
International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

- 445 -

Abstract—Software reuse is widely considered as a way to

increase the productivity and improve the quality and reliability
of new software systems. Identifying, extracting and
reengineering software components, which implement
abstractions within existing systems is a promising cost-effective
way to create reusable test assets. In the present scenario, one of
the major problems in building large-scale enterprise systems is
anticipating the performance of the eventual solution before it
has been built. Testing is an important and significant part of
the software development lifecycle to ensure a high quality
product with a minimum number of faults. But most
organizations don’t have a standard process for defining,
organizing, managing, and documenting their testing efforts.
Often testing is conducted as an ad hoc activity, and it changes
with every new product. Without a standard foundation for test
planning, development, execution, and defect tracking, testing
efforts are nonrepeatable, nonreusable, and difficult to measure.
Reengineering the test management process can solve the
problems due to unstructured, decentralized test management.
This paper explains the goals of reengineering test management
and how to achieve it and the approach as demonstrated,
constructs useful models that act as predictors of testing
effectiveness in component based enterprise applications.

Index Terms—Software Reuse, Component-based

development, Test management, Software components,
Reengineering.

 Ⅰ INTRODUCTION
In recent years, two accomplishments have fueled an

upsurge in the complexity of scientific simulation software.
First, rapid growth in computational capability based on
increasingly intricate hardware architectures is driving
computational scientists to develop new, more complex
algorithms to make best use of the systems. Second, scientific
advances are yielding new ways of approaching challenging
problems, offering better efficiency, accuracy, or fidelity.

Code complexity and reliance on software are increasing
as essential consequences of both of these accomplishments.
Computational science software is at growing risk of
becoming a victim of its own success, increasing in
complexity until it becomes unmanageable, unmaintainable
and incomprehensible. This inherent complexity impacts the
productivity of developers and, if left alone, ultimately may
cap the rate of progress in creating and improving scientific
software.

 Jasmine K.S is with RVCE, Visveswaraya Technological University,
Asst.Professor, Dept of MCA, Bangalore, India (phone: +919916101571).

Dr. R. Vasantha is with RVCE, Visveswaraya Technological University,
Prof, Dept of ISE, Bangalore, India.

Component-based software engineering (CBSE) is an
approach developed in other areas of computing as a means
of addressing similar problems of complexity. Units of
software functionality are encapsulated as components,
which interact with each other only through well-defined
interfaces. The actual implementation is opaque to other
components, and application composition is archived through
providing and using these interfaces. This approach reduces
complexity by allowing developers to focus on the internals
of the small set of components on which they are working,
while users of components need only be concerned with
component interfaces [7]. This separation of concerns is
useful in the collaborative or community-oriented software
development that increasingly characterizes modern
high-end simulations. Component-based environments
typically offer a “plug and play” approach to composition of
components into applications, in which components offering
the same interface are interchangeable, allowing easy
swapping of components to test new algorithms, tune for
performance, and other reasons [4]. To the extent that
communities of users agree to interfaces for certain
functionality, components can more easily be reused across
multiple applications. Reengineering allows altering an
existing system to reconstitute it in a new form.

A. Reengineering and Reuse
Chikofsky and Cross define reengineering as “the

examination or alteration of a subject system to reconstitute it
in a new form and subsequent implementation of that form”
[14]. This definition clearly is focused on the typical
interpretation of the term, the alteration of a software artifact.
Arnold, on the other hand, defines reengineering as “any
activity that (1) improves one’s understanding of software, or
(2) prepares or improves the software itself, usually for
increased maintainability, reusability, or evolvability”[6].
The term interpretation is particularly salient in organizations
that have lost the key individuals in which the knowledge
regarding the system of interest resides. There are a number
of potential benefits derived from reengineering software.
Reengineering can help reduce an organization’s evolution
risk. It is not uncommon for the only source of information
regarding why a software system does what it does to be the
software system itself. Reengineering hence can help an
organization recoup its investment in software and retain its
corporate memory. Reengineering can make software easier
to change and improve its reusability. Incorporation of new
design and implementation techniques can create a more
modular and composable system, accommodating not only
future modifications more effectively but also the
recomposition of a system into a new configuration for a new

Reengineering Test Management for Increasing
Testing Effectiveness in Component Based

Enterprise Applications
Jasmine K.S and Dr. R. Vasantha

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

 - 446 -

application via techniques such as refactoring [5]. Hence
reengineering is a catalyst for automating software
maintenance, providing a cusp through which an
organization can take a fresh direction in its development and
support of the organization’s software portfolio, as well as
acting as a potential agent for enabling reuse within the
organization.

