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Abstract—In this paper, we introduce SystemCtlm
FL, an 

algebraic theory based on classical process algebras “Algebra of 
Communicating Processes (ACP)” and “A Timed Process 
Algebra for Specifying Real-Time Systems (ATP)” that can be 
used to specify and analyze the behavior of SystemC designs. 
This language is the successor of the SystemC FL language. The 
SystemCtlm

FL language extends SystemCFL with the possibility to 
define process term instantiations and for the use of SystemC 
positional connections/named connection and Transaction 
Level Modeling (TLM). We illustrate the practical use of 
SystemCtlm

FL by means of several examples (including a TLM 
example). 
 

Index Terms—SystemC, formal semantics, SystemCFL, 
SystemCtlm

FL, process algebras, formal specification and 
analysis, transaction level modeling 
   

I. INTRODUCTION 
SystemC [12] is a modeling language consisting of C++ 

class libraries and a simulation kernel for Hardware 
Description Language (HDL) designs, encompassing 
system-level behavioral descriptions down to Register 
Transfer Level (RTL) representations. Nowadays, SystemC 
is becoming the de-facto-standard for system level modeling 
and design in industry. SystemC can also address the need for 
directly expressing heterogeneous and hierarchical behaviors 
for modeling specific embedded systems [36]; and to test 
such embedded systems [8]. Despite its successes, SystemC 
has no formal semantics. Although some attempts to apply 
formal methods to verify SystemC designs have been made, 
it still does miss the possibility of formal reasoning of designs 
described in SystemC. The goal of developing a SystemC 
formal semantics is to provide a complete and unambiguous 
specification of the language. It also contributes significantly 
to information sharing, to description portability, and to 
integration of various applications such as simulation, 
synthesis, and formal verification.  

In a attempt (from the free time of a Ph.D. student with 
some knowledge in Electronic Design Automation (EDA), 
For-mal Methods and Process Algebras [4], [3]) to give a 
formal semantics of a reasonable subset of SystemC based on 
process algebras that could be used for the formal 
specification and analysis of SystemC designs, the formal 
language SystemCFL (SCFL in ASCII format) [7], [21], [19], 
[23], [17] was first defined in [16] (2004); and subsequently 
extended with some features in [20] (2005). 

SystemCFL maybe regarded as the formalization of a 
reasonable subset of SystemC based on the classical process 
algebras Algebra of Communicating Processes (ACP) [4] and 
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A Timed Process Algebra for Specifying Real-Time Systems 
 (ATP) [32]. The semantics of SystemCFL is defined by 

means of deduction rules in a Structured Operational 
Semantics (SOS) [35] style that associates a time transition 
system (TTS) with a SystemCFL process. A set of properties is 
presented for a notion of bisimilarity. 

     More precisely, SystemCFL is aimed at giving formal 
specifications of SystemC designs and to perform formal 
analysis of SystemC processes. Furthermore, SystemCFL is a 
single formalism that can be used for specifying concurrent 
systems, finite state systems and real-time systems (as in 
SystemC). Desired properties of these systems specified in 
SystemCFL can be verified with existing formal verification 
tools by formally translating them into different formats that 
are the input languages of such tools. Hence, SystemCFL can 
be purportedly used for formal verification of SystemC 
designs. For instance, safety properties of concurrent systems 
specified in SystemCFL can be verified (see [24]) by 
translating those systems to PROMELA [11], which is the 
input language of the SPIN Model Checker [11]. 

Similarly, [22] reported that some desired properties of 
finite state systems specified in SystemCFL can be fed into the 
SMV Model Checker [29] to verify them. Moreover, a formal 
translation was defined in [15] from SystemCFL to a variant 
(with very general settings) of timed automata [2]. The 
practical benefit of the formal translation from a SystemCFL 
specification (describing a real-time system) to a timed 
automaton is to enable verification of timing properties of the 
SystemCFL specification using existing verification tools for 
timed automata, such as UPPAAL [14].  

During the last few years, we have seen that SystemCFL has 
been successfully used to give formal specifications of 
SystemC designs (see also [16], [18], [20]). However, for 
formal analysis purposes, users have been required to 
manually transform their SystemC codes into corresponding 
SystemCFL specifications. To verify some desired properties 
of SystemCFL specifications using existing formal verification 
tools (see also [15], [22], [24]), similarly, manual translations 
have been needed for turning SystemCFL specifications into 
corresponding terms of the input language of the selected 
formal verification tool. Since manual transformation and 
translations between SystemC codes, SystemCFL 
specifications and various formalisms are quite laborious and 
therefore error-prone, these translations have to be 
automated. 

