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1 

Abstract: In this paper we propose to combine two clustering 

approaches, namely fuzzy and possibilistic c-means. While 

fuzzy c-means algorithm finds suitable clusters for groups of 

data points, obtained memberships of data, however, 

encounters a major deficiency caused by misinterpretation of 

membership values of data points. Therefore, membership 

values cannot correctly interpret compatibility or degree to 

which data points belong to clusters. As a result, noisy data will 

be misinterpreted by incorrect memberships assigned, as sum of 

memberships of each noisy data to all clusters is constrained to 

be equal to 1. To overcome this, a possibilistic approach has 

been proposed which removes this constraint. It has, however, 

caused another shortcoming as cluster centers converge to an 

identical point. Therefore, possibilities cannot correctly 

interpret the degrees of compatibilities. To correct this 

problem, a number of works have been carried out which all try 

to change possibilistic objective function proposed by 

Krishnapuram and James M. Keller.  

In this work, a hierarchical approach has been proposed 

based on properties of both fuzzy and possibilistic approaches 

to overcome this deficiency. Sensitivities of both methods have 

been studied together with analyzing results obtained by both  

methods. Superiority of the proposed method as opposed to 

conventional possibilistic c-means is shown to be conspicuous. 

 

Index Terms—Hierarchical clustering, possibilistic, fuzzy 

c-means, sensitivity analysis   

 

I. INTRODUCTION 

Clustering can be considered as the most important 

unsupervised learning algorithm; As any other problem of 

this kind, it deals with finding a structure in a collection of 

unlabeled data. Data may be images, patterns, words, 

documents and so on. Many applications use clustering, such 

as: 

 Data mining: DNA analysis.  

 Text min ing: text type clustering, document 

classification; clustering weblog data to discover 

groups of similar access patterns. 

 Information retrieval: document clustering, image 

and video retrieval. 

 Marketing: finding groups of customers with similar 

behavior given a large database of customer’s data 

containing their properties and past buying records. 

 Biology: classification of p lants and animals given 

their features. 

 Libraries: book ordering. 
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 Insurance: identifying groups of motor insurance 

policy holders with a high average claim cost; 

identifying frauds. 

 City-planning: identifying groups of houses 

according to their type, cost and geographical 

location; 

 Earthquake studies: clustering observed earthquake 

epicenters to identify dangerous zones; and 

 Statistical computational linguistic, corpus -based 

computational lexicography.  

 

Fuzzy c-means (FCM) is a method of clustering allowing  

one segment of data to belong to two or more clusters. This 

method (developed by Joe Dunn in 1973 [1] and improved by 

Jim Bezdek in 1981 [2]) is frequently used in pattern 

recognition. FCM and possibilistic version of c-means are 

reviewed in the following sub-sections.  

A. Fuzzy clustering algorithm 

Clustering, as a basic approach, on some unbalanced data 

set 𝑋 = {𝑥1 ,𝑥2 ,… , 𝑥𝑛 } is partit ioning x into c subsets such 

that 1 < c < n. Each point in x is a vector in n-dimensional 

space. In most of the clustering methods, each data point 

belongs to at most one cluster. The primary  goal of these 

clustering methods is to determine to which cluster, each data 

point belongs. One of the algorithms proposed by J. B. 

McQueen in 1967 was k-means. K-means is a crisp 

algorithm, meaning that each data point belongs to at most 

one cluster. We define c-partit ion of x as a 𝑐 × 𝑛  matrix 

representing memberships of each data point to all clusters. 

We show the matrix as Uc*n= {ui,j} , i=1..c , j=1..n. In  

k-means algorithm, U is defined by equation (1).  

𝑈𝑖 ,𝑗 =   𝑢𝑖 ,𝑗  | 𝑢𝑖 ,𝑗 = 0  𝑜𝑟 𝑢𝑖 ,𝑗 = 1 , ∀ 𝑖 = 1: 𝑐, 𝑗 = 1:𝑛  (1) 

   In  many situations, it is difficult to determine to which  

cluster a data point belongs to exactly. In 1973 a fuzzy  

version of k-means named FCM was proposed by Joe Dunn 

in 1973 [1] and improved by Jim Bezdek in 1981 [2]. In  

FCM, each data point belongs to all clusters based on a 

membership value proportion to Euclidian distance of data 

point xj from cluster center β i.. In  FCM, matrix U is defined 

by equation (2). In equation (2), Ui,j is membership of data 

point xj to cluster j. 