Fig1. Reengineering

Fig2. Forward engineering

B. Component-Based Software Reengineering
 The component based software Re-engineering is aiming

to achieve larger software reutilization during software
systems reconstructing, the use of Component-Based
Software Engineering (CBSE) techniques in reengineering is
being researched [20]. The combination of Reengineering
and CBSE techniques can be a solution to rebuilt existing
systems, reusing the knowledge that has been accumulated
during their usage over the years and delivering more
evolvable and maintainable systems.

There are two types of reengineering can be considered
[18]:

i) White-Box Reengineering
 ii)Black-Box Reengineering

In White-box reengineering, the repartitioning of the
existing system into a component-based system takes place.
It requires an in-depth understanding of existing systems
from the bottom-up. It performs low-level changes to the
source code.

Fig3. White-box reengineering

In the black box reengineering, addition of a new
component layer to the existing system without change to the
underlying source code takes place. In this approach, one big
black box breaks into a number of smaller conceptual black
boxes, each representing a high-level business component. It
Presents the existing system to the outside world as though it
were constructed from a number of software components.

Fig4. Black box reengineering

C. The Need to Reengineer Test Management
Testing is such an important and significant part of the

software development lifecycle. Most organizations don’t
have a standard process for defining, organizing, managing,
and documenting their testing efforts. Often testing is
conducted as an ad hoc activity, and it changes with every
new project. Without a standard foundation for test planning,
development, execution, and defect tracking, testing efforts
are nonrepeatable, nonreusable, and difficult to measure.
Generating a test status report is very time consuming and
many times not reliable. It is difficult to procure testing
information such as the quantity of testing process,
completion time of testing, results of tests conducted, sharing
of the test cases in a similar kind of a platform and the level of
test coverage of the requirements specified. Getting this
information fast is critical for software product and process
quality. But many times, it is difficult to get this information,
depending on the way test cases and execution results are
defined, organized, and managed. There are many problems
associated with defining and storing test cases in
decentralized documents such as treacking, reuse,
duplication of test cases and efforts, version control, changes
and maintenance, inconsistenrt processes, requirement
tracebeality and coverage. The reengineering of test
management system facilitates to organize the material from
various reuse activities so they can be shared effectively for
use across the organization.

The objectives of the reengineering testing approach can
be listed as follows:

• Assist in defining, managing, maintaining, and
archiving test ware

• Assist in test execution and maintaining the
results log over different test runs and builds

• Centralize all testing documentation, information,
and access

• Enable test case reuse
• Provide detailed and summarized information

about the testing status for decision support
• Improve tester productivity
• Track test cases and their relationship with

requirements and product defects

 IⅡ MPLEMENTATION

A. Proposed System
 Steps involved

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

- 447 -

1. Perform reverse engineering to understand the existing
system

2. Perform the transformation trough translation of the
change scenario required

3. Achieve the Re-engineered system

Fig5. The Reverse Engineering process

Fig6. Reengineering process

Fig7. The Test procedure translation process

The step, reverse engineering, is used to rebuild the system
representation at the test design level. From the test results
log histoty, test procedure structure diagrams and test
artifacts design diagrams are generated and documented to
describe and control testing hierarchies. These diagrams
combined with existing test case documentation, personnel
experience and domain knowledge make it possible to
reproduce all the information required at the test design
abstraction level. A number of software technologies are
today available; including traditional CASE tools themselves,
which incorporate reverse engineering capabilities.
Traceability matrices generated in this phase is useful to
check the mapping of the design changes with the
requirements. Next, the test structure improvement will take
place with the help of test case organization and test case
documentation. Then test artifacts will be reengineered based
on the organized test cases. In the translation phase,
identification of test case differences in the component level
and the necessary test structure changes in the interface will
takes place. Old test design documents are compared with the
new rebuilt test design documents to verify that design
changes have not resulted in a worsening of test results. The
last step, forward engineering, is performed to upgrade those
parts of the systems, which have been redesigned, and to
ensure that the system still works with a better quality.