Nowadays, Transaction Level Modeling (TLM) is 
indispensable to solve a variety of practical problems (e.g. 
pro-viding an early platform for software development and 
sys-tem level design architecture analysis) during the design 
and development of complex electronic systems. Also, TLM 
has been widely propagated and used for System-on-a-Chip 
(SoC) and embedded system design. The interested reader 
may refer to [10] for excellent surveys on the topic of TLM.  
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SystemC has supported TLM since the version 2.0. In the 
past few years, SystemC has proven to be suitable for TLM 
and has also becoming the de-facto standard for TLM in the 
electronic design community.  

However, TLM is still a relatively young kind of approach 
meant to ease the handling of the constantly growing 
complex-ity of electronic systems; by raising the level of 
abstraction it allows system architects, embedded software 
engineers, and system developers, to explore architectural 
alternatives, to start software development, and to produce 
raw performance estimation at a much earlier stage than it 
would be possible if a RTL description of the system were 
used as platform reference.  

With alternative exploration in mind, the main advantage 
of TLM is the simulation speed-up that it offers w.r.t. 
cycle-accurate representation, essentially due to the different 
abstraction level, which turns into a much smaller amount of 
information to be handled. The main disadvantage shown by 
TLM, so far, is the lack of a formal semantics, that could be 
used both for consistency checking during description 
refinement, and for property checking on untimed 
descriptions, mainly aimed at checking functional 
correctness on an abstraction of the final system. Various 
attempts to give TLM a formal background have already been 
made, but none of those has proposed a framework to allow 
checking on specific aspects of the component being 
designed with the most suited formal checking tool.  

To reach the goal of formal verification of SystemC 
designs (with a focus on SystemC TLM), as reported in [28], 
we have focused our attention on SystemC as a language for 
TLM, and selected SystemCFL as the language to formally 
represent SystemC designs.  

In the frame of a tight collaboration between 
re-searchers/engineers from industrial entities and research 
institutes, several tools for SystemCFL have been being 
developed. These tools enable automatic translations from 
SystemC codes to SystemCFL specifications and from 
SystemCFL specifications to various formalisms that are the 
input languages of some existing formal verification tools. 
Using SystemCFL tools in combination with some formal 
verification tools yields automatic verifications of SystemC 
designs via SystemCFL specifications (for different 
verification purposes).  

Our first goal of the research in these directions is to 
develop an automatic translation tool which converts untimed 
SystemC codes into the corresponding SystemCFL 
specifications that can be further mapped to the input 
languages of several formal verification tools (e.g. SPIN and 
NuSMV [33]). Recently, such an automatic translation tool 
SC2SCFL has been developed in the Java language (JDK 
1.5.0) using JavaCC 4.0 as a parser generator. Although the 
current release of SC2SCFL can be used to translate some 
SystemC designs (e.g. counter & test-bench and scalable 
synchronous bus arbiter as shown in [27], [30]) to the 
corresponding specifications in SystemC, it is not applicable 
in practice to deal with the translation of industrial SystemC 
designs. Our experience with SC2SCFL tells us that, based 
on the current semantics of SystemCFL, it is impossible to 
build a translator in such a way that it can be used to translate 
complex SystemC designs, because SystemCFL is not 

expressive enough to formally represent the current version 
of SystemC (2.2). For instance, SystemCFL (developed in 
2004) has no well-defined semantics for TLM and cannot 
deal with SystemC process instantiations and positional 
connections modeling features.  

After having several attempts, by means of defining new 
semantics and new operators, to extend SystemCFL to cope 
with the features such as SystemC TLM and process 
instantiation; it turned out to be very difficult to show that 
SystemCFL with new operators could be an operational 
conservative extension [43] of SystemCFL as defined in [16], 
[20]. Furthermore, we had several ideas to improve 
SystemCFL in such a way that the semantics of SystemCFL 
would be more intuitive, simpler and elegant.  

Hence, we made a decision to redesign SystemCFL. 
Recently, the successor of SystemCFL, called SystemCtlm

FL 
(SCFL2 in ASCII format), has been developed. The aim of 
SystemCtlm

FL is to serve as formalism to formally rep-resent 
SystemC (current version) including SystemC TLM features. 
In this paper, we sketch the newly developed formal language 
SystemCtlm

FL. The SystemCtlm
FL language extends SystemCFL 

with the possibility to define process term instantiations and 
for the use of SystemC positional connections/named 
connection and SystemC TLM. 