𝑈𝑖,𝑗 =  𝑢𝑖,𝑗 | 0 ≤  𝑢𝑖 ,𝑗  ≤ 1  ,  𝑢𝑖,𝑗  =   1 𝑐
𝑖=1        (2) 

FCM object ive function, which should be minimized, is  

shown in equation (3). 

𝐽𝐹𝐶𝑀 =    𝑢𝑖,𝑗
𝑚

𝑛

𝑗 =1

𝑐

𝑖=1

𝑑𝑖 ,𝑗
2  

(3) 

𝑑𝑖,𝑗
2 =  𝑥𝑗 − 𝛽𝑖 

𝑇
𝐴𝑖(𝑥𝑗 − 𝛽𝑖) (4) 
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Another constraint considered for FCM is    ui ,j
mn

j=1   > 0. 

This constraint ensures that no cluster is empty. In equation 3, 

di,j
2  is squared distance of data point j from cluster center i 

shown in equation 4, m determines degree of fuzziness that 

usually has the condition m   [1, ∞]. As a probabilistic 

method, sum of memberships of each data point to all clusters 

is equal to  1. Because of th is constraint, it cannot properly  

describe degree of compatib ility or possibility  of data points 

to clusters. Moreover, the algorithm has considerable 

troubles in noisy environments.  

B. Introduction to possibilistic clustering approaches  

In 1993 Raghu Krishnapuram and James M. Keller [3] 

proposed a possibilistic clustering approach named PCM to 

overcome the limitat ions of FCM method. Instead of 

probabilistic memberships, the resulting partition of data can 

be interpreted as a possibilistic partition, and each 

membership value may be interpreted as possibility or degree 

of compatib ility. Equation (5) represents definition of matrix 

U based on possibilities. 

𝑈𝑖 ,𝑗 =   𝑢𝑖 ,𝑗   0 ≤  𝑢𝑖 ,𝑗  ≤ 1  ,   ∀ 𝑖 = 1: 𝑐 , 𝑗   = 1: 𝑛 ;  ∀ 𝑖 ∃ 𝑗  𝑢𝑖 ,𝑗 > 0  (5) 

  By removing restriction  ui,j  =   1 c
i=1 in (2) to indicate 

the degree of compatib ility, a  triv ial solution would be 0 i.e ., 

the criterion function is min imized by assigning all 

memberships to 0.  We would clearly  prefer that the 

memberships for representative data points to be as high as 

possible, while unrepresentative points should have low 

memberships in all clusters. The objective function (which 

satisfies the requirements) obtained by adding a penalty term 

to the objective function of FCM in equation (3). The 

objective function proposed by Krishnapuram and Keller [3]  

is shown in equation (6). By min imizing the objective 

function, update formulas for ui,j , β i (center fo r cluster i) are 

indicated in equations (7,8,9). 

𝐽 =    𝑢𝑖 ,𝑗
𝑚   𝑑𝑖 ,𝑗

2 +   𝜂𝑖    (1−𝑢𝑖 ,𝑗 )
𝑚

𝑛

𝑗= 1

𝑐

𝑖=1

𝑛

𝑗= 1

𝑐

𝑖=1

 
(6) 

𝑢𝑖,𝑗 =  
1

1 + (
𝑑𝑖 ,𝑗

2

𝜂𝑖
)

1
𝑚−1

 
(7) 

𝛽𝑖 = 
 𝑢𝑖,𝑗

𝑚  𝑥𝑗
𝑛
𝑗 =1

 𝑢𝑖,𝑗
𝑚𝑛

𝑗 =1

 
(8) 

𝜂𝑖 = 𝐾
 𝑢𝑖 ,𝑗

𝑚 𝑑𝑖,𝑗
2𝑛

𝑗 =1

 𝑢𝑖,𝑗
𝑚𝑛

𝑗 =1

 
(9) 

In equation (9), care should be taken about choosing K. A  

discussion on choosing value of K together with sensitivity of 

FCM to these values is presented later. 

The PCM algorithm proposed in [3] solved a number o f 

problems of FCM it, however, caused some other problems. 