B. Cost Considerations
In the industry world, different reuse scenarios are

observed, namely i) Systematic reuse (SR) ii) Controlled
reuse (CR) iii) Opportunistic reuse (OR) and iv) Pure

development (PD). A reuse scenario is any sequence of
elementary operations performed while practicing reuse. In
the Systematic reuse scenario, the ultimate goal of reuse
processes is to have a set of test assets that are readily
available for reuse in all future products without further
modification. In the Controlled reuse scenario, a core-asset
repository has been established in which test assets are stored
or cataloged for the benefit of other products. In the
Opportunistic reuse scenario, each group responsible for one
of the n products knows that there exists a viable source S,
but it is not stored in any shared repository or registered in a
public catalog. In the Pure development scenario, each group
responsible for one of the n products is unaware of the
existence of S and, therefore, develops its target component
from scratch.

In order to determine the optimal scenario through which
the final target can be obtained from the original source test
assets, we must be able to compare the relative cost of
alternative scenarios. The basic operations in a reuse scenario
are

1) Mining and Cataloging (MC): Identifying and acquiring
an existing private asset P, from a certain product, and then
storing and cataloging it formally as a repository asset R.The
associated cost is the total cost of domain analysis.

2) Copy and Paste (CP): Acquiring a copy of a private
asset P for a specific product. The source asset is not
cataloged in the repository, and awareness of its existence is
based on personal knowledge. The cost of CP is identical to
cost of MC, i.e, the cost of domain analysis of a single asset.

3) Black-Box reuse (BB): Acquiring a copy of a particular
repository asset with no modifications for a specific product
as a private asset. Ideally, this should be an elementary copy
operation; in practice, however, this operation may require
some overhead activities as a consequence of adapting the
architecture of the target product in order for the imported
asset to fit. This is also the case when acquiring COTS test
assets for the product.

4) Cataloged asset Acquisition (CA): Acquiring a copy of
a repository asset R for a specific product as a private asset P.
It is assumed that P needs to undergo further modifications
(white-box reuse) within the product in contrast to black box
reuse. This cost includes the effort invested (or that may be
invested) in searching for an appropriate asset in the
repository, then analyzing and evaluating its fit with the
target product. There can be acquisition of asset from
external source and cataloging it as a repository asset R.This
is the case with COTS artifacts.

5) White-Box reuse (WB). Modifying an existing private
asset P into another private asset P1 within the same product.
This is the average cost of learning the asset’s structure plus
asset modification and adaptation over all the reuses of this
asset in the pilot study.

6) Number of Reuses. The number of target products that
reused the asset during the pilot study.

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

 - 448 -

TABLE I: THE COST OF BASIC OPERATIONS- A SAMPLE DATA [25]

The table 1 describes the cost of various basic operations in a reuse scenario for a sample of seven test assets.

Fig8. The cost of different reuse test scenarios

Figure8 depicts the cost-effectiveness of the actual test
reuse scenarios implemented for each of the test assets
relative to other scenarios: Opportunistic and Pure
Development. Systematic reuse-adapted represents the core

test assets adapted from test artifacts mined during domain
analysis and Systematic reuse –new represents the core test
assets

developed from scratch [18].

TABLE II: RELATIVE SAVINGS OF ALTERNATIVE REUSE SCENARIOS- A SAMPLE DATA [25]

Table 2 presents the cost-effectiveness of the actual reuse
scenarios implemented for each of the test assets relative to
other scenarios: Opportunistic Reuse, and Pure Development
We can see from Table 2 that if, the choice were between
only Systematic Reuse and Controlled Reuse, then the largest
relative savings (63 percent) would have resulted from the
Systematic Reuse of Asset 7. Conversely, the worst choice

would have been the Controlled Reuse of Asset 5 at a cost of
28 percent relative to the alternative. In comparison the other
referenced scenarios, we can see that the relative savings
obtained by implementing the preferred scenario over
Opportunistic Reuse were between 1 and 65 percent. In
comparison to Pure Development, the relative savings were
even more dramatic—between 41 and 81 percent.

