gray level image as output.  

The Laplacian L(x,y) of an image with pixel intensity 
values I(x,y) is given by:  
L(x,y)=  ∂ 2I  + ∂ 2I 
 ∂ x2    ∂ y2 

Since the input image is represented as a set of discrete 
pixels, we have to find a discrete convolution kernel that can 
approximate the second derivatives in the definition of the 
Laplacian[7]. The commonly used small kernels are shown 
in Figure 4.  
 

-1 2 -1  1 1 1 
2 -4 2  1 -8 1  
-1 2 -1  1 1 1 

            Gx                                Gy 
Figure 4. Commonly used discrete approximations to the 

Laplacian filter. 
Because these kernels are approximating a second 

derivative measurement on the image, they are very sensitive 

to noise. To counter this, the image is often Gaussian 
Smoothed before applying the Laplacian filter. This 
pre-processing step reduces the high frequency noise 
components prior to the differentiation step.  

In fact, since the convolution operation is associative, we 
can convolve the Gaussian smoothing filter with the 
Laplacian filter first of all, and then convolve this hybrid 
filter with the image to achieve the required result. Doing 
things this way has two advantages: Since both the Gaussian 
and the Laplacian kernels are usually much smaller than the 
image, this method usually requires far fewer arithmetic 
operations.  

The LoG (`Laplacian of Gaussian') kernel can be 
pre-calculated in advance so only one convolution needs to be 
performed at run-time on the image. The 2-D LoG function  
centered on zero and with Gaussian standard deviation σ   
has the form: LoG(x,y)=-1/ πσ 4[  1-  
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and is shown in Figure 5.  

 
Figure 5. The 2-D Laplacian of Gaussian (LoG) function. 
The x and y axes are marked in standard deviations (  σ ). 
 
A discrete kernel that approximates this function (for a 
Gaussian σ  = 1.4) is shown in Figure 6. 
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Figure 6. Discrete approximation to LoG function with 
Gaussian σ   = 1.4.  

Note that as the Gaussian is made increasingly narrow, the 
LoG kernel becomes the same as the simple Laplacian 
kernels shown in figure 4. This is because smoothing with a 
very narrow Gaussian (σ < 0.5 pixels) on a discrete grid has 
no effect. Hence on a discrete grid, the simple Laplacian can 
be seen as a limiting case of the LoG for narrow Gaussians 
[9]-[11].  
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5) Canny Edge Detection Algorithm 
Canny operator is the result of solving an optimization 

problem with constraints. The criteria are sensibility, 
localization and local unicity. The method can be seen as a 
smoothing filtering performed with a linear combination of 
exponential functions, followed by derivative operations. The 
Canny edge detection algorithm is 
known to many as the optimal edge 
detector. Canny's intentions 
were to enhance the many edge 
detectors already out at the time he 
started his work. He was very successful in achieving his goal 
and his ideas and methods can be found in his paper, "A 
Computational Approach to Edge Detection"[12]. In his 
paper, he followed a list of criteria to improve current 
methods of edge detection. The first and most obvious is low 
error rate. It is important that edges occurring in images 
should not be missed and that there be no responses to 
non-edges. The second criterion is that the edge points be 
well localized. In other words, the distance between the edge 
pixels as found by the detector and the actual edge is to be at 
a minimum. A third criterion is to have only one response to 
a single edge. This was implemented because the first two 
were not substantial enough to completely eliminate the 
possibility of multiple responses to an edge.  