In 1996, Raghu Krishnapuram and James M. Keller [12] 

explained analytically one shortcoming of PCM reported by 

Barn i, Cappellini, and Mecocci [4], that it exhib ited an 

undesirable tendency to converge to coincidental clusters. 

In 2001 Heiko Timm, Christian Borgelt, Christian Doring, 

and Rudolf Kruse [7] pointed out another issuee in PCM 

method, that objective function of PCM is min imized only if 

all cluster centers are identical. Nevertheless, if there was a 

single optimum location for cluster centers, all cluster centers 

would be attracted to the point. Therefore, by assigning 

random values to membership matrix U, the algorithm tried  

to move centers to the optimum point. To overcome the 

problem, they added a repulsion term to the objective 

function of PCM that would be small if clusters were far from 

each other. Then the attraction of the data points can 

compensate the repulsion if only  the clusters are sufficiently  

spread out. The repulsion term is shown in equation (10). 

γ   1

𝑑2 ( 𝑐 𝑖  ,𝑐𝑘)

𝑐
𝑘=1,𝑘≠𝑖

𝑐
𝑖=1              (10) 

The objective function proposed by Heiko Timm [7] is  

indicated in equation (11). 

𝐽 =    𝑢𝑖 ,𝑗
𝑚   𝑑𝑖 ,𝑗

2 +   𝜂𝑖     (1 − 𝑢𝑖 ,𝑗 )𝑚
𝑛

𝑗=1

𝑐

𝑖=1

𝑛

𝑗=1

𝑐

𝑖=1

+  𝛾   
1

𝑑(𝛽𝑖  , 𝛽𝑘  )2

𝑐

𝑘=1,𝑘≠𝑖

𝑐

𝑖=1

 

(11) 

Where βi , βk are centers of clusters i and k and γ is a 

weighting factor. Also,  ui,j
n
j =1 > 0 ∀ i ∊ {1. . c} . 

Minimization of equation (10) with respect to  cluster 

prototypes leads to an iterative computing shown in equation 

(12). 

𝛽𝑖 =

 𝑢𝑖,𝑗𝑥𝑗 − 𝛾  𝛽𝑘
1

| 𝛽𝑘 − 𝛽𝑖  |
2

𝑐
𝑘=1,𝑘≠𝑖

𝑛
𝑗=1

 𝑢𝑖,𝑗 − 𝛾  
1

| 𝛽𝑘 −𝛽𝑖  |
2

𝑐
𝑘=1,𝑘≠𝑖

𝑛
𝑗=1

 

(12) 

Where, βi is new center fo r cluster i. Iteration continues while 

  βi

 new  
− βi

 old   <  𝜀   . For βi on the right side of the above 

equation, values of previous iteration are used. Update 

formula 11 shows the effect of the repulsion between 

clusters. A cluster is attracted by the data assigned to it and 

repelled by the other clusters. 

In 2002, Timm and Kruse [8] solved the deficiency of 

PCM by adding a term to objective function of PCM 

proportion to inverse distance functions between cluster 

centers. In 2004, Jiang-She Zhang and Yiu-W ing Leung [13] 

changed the possibilistic approach given in [3] to overcome 

its drawbacks. The main idea was to integrate a fuzzy  

approach into their objective function, so that the improved 

algorithm could determine proper clusters via fuzzy method 

while it can achieve robustness through possibilistic 

approach. Their p roposed approach defined two types of 

membership. First, a possibilistic membership which  

measured absolute degree of typicality of a point in any 

particular cluster. Second, a fuzzy membership that measured 

the relative degree of sharing of a point amongst all clusters. 

To integrate these two approaches, they interpret equation (6) 

as squared distance; they, then applied fuzzy clustering based 

on equation (6) to  define their objective function shown in  

equation (13). 

𝐽 =    𝑢
𝑖 ,𝑗

(𝑓 ) 
𝑚 𝑓

𝑛

𝑗=1

𝐶

𝑖=1

((𝑢
𝑖,𝑗

(𝑝)
)𝑚 𝑝𝑑𝑖 ,𝑗

2 +𝜂𝑖(1−𝑢
𝑖 ,𝑗

(𝑝)
)𝑚 𝑝 

(13) 
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In equation (13),  ui ,j
f  and  ui ,j

p
 are fuzzy and possibilistic  

memberships of xj to cluster i respectively. They also 

proposed another equation for ηi to incorporate both fuzzy  

and possibilistic memberships , as represented in equation 

(14). 