A.  Structure 
The reminder of the paper is organized as follows. In 

Section II, we give a brief overview of SystemCFL formalism 
that is relevant for the use in this paper. The motivations and 
outlines of the development of SystemCtlm

FL are given in 
Section III and Section IV presents the SystemCtlm

FL language 
including the syntax and the formal semantics. By means of 
several examples, the practical use of SystemCtlm

FL is 
illustrated in Section V and Section VI discusses the related 
work of SystemCFL. Finally, concluding remarks are made in 
Section VII and the direction of future work is pointed out in 
the same section. 

II. FORMAL LANGUAGE SYSTEMCFL 
 

For the reason of space limitation, an overview of SystemC 
is not given in this paper. Some familiarity with SystemC is 
required. The desirable background can, for example, be 
found in [12]. In this section, we give a short overview of the 
formal language SystemCFL (that is relevant for the use in this 
paper). Also note that SystemCFL is strongly influenced by 
ACP and ATP. Hence, fundamental mechanisms used in 
SystemCFL to model processes are similar to those process 
algebras. 

A.  SystemCFL Data Types  
In order to define the semantics of SystemCFL processes, 

we need to make some assumptions about the data types. Let 
Var denote the set of all variables (x0, . . . , xn), and Value 
denote the set of all possible values (v0, . . . ,vm) that contains  
at least B (Booleans) and R (reals). A valuation is a partial 
function from variables to values (e.g. x0 7→v0). The set of all 
valuations is denoted by Σ. The set Ch of all channels and the 
set S of all sensitivity lists with clocks maybe used in 
SystemCFL processes that are assumed.  

Notice that the above proposed data types are the 
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fundamental ones. Several extensions of data types (e.g. “sc 
bit” and “sc logic”) were already introduced in [18]. 

B. Syntax of the SystemCFL Language  
P denotes the set of process terms in SystemCFL and p ∈ P 

are the core elements of SystemCFL. The formal language 
SystemCFL is defined according to the following grammar for 
process terms p ∈ P :  

p ::=   δ  |  skip  |  x := e  |    en   |   o  |  p J b I p 
b ª p  |  p • p  |  pΘp  | p 4d p |  p¨dp  |  ∗p 
p k p  |  p k p  |  p v p  |  ∂H (p) |  τI (p)  |  π(p) 

a(p)  |  Υ Â p 
Below is a brief introduction of the syntax of SystemCFL: 
n The deadlock δ is introduced as a constant, which 

represents no behavior. 
n The skip process term skip performs the internal 

action τ, which is not externally visible.  
n The assignment process term x := e, which assigns the 

value of expression e to variable x (modeling a 
SystemC assignment statement).  

n The delay process term en is able to first delay the 
value of numerical expression en and then terminates 
by means of an internal action τ.  

n The unbounded delay process term o (modeling a 
SystemC wait statement) may delay for a long time 
that is unbounded or perform the internal action τ.  

n The conditional composition p J b I q operates as a 
SystemC if_then_else statement, where b denotes a 
boolean expression and p,q ∈ P . If b holds, p 
executes. Otherwise, q executes.  

n The watch process term b ª p is used to model a 
SystemC construct of even control.  

n The sequential composition p • q models the process 
term that behaves as p, and upon termination of p, 
continues to behave as q.  

n The alternative composition pΘq models a 
non-deterministic choice between p and q.  

n The timeout process term p 4d q (modeling a SystemC 
time out construct) behaves as p if p performs a time 
transition before a time d ∈ R>0. Otherwise, it 
behaves as q.  

n The watchdog process term p¨dq behaves as p during a 
period of time less than d, at time d, q takes over the 
execution from p in p¨dq; if p performs an internal 
cancel χ action, then the delay is cancelled, and the 
subsequent behavior is that of p after χ is executed.  

n The repetition process term ∗p (modeling a SystemC 
loop construct) executes p zero or more times.  

n The parallel composition p k q, the left-parallel 
composition p k q and the communication 
composition p v q are used to express parallelism in 
which actions are executed in an interleaving manner 
with the possibility of synchronization of actions. The 
synchronization of actions take place using a (partial, 
commutative and associative) synchronization 
function γ ∈ Aτ × Aτ 7→Aτ (the set Aτ is defined in 
Subsection II-C). For example, if the actions a and b 
synchronize, the resulting action is c such that γ(a, b) 
= c.  