Based on these criteria, the canny edge detector first 
smoothes the image to eliminate and noise. It then finds the 
image gradient to highlight regions with high spatial 
derivatives. The algorithm then tracks along these regions 
and suppresses any pixel that is not at the maximum (no 
maximum suppression). The gradient array is now further 
reduced by hysteresis. Hysteresis is used to track along the 
remaining pixels that have not been suppressed. Hysteresis 
uses two thresholds and if the magnitude is below the first 
threshold, it is set to zero (made a non edge). If the 
magnitude is above the high threshold, it is made an edge. 
And if the magnitude is between the 2 thresholds, then it is 
set to zero unless there is a path from this pixel to a pixel with 
a gradient above T2.  
Step 1:-In order to implement the canny edge detector 
algorithm, a series of steps must be followed. The first step is 
to filter out any noise in the original image before trying to 
locate and detect any edges. And because the Gaussian filter 
can be computed using a simple mask, it is used exclusively 
in the Canny algorithm. Once a suitable mask has been 
calculated, the Gaussian smoothing can be performed using 
standard convolution methods. A convolution mask is 
usually much smaller than the actual image. As a result, the 
mask is slid over the image, manipulating a square of pixels 
at a time. The larger the width of the Gaussian mask, the 
lower is the detector's sensitivity to noise. The localization 
error in the detected edges also increases slightly as the 
Gaussian width is increased.  
Step 2:- After smoothing the image and eliminating the 
noise, the next step is to find the edge strength by taking the 
gradient of the image. The Sobel operator performs a 2-D 
spatial gradient measurement on an image. Then, the 

approximate absolute gradient magnitude (edge strength) at 
each point can be found. The Sobel operator [6] uses a pair of 
3x3 convolution masks, one estimating the gradient in the 
x-direction (columns) and the other estimating the gradient 
in the y-direction (rows). They are shown below:  
 

-1 0 +
1 

-2 0 +
2 

-1 0 +
1 

         Gx                             Gy 
The magnitude, or edge strength, of the gradient is then 
approximated using the formula:  
|G| = |Gx| + |Gy|  
Step 3:- The direction of the edge is computed using the 
gradient in the x and y directions. However, an error will be 
generated when sumX is equal to zero. So in the code there 
has to be a restriction set whenever this takes place. 
Whenever the gradient in the x direction is equal to zero, the 
edge direction has to be equal to 90 degrees or 0 degrees, 
depending on what the value of the gradient in the 
y-direction is equal to. If GY has a value of zero, the edge 
direction will equal 0 degrees. Otherwise the edge direction 
will equal 90 degrees. The formula for finding the edge 
direction is just:  
Theta = invtan (Gy / Gx)  
Step 4:- Once the edge direction is known, the next step is to 
relate the edge direction to a direction that can be traced in an 
image. So if the pixels of a 5x5 image are aligned as follows: 

x     x     x     x     x 
x     x     x     x     x 
x     x     a     x     x 
x     x     x     x     x 
x     x     x     x     x 

 
Then, it can be seen by looking at pixel "a", there are only 

four possible directions when describing the surrounding 
pixels - 0 degrees (in the horizontal direction), 45 degrees 
(along the positive diagonal), 90 degrees (in the vertical 
direction), or 135 degrees (along the negative diagonal). So 
now the edge orientation has to be resolved into one of these 
four directions depending on which direction it is closest to 
(e.g. if the orientation angle is found to be 3 degrees, make it 
zero degrees). Think of this as taking a semicircle and 
dividing it into 5 regions. 

 
Therefore, any edge direction falling within the yellow 

range (0 to 22.5 & 157.5 to 180 degrees) is set to 0 degrees. 
Any edge direction falling in the green range (22.5 to 67.5 
degrees) is set to 45 degrees. Any edge direction falling in the 
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blue range (67.5 to 112.5 degrees) is set to 90 degrees. And 
finally, any edge direction falling within the red range (112.5 
to 157.5 degrees) is set to 135 degrees.  
Step 5:- After the edge directions are known, non-maximum 
suppression now has to be applied. Non-maximum 
suppression is used to trace along the edge in the edge 
direction and suppress any pixel value (sets it equal to 0) that 
is not considered to be an edge. This will give a thin line in 
the output image.  
Step 6:- Finally, hysteresis[13] is used as a means of 
eliminating streaking. Streaking is the breaking up of an 
edge contour caused by the operator output fluctuating above 
and below the threshold. If a single threshold, T1 is applied 
to an image, and an edge has an average strength equal to T1, 
then due to noise, there will be instances where the edge dips 
below the threshold. Equally it will also extend above the 
threshold making an edge look like a dashed line. To avoid 
this, hysteresis uses 2 thresholds, a high and a low. Any pixel 
in the image that has a value greater than T1 is presumed to 
be an edge pixel, and is marked as such immediately. Then, 
any pixels that are connected to this edge pixel and that have 
a value greater than T2 are also selected as edge pixels. If you 
think of following an edge, you need a gradient of T2 to start 
but you don't stop till you hit a gradient below T1. 