Update formula for ui,j
p

 is the same as equation (7) while 

update formula for ui ,j
f  is according to equation (15). 

𝜂𝑖 =
 (𝑢𝑖,𝑗

(𝑝)
)𝑚𝑝𝑛

𝑗 =1 (𝑢𝑖,𝑗
(𝑓)

)𝑚𝑓 𝑑𝑖,𝑗
2

 (𝑢
𝑖,𝑗

 𝑝 
)𝑚𝑝𝑛

𝑗 =𝑖 (𝑢
𝑖,𝑗

(𝑓)
)𝑚𝑓

 
 

(14) 

𝑢𝑖 ,𝑗
(𝑓)

=
1

 
(𝑢

𝑖,𝑗

 𝑝 
)

(𝑚𝑝 −1)
2
  𝑑𝑖,𝑘

(𝑢
𝑘,𝑗

 𝑝 
)

(𝑚𝑝−1)
2
 
𝑑𝑘,𝑗

)

2
(𝑚𝑓 −1)𝐶

𝑘=1

 
 

(15) 

Cluster center βi is also computed by equation (16). 

𝛽𝑖 =
 (𝑢𝑖,𝑗

 𝑝 
)𝑚𝑝 (𝑢𝑖,𝑗

 𝑓 
)𝑚𝑓 𝑥𝑗

𝑛
𝑗 =1

 (𝑢
𝑖,𝑗

 𝑝 
)𝑚𝑝 (𝑢

𝑖,𝑗

 𝑓 
)𝑚𝑓𝑛

𝑗 =1

 
 

(16) 

As it appears from equations (13-16), the only difference 

of the method with PCM is using a two part ui,j. 

 In 2005, Nikhil R. Pal, Kuhu Pal, James M. Keller, and  

James C. Bezdek [11] proposed another PCM  method. They 

believed that memberships (or relative typicality) and 

possibilit ies (or absolute typicality) were both important for 

correct interpretation of data substructures. Therefore, they 

retained the constraint  ui,j  =   1 c
i=1 to show memberships 

while relaxed the constraint row sum = 1 on the typicality 

values by adding a term  b ti,k
n  to objective function where  

ti,k ≤ 1 . Th is leads to objective function (17): 

𝐽 =    (𝑎𝑢𝑖𝑗
𝑚 +  𝑏𝑡𝑖,𝑗

𝜂

𝑛

𝑗=1

𝑐

𝑖=1

) 𝑑𝑖 ,𝑗
2  +   𝛾𝑖   (1 − 𝑡𝑖,𝑗)

𝜂

𝑛

𝑗=1

𝑐

𝑖=1

 
(17) 

Subject to the constraints  ui,j = 1 ∀c
i =1  k   ,  0 ≤  ui,j  , 

ti,j  ≤ 1. Also a > 0 ,  b > 0 ,  m > 1,  η > 1 . In equation 

(17), γi > 0 is an arbitrary constant. The constants a and b 

define the relative importance of fuzzy membership and 

typicality values in the objective function. Note that in (8), 

ui,j has the same meaning of membership as that in FCM. 

Similarly, ti,j has the same interpretation of typicality as in  

PCM. By minimizing objective function 17, they found 

equations (18,19,20) for updating ui,j , ti,j,, β i.  

𝑢𝑖 ,𝑗 = ( (
𝑑𝑖 ,𝑗

𝑑𝑘 ,𝑗

)
2

(𝑚−1 ) 

𝑐

𝑘=1

)−1 
(18) 

1 ≤ 𝑖 ≤ 𝑐  , 1 ≤ 𝑘 ≤ 𝑛  

𝑡𝑖,𝑗 =
1

1 + (
𝑏
𝛾𝑖
𝑑𝑖 ,𝑗

2 )
1

(𝜂−1) 
 

  

 (19) 

1 ≤ 𝑖 ≤ 𝑐  , 1 ≤ 𝑘 ≤ 𝑛  

𝛽𝑖 =
 (𝑎𝑢𝑖,𝑗

𝑚 + 𝑏𝑡𝑖 ,𝑗
𝜂

)𝑥𝑗
𝑛
𝑗 =1

 (𝑎𝑢𝑖,𝑗
𝑚 + 𝑏𝑡

𝑖 ,𝑗

𝜂
)𝑛

𝑗 =1

 
 

