
International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

 - 434 -

Abstract—In this paper, we introduce SystemCtlm
FL, an

algebraic theory based on classical process algebras “Algebra of
Communicating Processes (ACP)” and “A Timed Process
Algebra for Specifying Real-Time Systems (ATP)” that can be
used to specify and analyze the behavior of SystemC designs.
This language is the successor of the SystemC FL language. The
SystemCtlm

FL language extends SystemCFL with the possibility to
define process term instantiations and for the use of SystemC
positional connections/named connection and Transaction
Level Modeling (TLM). We illustrate the practical use of
SystemCtlm

FL by means of several examples (including a TLM
example).

Index Terms—SystemC, formal semantics, SystemCFL,
SystemCtlm

FL, process algebras, formal specification and
analysis, transaction level modeling

I. INTRODUCTION
SystemC [12] is a modeling language consisting of C++

class libraries and a simulation kernel for Hardware
Description Language (HDL) designs, encompassing
system-level behavioral descriptions down to Register
Transfer Level (RTL) representations. Nowadays, SystemC
is becoming the de-facto-standard for system level modeling
and design in industry. SystemC can also address the need for
directly expressing heterogeneous and hierarchical behaviors
for modeling specific embedded systems [36]; and to test
such embedded systems [8]. Despite its successes, SystemC
has no formal semantics. Although some attempts to apply
formal methods to verify SystemC designs have been made,
it still does miss the possibility of formal reasoning of designs
described in SystemC. The goal of developing a SystemC
formal semantics is to provide a complete and unambiguous
specification of the language. It also contributes significantly
to information sharing, to description portability, and to
integration of various applications such as simulation,
synthesis, and formal verification.

In a attempt (from the free time of a Ph.D. student with
some knowledge in Electronic Design Automation (EDA),
For-mal Methods and Process Algebras [4], [3]) to give a
formal semantics of a reasonable subset of SystemC based on
process algebras that could be used for the formal
specification and analysis of SystemC designs, the formal
language SystemCFL (SCFL in ASCII format) [7], [21], [19],
[23], [17] was first defined in [16] (2004); and subsequently
extended with some features in [20] (2005).

SystemCFL maybe regarded as the formalization of a
reasonable subset of SystemC based on the classical process
algebras Algebra of Communicating Processes (ACP) [4] and

 Ka Lok Man is with Solari, Hong Kong,
M. Mercaldi is with M.O.S.T., Turin, Italy

A Timed Process Algebra for Specifying Real-Time Systems
 (ATP) [32]. The semantics of SystemCFL is defined by

means of deduction rules in a Structured Operational
Semantics (SOS) [35] style that associates a time transition
system (TTS) with a SystemCFL process. A set of properties is
presented for a notion of bisimilarity.

 More precisely, SystemCFL is aimed at giving formal
specifications of SystemC designs and to perform formal
analysis of SystemC processes. Furthermore, SystemCFL is a
single formalism that can be used for specifying concurrent
systems, finite state systems and real-time systems (as in
SystemC). Desired properties of these systems specified in
SystemCFL can be verified with existing formal verification
tools by formally translating them into different formats that
are the input languages of such tools. Hence, SystemCFL can
be purportedly used for formal verification of SystemC
designs. For instance, safety properties of concurrent systems
specified in SystemCFL can be verified (see [24]) by
translating those systems to PROMELA [11], which is the
input language of the SPIN Model Checker [11].

Similarly, [22] reported that some desired properties of
finite state systems specified in SystemCFL can be fed into the
SMV Model Checker [29] to verify them. Moreover, a formal
translation was defined in [15] from SystemCFL to a variant
(with very general settings) of timed automata [2]. The
practical benefit of the formal translation from a SystemCFL
specification (describing a real-time system) to a timed
automaton is to enable verification of timing properties of the
SystemCFL specification using existing verification tools for
timed automata, such as UPPAAL [14].