II. EXPERIMENTAL ANALYSIS 
 

Edges are detected using the Sobel, Prewitt, and Roberts 
methods, by thresholding the gradient function. For the 
Laplacian of Gaussian method, thresholding is computed for 
the slope of the zero crossings after filtering the image with 
the LoG filter. For the Canny method, a threshold is applied 
to the gradient using the derivative of a Gaussian filter.  

 
Figure 7 
 

A. Detection using Sobel filter  
As mentioned before, the Sobel method finds edges using 

the Sobel approximation to the derivative. It returns edges at 
those points where the gradient of the image is maximum. 
Figure 8 displays the results of applying the Sobel method to 
the image of Figure 7. 
 

 
 

Figure 8: Sobel edge map of Figure 7 
 

B. Detection using Prewitt filter 
 

The Prewitt method finds edges using the Prewitt 
approximation to the derivative. It returns edges at those 
points where the gradient of the image is maximum. Results 
of applying this filter to Figure 7 are displayed in Figure 9. 

 

 
Figure 9: Prewitt edge map of Figure 7 

 

C. Detection using Roberts 
The Roberts method finds edges using the Roberts 

approximation to the derivative. It returns edges at those 
points where the gradient of the image is maximum. Results 
of applying this filter to Figure 7 are displayed in Figure 10. 
 

 
 

Figure 10: Roberts edge map of Figure 7 
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D. Detection using Laplacian of Gaussian 
The Laplacian of Gaussian method finds edges by looking 

for zero crossings after filtering the image with the Laplacian 
of Gaussian filter. The edge map is shown in Figure 11. 

 
 

Figure 11: Laplacian of Gaussian edge map of Figure 7 

E. Detection using Canny 
The Canny method finds edges by looking for local 

maxima of the gradient of the image. The gradient is 
calculated using the derivative of the Gaussian filter. The 
method uses two thresholds to detect strong and weak edges, 
and includes the weak edges in the output only if they are 
connected to strong edges. This method is therefore less 
likely than the others to be "fooled" by noise, and more likely 
to detect true weak edges. Figure 12 illustrates these points 
which are the result of applying this method to the image of 
Figure 7. 
 

 
 

Figure 12: Canny edge map of Figure 7 
 

Evaluation of the images showed that under noisy 
conditions Canny, Robert, Sobel exhibit better performance, 
respectively. Canny yielded the best results as shown in 
Figure 13. This was expected as Canny edge detection 
accounts for regions in an image. Canny yields thin lines for 
its edges by using non-maximal suppression. Canny also 
utilizes hysteresis with thresholding. 
 

    
(a) (b) 

     
(c)   (d) 

 
Figure 13: Comparison of Edge Detection technique on 
Noisy  Image (a) Original Image with Noise (b) Sobel (c)  
Robert (d) Canny 

III. PERFORMANCE EVALUATION 
 

Edge detection methods investigated so far are further  
assessed by quality measures that give reliable statistical 
evidence to distinguish among the edge maps 
obtained[14]-[17]. The absence of the ground truth edge map 
reveals the search for an alternative approach to assess and 
compare the quality of the edge maps resulted from the 
detectors exploited so far. The evidence for the best detector 
type is judged by studying the edge maps relative to each 
other through statistical evaluation. Upon this evaluation, 
an edge detection method can be employed to characterize 
edges to represent the image for further analysis and 
implementation.  