(20) 

1 ≤ 𝑖 ≤ 𝑐  

C.  Structure of paper 

 Aforementioned works have been carried out to overcome 

weaknesses of possibilistic approach proposed in [3]. They 

all attempt to change objective function so that ui,j correctly  

describe degree of compatibility of each data point to all 

clusters. In our research, we intensively evaluate the behavior 

of PCM method proposed in [3]. We also examine sensitivity 

of the PCM to its parameters (e.g. K) by running the 

algorithm over some known sample data sets such as Iris, 

Wine, Glass, Breast, Wpbc. We next p resent a new approach 

to overcome the drawback of PCM which moves cluster 

centers to an identical point while incorrectly  finds degrees of 

compatibilities in some situations. Finally, we analyze results 

of our new method on the same data sets. Dominant notes of 

the proposed approach are: 

 Evaluating behavior of PCM algorithm 

 Simplicity of the proposed method 

 Having FCM ability as a pre-clustering tool 

 Tuning of membership to form degree of 

compatibility using PCM procedure  

 Acceptable results over standard data sets. 

The remaining of th is paper is as follows: In section 2, we 

evaluate thoroughly the PCM approach and examine the 

weaknesses of the approach both analytically and 

experimentally. In section 3, our new approach (HPCM) is 

presented to overcome the limitations of PCM together with 

results of the new method analyzed on some known sample 

data sets. In this section, we also compare the results obtained 

by performing HPCM and PCM algorithms on Iris, Wine, 

Glass, Breast, Wpbc sample data sets and analyze sensitivity 

of the two algorithms on some parameters. Finally, in section 

4 a conclusion about the results we achieved in this work is 

presented. 

II. ANALYZING  PCM  METHOD 

We first analyze the PCM method proposed by Raghu 

Krishnapuram and James M. Keller to analytically exp lain  

the key problem of the method which converges to local 

minimum so that all cluster centers will be identical at  the end 

of the algorithm, resulting in misinterpretation of the degrees 

of compatibilit ies. Then, the sensitivity of the method to 

parameter K is examined. This analysis also includes running 

the algorithm on some known sample data sets  to highlight 

the mentioned problems. 

 

A. Issues with PCM 

As mentioned earlier, evaluating objective function (6) 

reveals that, it is min imized only if all cluster centers are very 

close or even the same. The reason is that the equation (7) for 

updating membership degree of a data point to a cluster 

depends only on distance of the data point to the cluster, 

while it does not depend on the distance to other clusters. 
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Nevertheless, if there is a single optimum location for cluster 

centers, all cluster centers will be attracted to the point. So, by 

assigning random values to membership matrix U, the 

algorithm attempts to move centers to the optimum point. 

This is resulted because the algorithm is trapped in local 

minimum of the objective function.  

B. Analytical description of PCM problem 

It is possible to analytically exp lain why cluster centers 

gradually approach to a single optimum point in PCM. Using 

equation (8) for updating cluster centers, if we run the 

algorithm many times, for each cluster center βi we compute 

expectation or ensemble average of βi by equation (16) to 

indicate where the cluster center converges to.  

If we run the algorithm with valuable determin istic data, 

for a two cluster case, possibility of data point j (xj) to first 

cluster  is α1,j and possibility of xj to second cluster is α2,j . 

Since 0 < α1,j <1, 0< α2,j < 1, we conclude that 0 < α1,j +

α2,j  < 2   . 

On the other hand, there is no other constraint for α1, j, α2, 

j. It is also known that for valuable amounts of data samples, 

ensemble average of α1, j where 0 < α1 ,j <1 is  
1

2
 . This is 

also true for α2,j if 0 < α2 ,j < 1 . Obviously the ensemble 

average of α1 ,j + α2 ,j   where 0 < α1,j + α2 ,j  < 2   is also 1. 

Therefore, we conclude that  α1 ,j  =
1

2
 ,  E α2 ,j  =

1

2
 . Finally, 

because there is no constraint on ui,j except 0 < ui,j < 1, 

ensemble average of ui,j is equation (21). 