n The encapsulation of actions is allowed using ∂H (p), 
where H represents the set of all actions to be blocked 
in p.  

n The abstraction τI (p) behaves as the process term p, 
except that all action names in I are renamed to the 
internal action τ.  

n • The  maximal  progress  π(p)  assigns  action  
transitions a  higher  priority  over  time  transitions;  
this  operator  is needed  to  establish  a  desired  
communication  behavior, that  is,  both  the  sender  
and  the  receiver  must  be  able to  perform  time  
transitions,  but  if  two  of  these  can communicate  
(i.e.  performing action  transitions),  they should not 
perform time transitions. 

n The grouping of actions in p and executing them in 
one single step can be done by using a(p).  

n The signal emission operator Υ Â p requires that the 
predicate Υ always holds; if it is the case, Υ Â p 
behaves like p, otherwise, it is a δ; this operator is 
needed for defining the translation from SystemCFL to 
the SMV language [29] (see also [22]).  

It is worth mentioning that the syntax in ASCII format of a 
subset of SystemCFL was defined in [28] to ease the 
development of SystemCFL toolset. 

1) Outlines: It is worth to show some outlines concerning 
the syntax of SystemCFL: 
n Synchronous and asynchronous systems. It is not hard 

to see that the behavior of asynchronous systems can 
be easily modeled using the parallel composition 
operator in SystemCFL, whose actions are interleaved 
between process terms (e.g. x := 1 k y := 5) in a 
parallel context. In addition, it is possible to describe 
synchronous systems, using the parallel composition 
operator in SystemCFL with the application of the 
grouping operator on it (e.g. a(x := 1 k y := 5)), where 
the assignments are taken into account in parallel and 
simultaneously. We illustrate it by means of a simple 
example. Let us consider the process term a(x := 1 k 
y := 5), it can be rewritten to a(x := 1 • y := 5 Θ y := 5 • 
x := 1) and then to a(x := 1 •y := 5) Θ a(y := 5 •x := 1) 
using SystemCFL axioms/properties [25]. Process term 
a(x := 1 • y := 5) Θ a(y := 5 •x := 1) models a 
non-deterministic choice between a(x := 1 • y := 5) 
and a(y := 5 • x := 1). Let us first discuss the process 
term a(y := 5 • x := 1). The application of the grouping 
operator to the process term x := 1 • y := 5 makes the 
assignment x := 1 followed by y := 5 become atomic 
(i.e. in one transition). A similar reasoning can be 
made to describe the behavior of the process term 
a(y := 5 • x := 1). Putting all together, from an 
observer’s point of view, the process term a(x := 1 • 
y := 5 Θ y := 5 • x := 1) only performs a single 
transition in which the assignments x := 1 and y := 5 
are executed in parallel and simultaneously. 

n TLM and communication mechanism in SystemC. 
Informal semantics of SystemC in [12] states that 
SystemC incorporates both point-to-point 
communication and multi-party communication 
mechanisms for the interaction between concurrent 
processes. However, there are no (specific) 
statements in SystemC for modeling these 
communication mechanisms. Loosely speaking, 
components in TLM are modeled as 
modules/processes in a parallel context. They are 
communicated in the form of transactions through an 
abstract channel. In order to capture the 
communication behaviors as indicated above between 
concurrent processes, operators k, k , v, ∂H , τI , and π 
(from ACP) were introduced in SystemCFL. Over the 
years, the communication mechanism in ACP has 
been widely used for modeling such communication 
behaviors. In addition, the idea of using a 
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synchronization/communication function γ (ACP) to 
define the synchronization/communication behaviors 
among parallel processes is particularly well-suited 
for defining TLM semantics possibly in SystemCFL 
(see [25] for details).  