Table 1 Relative frequencies (R) of the detected  edge  pixels 

Operator Canny Lap of Gaussian 

Canny 1 0.62386301 

Lap of Gaussian 1.602916 1 

Prewitt 3.7234124

4 

2.32289929 

Sobel 3.6973248

4 

2.3066242 

Roberts 4.2846176

6 

2.67301447 

 
Operator Prewitt Sobel Robert 

Canny 0.2685708

4 

0.2704658

2 

0.2333930

5 

Lap of Gaussian 0.4304964

9 

0.4335339

9 

0.3741094

6 

Prewitt 1 1.0070558

1 

0.8690186 

Sobel 0.9929936

3 

1 0.8629299

4 

Roberts 1.1507233

5 

1.1588426

3 

1 

 
Table 1 gives the relative frequencies of the occurrence of 

edge pixels in the previous filters. For each edge map, max 
(ndf) where ndf is the frequency f of occurrence for the filter f 
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is reported, and the ratio with respect to each other gives 
comparative statistics for the occurrence of edges. The Canny 
filter reports the higher detected edge  pixels. 

Table 2: Significant edge differences at edge level 0.05 

 
 Can/Lap Can/Pre Can/Sob Can/Rob Lap/Pre 

H 1 1 1 1 1 

P 0 0 0 0 0 

CI (0.0373,

0.0640) 

(0.0772, 

0.0847) 

(0.0770, 

0.0845) 

(0.0811, 

0.0886) 

(0.0363, 

0.0423) 

STATS 18.7479 42.1842 42.1085 44.6352 25.7156 

 
 

 Lap/Sob Lap/Rob Pre/Sob Pre/Rob Sob/Rob 

H 1 1 0 1 1 

P 0 0 0.8404 1.2382e-

004 

5.0089e-

005 

CI (0.0361, 

0.0421) 

(0.0403, 

0.0462) 

(-0.0023 

,0.0018)  

(0.0019, 

0.0059) 

(0.0021, 

0.0061) 

STATS 25.6107 28.6903 -0.2014 3.8533 4.0726 

 
Table 2 summarizes the t-test for every pair combination 

of the detected edge maps on comparing the average of the 
pair wise edge maps, the following statistics gives evidence 
on the judge for the best method in such environment. The 
only non significant difference exists between the Prewitt and 
the Sobel at 0.05 level of significance, with P-value given in 
the second row of the table. The STATS gives the t-statistics 
for every pair. 

The CI gives the confidence limit. In conclusion, Table 2 
gives the evidence that the methods produce 
different edge maps, only for the Prewitt and Sobel as 
mentioned previously. 

IV. DISCUSSION 
Figures 2 through 6 give edges maps for the different 

operators highlighted above. The focus in this study is on 
the detection of edges that produces a map representing the 
original image. This provides a foundation for selecting an 
appropriate edge detector for further application. 
Investigation is aimed at aiding the choice of an appropriate 
operator that is capable of detecting boundaries based on 
intensity discontinuities[18]-[20]. From the results above, 
although the Sobel operator provides both differencing and 
smoothing, it detects part of the edges in the  image. The 
problem with the Roberts detector is that it relies on finding 
high spatial frequencies which fail to detect fine edges. This 
is illustrated in Figure 10. 

The Laplacian responds to transitions in intensity. As a 
second order derivative, the Laplacian is sensitive to noise. 
Moreover, the Laplacian produces double edges and is 
sometimes unable to detect edge direction. The 
canny edge detector is capable of reducing noise. The Canny 
operator works in a multistage process. These can be 
summarized in a smoothing with a Gaussian filter, followed 
by gradient computation and use of a double threshold. 
The analysis in Table 2 illustrates the differences in 

the methods pair wise, only Prewitt and Sobel have 
approximately the same edge map. The Canny produces the 
best edge map as evidenced by the relative 
frequency analysis in Table 1. 

V. CONCLUSION 
In this paper, we have analyzed the behavior of zero 

crossing operators and gradient operator on the capability 
of edge detection for images. The methods are applied to the 
whole image. No specific texture or shape is specified. The 
objective is to investigate the effect of the 
various methods applied in finding a representation for the 
image under study. On visual perception, it can be shown 
clearly that the Sobel, Prewitt, and Roberts provide low 
quality edge maps relative to the others. A representation of 
the image can be obtained through the Canny and Laplacian 
of Gaussian methods. Among the various 
methods investigated, the Canny method is able to detect 
both strong and weak edges, and seems to be more suitable 
than the Laplacian of Gaussian. A statistical analysis of 
the performance gives a robust conclusion for this 
complicated class of images.  
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