𝐸 𝑢𝑖,𝑗
𝑚  =

1

2
 

(21) 

 

From equation (21), equation (22) is concluded: 

 𝑢𝑖,𝑗
𝑚𝑛

𝑗 =1

𝑛
=

1

2
⟹ 𝑢𝑖 ,𝑗

𝑚 =
𝑛

2
 

 

(22) 

 

Since the set of all data points (xj ) are determin istic, we 

compute expectation of βi as equation (23). 

𝐸 𝛽𝑖  = 𝐸 
 𝑢𝑖 ,𝑗

𝑚 𝑥𝑗
𝑛
𝑗 =1

 𝑢𝑖 ,𝑗
𝑚𝑛

𝑗 =1

 = 𝐸  
 𝑢𝑖 ,𝑗

𝑚 𝑥𝑗
𝑛
𝑗 =1

𝑛
2

 =
2

𝑛
𝐸{ 𝑢𝑖,𝑗

𝑚 𝑥𝑗

𝑛

𝑗=1

} 

(23) 

 Simplify ing equation (23) y ields equation (24): 

where,  θ  is a constant vector. Therefore, ensemble average 

of cluster centers converges to θ when PCM algorithm runs 

many times. This is true for all clusters since xi for i=1...n are 

deterministic values for all clusters. It, however, does not 

happen for FCM because it has another constraint on u i,j, 

therefore, we cannot conclude equations (22-24).  

As a result, all cluster centers gradually converge to an 

identical point. Th is property of PCM causes to misinterpret 

degrees of compatibilities of data points to clusters. On the 

other hand, the algorithm is sensitive to initial values of U. If 

initial values of U are not properly assigned, the algorithm 

rapidly converges to a local minimum of its objective 

function so that degrees of compatibilities are computed 

based on identical cluster centers. 

 We have tested the PCM algorithm on different known 

sample data sets. Results of executing the algorithm on Iris, 

Glass, Breast, Wine, Wpbc data sets are shown in  table 1. The 

algorithm was executed on these sample data sets for 10 

times. Then, average distance between cluster centers was 

measured as a criterion to show how far cluster centers are 

located from each other. Table 1 indicates the results as 

average distance between clusters in each execution. Since 

the algorithm is sensitive to parameter K, as shown in 

equation (9), in table 1, K is assumed to be 1.  

  𝑑𝑖 ,𝑗
𝐶
𝑗=𝑖+ 1

𝐶−1
𝑖=1

𝐶!
2 × (𝐶 −2)!

 
(25) 

Since the major problem of PCM is that the cluster centers 

converge to an identical point, it appears a good idea to 

measure average distances between each two cluster centers 

as a metric for evaluating effect iveness of HPCM vs. PCM to 

find cluster centers as far as possible to maximize between 

class parameter. To do this, two values are needed. First, sum 

of all distances between each two center ( di ,j  , i = 1: C −

1, j = i + 1: C) where, di,j is Euclidean distance between 

centers i,j. Second, total number o f paired centers  (
C!

2 × C−2 !
) 

where, C is the number of clusters. Finally, equation 25 gives 

total average distances between centers as a metric for 

comparing HPCM vs. PCM. Equation 25 is a metric defined 

to show efficiency of PCM vs. HPCM for finding cluster 

centers. In Table 1, each row indicates results of computing 

equation (25) for each sample data set, 10 times. By  

evaluating results shown in Table 1, it  is evident that cluster 

centers in all examples are very close to each other, and 

almost identical. This undesired effect, which  is due to 

minimizing the objective function shown in equation (6), 

causes misinterpretation of compatibilities of data points to 

clusters. In Table 1, average d istances between cluster 

centers for wine and Wpbc data sets seem to be more than in  

other data sets. This is because scale factors of data in Wine 

and Wpbc data sets are different from the data in other data 

sets. As a result, cluster centers gradually converge to each 

other in PCM as seen in equations (21-24). The values 

obtained in Table 1 represent this effect. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐸 𝛽𝑖 = 𝐸 𝑥𝑗  = 𝜃 (24) 
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Table 1. Average distance between cluster centers. 