III CONCLUSIONS & FUTURE STUDY
The reengineering and reuse of large legacy software

systems can be an expensive, error-prone endeavor.
Organizations are increasingly recognizing their software
portfolios as test assets to be utilized rather than as
obsolescent artifacts that should be discarded at the first
opportunity [17]. However, this shift in perception is not
without a price. Interest in software representation as a major
factor in the software development cycle has steadily been
gaining in importance. This leads to an evolving perspective
of a spectrum of representation expressiveness in software

development environments and tools [6]. This paper surveys
some of the key issues in reengineering legacy software
systems and the adoption of reuse and reengineering
technology in test management. Future work can propose an
automated environment for implementation of the steps
mentioned and its application to case studies
coming from the industrial world. The test management
system modeled in this paper help to bridge the gap between
the black box and white-box approaches, enabling execution
behavior to be modeled for accuracy, component upgrades
and updates. The model’s easy adaptation to software
evolution without

a need of retesting the complete system saves time and

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

- 449 -

effort. In summary, the new test management system
provides increased reusability of software test components
and reduced time to market for applications.

 ACKNOWLEDGMENTS
The author would like to thank the members of both the

management and technical committees of various industry
projects who worked together and contributed with numerous
useful suggestions towards the successful completion of this
research.

REFERENCES
[1] Boris Beizer, Software Testing Techniques, VanNostrand, second

edition, 1990.
[2] Ball, T.,et al., “State Generation and Automated Class Testing.

Software Testing”, Verification and Reliability, Volume 10, Number 3,
September 2000, 147-170.

[3] Biggerstaff, Ted J. “Software Reusability: Applications and
Experience”, ACM Press Frontier Series, 1989.

[4] John D. McGregor, “Verification and Validation Issues and
Implications for Reuse”, Technical Report, Department of Computer
Sciences, Clemson University, Clemson, SC 29634.

[5] http://www.StickyMinds.com Original\Article info Reengineering Test
Management.htm

[6] P. D. Johnson, “Mining legacy systems for business components:
architecture for an integrated toolkit”, Proceedings of the 26th Annual
International Computer Software and Applications Conference
(COMPSAC’02).

[7] M. R. Olsem, “An incremental approach to software systems
re-engineering”, Journal of Software Maintenance: Research and
Practice, 10:181–202, 1998.

[8] Elizabeth Burd and Malcom Munro, “Investigating component-based
maintenance and the effect of software evolution: a reengineering
approach using data clustering”, Proceedings of the International
Conference on Software Maintenance, ICSM98, pp. 199-207. 1998.

[9] Santiago Comella-Dorda, Grace Lewis, Pat Place, Dan Plakosh and
Robert Seacord,“Incremental Modernization for Legacy Systems”,
Technical Report CMU/SEI-2001-TN-006, Software Engineering
Institute, Carnegie Mellon University, July 2001.

[10] Arnold, R. S, A Road Map Guide to Software Reengineering
Technology,” Software Reengineering, S. Arnold (ed.), IEEE
Computer Society Press, 1993.

[11] Basili, V. R., Caldiera G., and Cantone, G. “A Reference Architecture
for the Component Factory,” ACM Transactions on Software
Engineering and Methodology, vol. 1, no. 1, pp. 53-80.,1992.

[12] Beck, J. and Eichmann, D, “Program and Interface Slicing for Reverse
Engineering”, Proceedings of International Conference on Software
Engineering, Baltimore, MD, May1993, pp. 509-518.

[13] Chikofsky, E. and Cross, J. H, “Reverse Engineering and Design
Recovery: A Taxonomy,”IEEE Software, vol. 7, no. 1, 1990,pp. 13-17.

[14] Sneed, H. M., “Economics of Software Re-engineering,” Journal of
Software Maintenance: Research and Practice, vol.3, no.3,
pp.163-182,1991.

[15] Wegner, P., “Capital-Intensive Software Technology”, IEEE Software,
vol. 1, no. 3, 1984.

[16] Weisskopf, M., Irving, C. W., McKay, C. W., Atkinson, C. and
Eichmann, D.,“Maintenance In a Dual-Lifecycle Software Engineering
Process,”Conf. on Software Maintenance, Monterey, CA,pp.4-8,
November 1996.

[17] Patrick A.V. Hall and Lingzi Jin,“The Re-engineering and Reuse of
Software”, Software Engineering, Vol .1, p.355

[18] Prem Devanbu, “Analytical and Empirical Evaluation of Software
Reuse Metrics” ,Proceeding of the 18th International Conference on
Software Engineering (ICSE’96) p. 189,1996.