III. FROM  SYSTEMCFL TO SYSTEMCTLM
FL 

 
As we already mentioned in Section I, it turned out to be 

impossible to use SystemCFL to formally represent the 
cur-rent version of SystemC. The main clauses are the 
following: 
n Expressivity and TLM. Clearly, SystemCFL 

(developed in 2004) is rather old. It is not expressive 
enough to formally represent SystemC (today) and 
SystemCFL has no well-defined semantics for TLM.  

n Lack of SystemC features. There are also quite a lot of 
SystemC constructs and features that were not 
formalized in SystemCFL yet. As examples, 
instantiation of SystemC modules, positional 
connections in SystemC and some C++ constructs.  

n Unintuitive syntax. Generally speaking, the common 
syntax used in process algebraic theories (including 
SystemCFL) is not intuitive for designers and 
engineers in the electronic design community. Also, 
designers and engineers are uncomfortable with 
mathematical notations used in SystemCFL.  

n Unintuitive semantics. Needless to say that the formal 
semantics of SystemCFL is also not intuitive for 
designers and engineers in the electronic design 
community. In our experience, for example, the 
use/definition of two valuations (e.g. previous 
accompanying valuation and current valuation) in the 
quintuple of a SystemCFL process is highly unintuitive 
for the users. According to the deduction rules of 
some SystemCFL operators (e.g. the watch operator ª), 
this is needed and can be used to observe the change 
of the valuation of variables in the sensitivity list. 

IV. FORMAL LANGUAGE SYSTEMCTLM
FL 

 
Based on the concept of SystemCFL towards a slightly 

richer language, the successor of SystemCFL, the formal 
language SystemCtlm

FL has been recently developed, which 
can be used to formally represent (most of the features of) the 
current version of SystemC (2.2) including SystemC TLM 
features. A detailed account of SystemCtlm

FL date types, 
syntax and semantics can already be found at [44], please 
refer to [44] for details.   

V. EXAMPLES IN SYSTEMCTLM
FL 

 
In this section, we aim to illustrate that SystemCtlm

FL can 
be used for SystemC positional connections/named 
connection modeling and SystemC TLM. 

A.  Synchronous D Flip Flop Example  
Using the syntax and semantics of SystemCtlm

FL, we can 
obtain a much more simpler, intuitive and elegant 
specification of the synchronous D flip flop (as shown in 
Subsection II-E) as follows: 

 
h¬clk−  clk∧ + ª Q := d, σOE  for some σ and E such that 
σ = {clk 7→false, d 7→true, Q 7→true, time 7→0} 

and  

E = ({clk},  ,  ).  
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Fig. 2. A filter design.  

 

B.  Filter Design Example 
Figure 2 depicts a simple filter design. This example 

consists of three modules Sample, Mult and Coeff.  
In SystemCtlm

FL, Sample(d0
out ,d0

in ) = ps, Mult(q0,a0,b0) = 
pm and Coe (out0) = pc are the process term definitions for 
modules Sample, Mult and Coeff respectively, where ps, pm 
and pc are process terms that describe some behavior of such 
modules Sample, Mult and Coeff. Notice that the variables 
with a prime (e.g. d0

out and q0) are the formal parameter 
variables in the process term definitions.  

In the example, we use named connection for the 
component instantiations, for example, din of s1 (which is the 
instantiation of Sample) is connected to q of m1 (which is the 
instantiation of Mult). The SystemCtlm

FL filter process is 
given below: 

hΥ Â (s1(dout , din ) k m1(q, a, b) k c1(out)), σOE  for some 
Υ, σ and E such that Υ t s1 = Sample ∧ m1 = 

Mult  c∧ 1 = Coe     d∧ in  = q  d∧ out  = a  out ∧ = b, 
σ = {dout  = din  = q = a = b = out 7→ ,⊥ time 7→0} and 

E = ( ,  , {Sample(d0
out , d0

in ) = ps, Mult(q0, a0, b0) = 
 

pm, Coe   (out0) = pc}). 
 

For simplicity, the behavior of some variables (e.g. din and q) 
defined by means of the process terms (e.g. ps,pm and pc) in 
the process term definitions for modules (e.g. Sample and 
Mult) is not given. Clearly, all process term instantiations 
execute in a parallel context (i.e. s1(dout , din ) k m1(q, a, b) k 
c1(out)). The signal emission operator with the predicate Υ 
applied on such a parallel context is used to enforce/ensure 
the correct named connection for the component 
instantiations (e.g. dout = a) and process term instantiations 
(e.g. s1 is the instantiation of Sample) always hold during the 
evolution (in terms of transitions) of the SystemCtlm

FL filter 
process. It is not hard to see that using the idea of positional 
connection to describe the filter design can also work well. 