 

execution Glass 

PCM 

Glass 

HPCM 

Iris 

PCM 

Iris 

HPCM 

Wine 

PCM 

Wine 

HPCM 

Breast 

PCM 

Breast 

HPCM 

Wpbc 

PCM 

Wpbc 

HPCM 

1 0.0013 0.3892 0.0046 2.7943 4.0920 359.9852 0.0018 0.4136 8.2634 627.3964 

2 0.0008 0.3892 0.0396 2.7943 5.6096 359.9852 0.0017 0.4136 7.3064 627.3964 

3 0.0009 0.3892 0.0149 2.7943 4.3165 359.9852 0.0018 0.4136 5.2621 627.3964 

4 0.0011 0.3892 0.0105 2.7943 4.2276 359.9852 0.0035 0.4136 2.0706 627.3964 

5 0.0004 0.3892 0.0162 2.7943 7.3930 359.9852 0.0009 0.4136 4.0297 627.3964 

 

III. THE PROPOSED HIERARCHICAL CLUSTERING METHOD 

By analyzing many different samples and recalling  

equations (20-24), it is obvious that, if based on some criteria, 

initial values of U are selected correctly, the PCM algorithm 

works well. By randomly init ializing membership values, 

cluster centers converge to some identical point to  minimize 

equation (6). This effect is shown in Table 1 by executing 

PCM algorithm on some known data sets.  The effect of 

convergence of cluster centers to an identical point will not 

happen for FCM method because it has another limitation 

presented by equation (2). Therefore, this property of FCM 

can be used to overcome the problem mentioned, as 

convergence of cluster centers to an identical point, in  PCM. 

On the other hand, fuzzy clustering is sensitive to noise 

because misinterprets membership values of noise points. In  

our new method, we introduce a hierarchical approach for 

finding more accurate centers for clusters with more precise 

values for U so that these values can better describe 

compatibilities of data points to clusters with less sensitivity 

to noise. Another key element in our approach is to  determine 

value of K based on some criteria. In some cases, the PCM 

approach is highly sensitive to K. We first analyze the 

sensitivity on some known data sets to describe what causes 

the sensitivity. We then compare sensitivity of our new 

approach to show its lower sensitivity to the value of K.  

A. A new possibilistic approach 

The proposed approach for possibilistic clustering uses 

properties of both fuzzy and possibilistic clustering to solve 

the problem described earlier. Fuzzy clustering has one 

unique constraint which enables us to overcome the 

limitat ion of PCM. Equation (2) shows that sum of all 

membership values of each  data point to all clusters is equal 

to 1. This constraint prohibits cluster centers to converge to 

an identical point. On the other hand, fuzzy clustering finds 

cluster centers near optimal in many cases. However, values 

of U are not properly defined. In our new approach, however, 

we h ierarch ically use fuzzy followed by possibilistic 

algorithms to first, find init ial values of U based on standard 

fuzzy algorithm, while finding cluster centers near optimal 

point. In this way, the fuzzy  algorithm finds cluster centers 

near optimal, but membership values may describe data 

points incorrectly, while noise points are misinterpreted. To 

describe correct memberships as degrees of compatibilities 

while adjusting cluster centers together with describing noise 

points correctly, we run possibilistic algorithm. We init ialize 

U with values computed in previous level by fuzzy  algorithm. 

In other ways, initial values of U for PCM, are those ones 

computed by FCM in previous step. This hierarchical 

approach, then finds values of U so that they correctly 

describe degrees of compatibilit ies, while keep ing cluster 

centers as separate as possible. In the next level of the 

hierarchical approach, where PCM adjusts degrees of 

compatibilities, the number of iterations needed to do this is 

very little  compared with  execution of PCM or FCM 

separately.  

B. Analysis of HPCM vs. PCM  

Our test results together with analysis of the results are 

based on the sample data sets listed in Table 1 and Table 2. In  

Table 2 we compare results obtained by PCM vs. HPCM , i.e. 

results obtained by our hierarch ical approach. To compare 

results obtained by the methods, we used average Euclidean 

distance between clusters based on equation (24).  

  According to these tables, in all sample data sets, cluster 

centers found by PCM are very close together, while cluster 

centers found by HPCM are not only far from each other, but 

also they are identical in each execution, resulting in stability 

of the new algorithm. Therefore , initial value of U has no 

major effect on positions of cluster centers and possibilit ies. 

Execution of HPCM and PCM on the sample data sets tested 

by [3] revealed that PCM was highly  sensitive to initial 

values of U. In each execution, therefore, PCM finds 

different centers for clusters, while HPCM is not sensitive to 

initial values of U. As a result, it  finds identical cluster 

centers in each execution. Fig.1 shows execution of the two 

algorithms on two sample data sets presented in [3]. 