[19] Marcus A. Rothenberger, “Strategies for Software Reuse: A Principal
Component Analysis of Reuse Practices”, IEEE p.825, Transaction on
Software Engineering, Vol. 29 No. 9, September 2003.

[20] F. Abbattista, G. M. G. Fatone, F. Lanubile, G.Visaggio, “Analyzing
the application of a reverse engineering process to a real situation”,
Proceedings of the 3rd Workshop on Program Comprehension,
Washington, D.C., November 1994, pp.62-71.

[21] V. R. Basili, “Viewing maintenance as reuse oriented software
development”, IEEE Software, January 1990, pp.19-25.

[22] E. J. Byrne, “A conceptual foundation for software re-engineering”,
Proceedings of the Conference on Software Maintenance, Orlando,
Florida, November 1992, pp.226-235.

[23] M. M. Lehman, “Programs, life cycles, and laws of software evolution”,
Proceedings of the IEEE, Vol.68, no.9, September 1980,
pp.1060-1076.

[24] Amir Tomer, Leah Goldin, Tsvi Kuflik, Esther Kimchi, and Stephen R.
Schach, “Evaluating Software Reuse Alternatives: A Model and Its
Application to an Industrial Case Study”, IEEE transactions on
software engineering, vol. 30, no. 9, September 2004,pp.601-612.

Jasmine K.S born in the Ernakulam District of
Kerala state on October 14th in the year 1971.
She received BSc degree in Mathematics from
Mahatma Gandhi University, Kerala in 1991,
MSc degree in computer science from Kerala
University, Kerala in 1994 and M.Phil degree
in computer science from Bharathidasan
University, Tamilnadu in 2005. She is
currently doing her PhD in computer science in
Mother Teresa University, Kodaikanal,
Tamilnadu.

She is an Assistant professor in the Department of MCA, R.V.College of
Engineering, Bangalore. Since from 1995, she is working as a lecturer in the
field of computer science. During 98-99, She held a visiting faculty position
at Visveswarapura College of science, Bangalore. She has authored 23
research papers in the national and international level journals and
conferences. Her research interests include Software reuse, Software
performance, Software testing, data mining and experimental software
engineering.

Ms. Jasmine is the member of Indian society for technical education
(ISTE), Computer society of India (CSI), International Society for Computer
Applications (ISCA), International Association of Engineers (IAENG) and
International Association of Computer Science and Information Technology
(IACSIT).

Dr.R.Vasantha received BSc degree, majored
in Physics, Chemistry and Mathematics from
University of Mysore, India in 1976, MSc
degree in Mathematics from Manasa Gangotri,
University of Mysore, India in 1978 and PhD
from Indian Institute of Science, Bangalore,
India in 1985.

She is a professor in the Department of
Information science and Engineering,
R.V.College of Engineering, Bangalore. She

got more than 25 years of research experience. During Oct.1991-Oct.1994,
she worked as a Scientist in National Aeronautical Laboratory, Bangalore,
India, on Turbulence modeling of aerofoil.Sept1988-Sept.1991: Worked as
Research Associate in the Dept. of Mechanical Engineering, University of
New South Wales & University of Sydney, Sydney, Australia on turbulence
modeling. Oct.1987-Sept.1988: Worked as a Senior Research Associate in
the School of Mathematics, University of East Anglia, Norwich, England, on
the initiation of detonation waves, Oct.1986-Oct.1987: Worked as a Senior
Visiting Fellow in the School of Mathematics, University of East Anglia,
Norwich, England. Aug.1985-Aug.1986: Worked as Research Associate in
Dept. of Aerospace Engineering, IISc, Bangalore, India. She also has many
years of teaching experience. During 1978-1980, she worked as a Lecturer,
1994-2002: Worked as Associate Professor of Mathematics, 2002-2006:
Worked as Professor & HOD of Mathematics in an Engineering College in
India. Her research interests are in the field of computational fluid mechanics.
She is the author and coauthor of several publications appearing in
international journals, books, and conference proceedings in the fields of
Applied Mathematics and Computational fluid mechanics.

Dr. Vasantha is a Gold medal contender for PhD dissertation. And also
she Won Scholarship from B.Sc. till the end of Ph.D.

http://www.StickyMinds.com