C.  TLM Buffer Example 
This subsection presents an example which implements a 

TLM one slot buffer. In the example, a process term 
ReadWrite issues randomly and continuously write and read 
actions to an one slot buffer and a process term Status 
describes the availability of the buffer if it is ready for 
reading from the channel m (i.e. when the flag variable busy 
evaluates to true) or if it is free for writing to the channel m 
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(i.e. when the flag variable busy evaluates to false). The 
process term Status is defined as follows: 

 
Status ≡ busy := false  J  busy  I  busy := true. 

 
As mentioned already in Definition 5, actions are 

considered as parameters of SystemCtlm
FL that can be freely 

instantiated. For this process term, we also write busym and 
freem as the actions associating with the assignment process 
terms busy := false and busy := true respectively. These 
actions are used for the synchronization with other actions 
(see the process term Buffer below for details) for writing to 
the buffer through the channel m when the buffer is free or 
reading from the buffer through the channel m when the 
buffer is occupied. As shown in the process term Status, 
depending on the status of the flag variable busy, a choice is 
made between performing action busym or action freem. In 
either case, the value of the flag variable busy will be 
converted (from true to false or vice versa) after performing 
such actions. 

 
The process term ReadWrite is defined below: 

 
ReadWrite ≡ data := true Θ data := false. 

 
For this process term ReadWrite, we write actions readm 

and writem as the actions associating with the assignment 
process terms data := true and data := false respectively. 
When readm executes, the reading action is performed 
through the channel m and leads to free the buffer by means 
of assigning a predicate true to the variable data (to denote 
that the buffer is not busy). Similarly, when writem executes, 
the writing action is performed through the channel m and 
leads to occupy the buffer by means of assigning a predicate 
false to the variable data (to denote that the buffer is busy).  

The complete system is described by the process term Bu 
er as follows: 

 
Buffer ≡  (o •τI (∂H (ReadWrite k Status))),  where I = 

{writeokm, readokm}, H = 
{writem, readm, busym, freem}, γ(writem, freem) 

= writeokm, and γ(readm, busym) = readokm. 
 
Clearly, process terms ReadWrite and Status exe-cute 

concurrently with synchronization of actions between writem, 
readm, busym and freem over the channel m. Intuitively, writem 
is synchronized with freem and leads to an action writeokm (let 
us say). Also, readm is synchronized with busym and leads to 
an action readokm (let us say). The execution of writeokm 
refers to the case that the buffer is free and then is written 
through the channels m; and the execution of readokm refers 
to the case that the buffer is occupied and then is read from 
the channels m. Figure 3 shows the interaction of 
synchronization actions over the channel m.  

It is not hard to see that the encapsulation operator is used 
to enforce actions over the channel m into synchronization, 
while the abstraction operator makes synchronization actions 
over the channels m invisible. In order to make the 
specification of the process term Buffer more interesting, 
process terms o and   are used to introduce some arbitrary 

delay and repetition to such a process term.  
Finally, the SystemCtlm

FL process BUFFER is given below:  
 
      (writem,freem)  

writeokm  

Channel m  
(readm,busym)  

readokm 
 

Fig. 3.    Interaction of synchronization actions over the channel m. 

BUFFER t hBu er, σOE  for some σ and E such that 
σ = {data 7→ ,busy⊥  7→false, time 7→0} and   

E = ( , {m},  ).  

VI. RELATED WORK 

Over the last ten years or so, research works in formal 
semantics in electronic design community that have targeted 
to obtain some applicable opportunity mainly focused on 
Verilog, VHDL and SystemC. Quite often, their definitions 
were based on Abstract State Machine (ASM) specifications, 
Denotational Semantics and rewrite rules [31], [37], [39], 
[38], [5], [6]; for instance (as related work for the research in 
SystemC semantics), [31], [37] addressed respectively the 
simulation semantics of SystemC in the form of distributed 
ASM specifications and in the denotational semantics for 
various subsets of SystemC. Recently, some research works 
on the SystemC TLM semantics have also been done by 
means of deduction rules [40] and via PROMELA (an 
asynchronous formalism).  

It is generally believed that a SOS provides more intuitive 
descriptions and that ASM specifications and denotational 
semantics appear to be less suited to describe the dynamic 
behavior of processes [1]. Since processes are the basic units 
of execution within Verilog, VHDL and SystemC that are 
used to simulate the behavior of a device or a system, process 
algebras with a SOS style semantics are more immediate 
choices for giving formal specifications of systems in 
electronic design community (these motivated us to develop 
SystemCFL in a process algebraic way with SOS deduction 
rules).  