  As shown in Fig. 1(a), centers found by HPCM are 

completely separate while position of each one is in center of 

each cluster. But, centers found by PCM are so close together 

that cannot be separated, so, misinterpret possibilit ies. The 

same is true fo r Fig. 1(b). 
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(a) First sample  

 

(b) Second sample  

Fig. 1. Comparing centers found by PCM and HPCM. 

 

  Fig. 2 indicates another example of PCM problem based 

on Solomon’s C101 data set. Fig. 2.a also shows cluster 

centers found by FCM algorithm together with cluster centers 

found by PCM algorithm presented by [3]. It is obvious that 

FCM found correct cluster centers while, PCM makes cluster 

centers to converge to an identical point. Fig. 2(b) depicts the 

result on running our new method. It is clear that cluster 

centers are adjusted by our new algorithm with respect to 

FCM.  

C. Analyzing sensitivity of PCM vs. HPCM with respect to 

K 

Another important issue about PCM approach is that it is 

highly sensitive to K. Value of K In equation (9) together 

with in itial value of U can determine degree of convergence 

of the objective function. More ever, some groups of data are 

more sensitive to K than others. We have tested sensitivity of 

PCM vs. HPCM with respect to K on some known data sets. 

Fig. 3 shows execution of possibilistic and our new method 

on Iris, Glass, Breast, Wine, and Wpbc data sets. Vertical axis 

in Fig. 3 represents average percent of correct classification 

of data points in 10 executions of the two algorithms. One of 

the major points that Fig. 3 indicates is that average percent 

of correct classificat ion of our new algorithm in all sample 

data sets for almost all values of K is significantly h igher than 

the ones in PCM algorithm. Therefore, our new a lgorithm 

assigns data points to clusters more accurately than standard 

possibilistic algorithm. 

 

On the other hand, from sensitivity point of v iew, Fig. 3 

indicates another fact: the figure compares sensitivity of five 

sample data points with respect to K for both algorithms. 

Analysis of Fig. 2 and Table 2 reveals that in our new 

method, one can find a relation between size of clusters and 

sensitivity to K. If data sets have special conditions, 

sensitivity of data sets to K alleviates. According to the 

results obtained in Table 2, it is obvious that if sizes of 

clusters for a data set are close together, sensitivity of the data 

set to K is low. For data sets where sizes of some clusters are 

very different from the others, sensitivity to K increases. Low 

sensitivity of Iris and Wine data sets is because sizes of 

clusters in these data sets are very close together or even 

identical. 

 

 

 

(a)  execution of FCM vs. PCM  

 

 

 

(b)  execution of FCM vs. HPCM  

 

Fig. 2. So lomon’s C101 data set 
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(a)  comparison for Wpbc data set. 

 

 

 

(c)  comparison for Glass data set. 

 

 

(e)  Comparison for Breast data set. 

 

 

(b)  comparison for Wine data set. 

 

 

 

(d)  comparison for Iris data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparing correct classificat ion rate with respect to K. 
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Table 2. Sensitiv ity of PCM and HPCM algorithms with respect to K. 

Data sets #of data #of 

clusters 

PCM 

Sensitivity 

to K 

HPCM 

sensitivity 

to K 

#of samples in clusters 

Glass 214 6 Low High  76,70,29,17,13,9 

Iris 150 3 High  Low 50,50,50 

Wine 178 3 Low Low 71,59,48 

Breast 699 2 High  High  458,241 

Wpbc 198 2 High  High  151,47 

IV. CONCLUSION 

Use In this paper, we made an investigation on PCM 

approach presented by Krishnapuram and James M. Keller in  

1993 to overcome weaknesses of FCM method. Our analysis 

was driven from different aspects. One aspect was the 

limitat ion in  their method misinterpreting the membership 

values while pushing cluster centers to an identical point. The 

other aspect was the sensitivity of their method to the value of 

K as different values of K might affect the results based on 

various conditions of input data. On  the other hand; we 

presented a hierarchical approach to overcome the problems. 

Our method used FCM and PCM methods hierarchically so 

that membership values interpret data points correctly while, 

will not permit  cluster centers to converge to an identical 

point. Our method, HPCM, was compared with PCM on 

different known data sets. The results indicate that the 

method is more accurate than PCM, while does not presents 

weaknesses of the previous method.  
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