In the recent years, various formal approaches (based on 
ASM specifications, deduction rules and denotational 
semantics) have already been studied and investigated for 
SystemC (e.g. [31], [37]) that can only be considered as 
theoretical frameworks, except a few trails (e.g. [9]), because 
they are not directly executable.  

In contrast to such formal approaches and others [31], [37], 
[39], [38], [5], [6], [40], [42], SystemCFL specifications are 
completely executable (as in many process algebraic 
specifications). More precisely, the behavior of a 
specification described in SystemCFL can be illustrated by 
means of transition traces according to SystemCFL deduction 
rules together with the TTS associating to SystemCFL. 
Similarly, formal analysis of the SystemCFL specifications 
can be performed using SystemCFL deduction rules together 
with the TTS associating to SystemCFL.  

However, in our view, SystemCFL has generally some 
disadvantages. First, the formal language SystemCFL is small 
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and has no well-defined semantics for TLM. Second, the 
syntax and semantics of SystemCFL are probably not intuitive 
for one not having a strong background in Computer Science; 
and designers of system-level design are often uncomfortable 
with mathematical notations used in SystemCFL.  

Recently, as pointed out incorrectly by [42], that 
SystemCFL claims its similarity with SystemC, does not have 
a non-preemptive scheduler1 and does not seem to manage a 
notion of “event” (which is the basic synchronization 
primitive on top of which everything else is built in 
SystemC), etc. In respond to these, strictly speaking, 
SystemCFL is the formalization of a subset of SystemC based 
on the classical process algebras and it is not a claim of 
certain similarity with SystemC; the notion of a 
non-preemptive scheduler (as given in [42]) is ensured by the 
(termination, action and time) transition rules defined for 
various SystemCFL operators (see [16], [20] for details); and 
clearly the watch process term in SystemCFL is used to model 
the construct of a “event control” in SystemC (see the 
example given in Subsection II-E for details).  

In SystemC, statements, macros, classes and other core 
language elements are predefined. Users/modelers can use 
such language elements in SystemC to make models, which 
repre-sent, for instance, state machines and asynchronous 
systems. With the same idea as in SystemC, users/modelers 
can use process terms in SystemCFL to model various systems. 
Al-though, there are no deduction rules in SystemCFL 
explicitly defined for synchronous and asynchronous 
composition as defined in [40], the semantics of them can be 
captured in SystemCFL in a combination of deduction rules of 
the parallel composition and the grouping operator (see also 
the example given in Subsection II-B1 for details). As shown 
previously, SystemC is currently aimed to use as a vehicle to 
perform formal analysis of SystemC processes and not for 
simulation. So, the semantics of delta cycle is not 
well-defined in SystemCFL yet. However, a well-defined 
semantics of SystemC delta cycle, for example, can be found 
at [34].  

Based on the similar motivations and needs, PAFSV [41], 
[26] (a similar timed process algebra) was recently 
introduced for the formal specification and analysis of IEEE 
1800TM SystemVerilog [13] designs. Clearly, SystemVerilog 
and SystemC are similar and the research work in PAFSV 
was highly inspired by the theoretical aspects of SystemCFL. 
Hence, a formal comparison between them is indispensable 
(as a future work). 

VII. CONCLUDING REMARKS AND FUTURE WORK 
 

Although the introduction of SystemCFL (since three years 
ago) initiated an attempt to extend the knowledge and 
experience collected in the field of process algebras to 
system-level modeling and design, it turned out unfortunately 
that SystemCFL could not be practically used to formally 
repre-sent the current version of SystemC (2.2). 

Indeed, the current semantics of SystemCFL is rather old. In 
this paper, we have motivated and presented the newly 
developed language of SystemCtlm

FL, the successor of 
SystemCFL. The SystemCtlm

FL language is extended with 
process term instantiations, SystemC positional 
con-nections/named connection modeling features as well as 

the semantics for SystemC TLM. In addition, the syntax and 
semantics of SystemCtlm

FL are much simpler, intuitive and 
elegant (than in SystemCFL). We have illustrated the practical 
use of SystemCtlm

FL through some examples of SystemC 
designs including a SystemC TLM design.  

As future work, we plan to apply SystemCtlm
FL for the 

formal specification and analysis of larger SystemC designs. 
Also, we focus on SystemC parsing for the making of the 
automatic translator SC2SCFL2 (from SystemC to 
SystemCtlm

FL), which is the next release of SC2SCFL. 
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