During the last few years, we have seen that SystemCFL has
been successfully used to give formal specifications of
SystemC designs (see also [16], [18], [20]). However, for
formal analysis purposes, users have been required to
manually transform their SystemC codes into corresponding
SystemCFL specifications. To verify some desired properties
of SystemCFL specifications using existing formal verification
tools (see also [15], [22], [24]), similarly, manual translations
have been needed for turning SystemCFL specifications into
corresponding terms of the input language of the selected
formal verification tool. Since manual transformation and
translations between SystemC codes, SystemCFL
specifications and various formalisms are quite laborious and
therefore error-prone, these translations have to be
automated.

Nowadays, Transaction Level Modeling (TLM) is
indispensable to solve a variety of practical problems (e.g.
pro-viding an early platform for software development and
sys-tem level design architecture analysis) during the design
and development of complex electronic systems. Also, TLM
has been widely propagated and used for System-on-a-Chip
(SoC) and embedded system design. The interested reader
may refer to [10] for excellent surveys on the topic of TLM.

SystemCtlm
FL: the Successor of SystemCFL

K.L. Man and M. Mercaldi

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

- 435 -

SystemC has supported TLM since the version 2.0. In the
past few years, SystemC has proven to be suitable for TLM
and has also becoming the de-facto standard for TLM in the
electronic design community.

However, TLM is still a relatively young kind of approach
meant to ease the handling of the constantly growing
complex-ity of electronic systems; by raising the level of
abstraction it allows system architects, embedded software
engineers, and system developers, to explore architectural
alternatives, to start software development, and to produce
raw performance estimation at a much earlier stage than it
would be possible if a RTL description of the system were
used as platform reference.

With alternative exploration in mind, the main advantage
of TLM is the simulation speed-up that it offers w.r.t.
cycle-accurate representation, essentially due to the different
abstraction level, which turns into a much smaller amount of
information to be handled. The main disadvantage shown by
TLM, so far, is the lack of a formal semantics, that could be
used both for consistency checking during description
refinement, and for property checking on untimed
descriptions, mainly aimed at checking functional
correctness on an abstraction of the final system. Various
attempts to give TLM a formal background have already been
made, but none of those has proposed a framework to allow
checking on specific aspects of the component being
designed with the most suited formal checking tool.

To reach the goal of formal verification of SystemC
designs (with a focus on SystemC TLM), as reported in [28],
we have focused our attention on SystemC as a language for
TLM, and selected SystemCFL as the language to formally
represent SystemC designs.

In the frame of a tight collaboration between
re-searchers/engineers from industrial entities and research
institutes, several tools for SystemCFL have been being
developed. These tools enable automatic translations from
SystemC codes to SystemCFL specifications and from
SystemCFL specifications to various formalisms that are the
input languages of some existing formal verification tools.
Using SystemCFL tools in combination with some formal
verification tools yields automatic verifications of SystemC
designs via SystemCFL specifications (for different
verification purposes).

Our first goal of the research in these directions is to
develop an automatic translation tool which converts untimed
SystemC codes into the corresponding SystemCFL
specifications that can be further mapped to the input
languages of several formal verification tools (e.g. SPIN and
NuSMV [33]). Recently, such an automatic translation tool
SC2SCFL has been developed in the Java language (JDK
1.5.0) using JavaCC 4.0 as a parser generator. Although the
current release of SC2SCFL can be used to translate some
SystemC designs (e.g. counter & test-bench and scalable
synchronous bus arbiter as shown in [27], [30]) to the
corresponding specifications in SystemC, it is not applicable
in practice to deal with the translation of industrial SystemC
designs. Our experience with SC2SCFL tells us that, based
on the current semantics of SystemCFL, it is impossible to
build a translator in such a way that it can be used to translate
complex SystemC designs, because SystemCFL is not

expressive enough to formally represent the current version
of SystemC (2.2). For instance, SystemCFL (developed in
2004) has no well-defined semantics for TLM and cannot
deal with SystemC process instantiations and positional
connections modeling features.

After having several attempts, by means of defining new
semantics and new operators, to extend SystemCFL to cope
with the features such as SystemC TLM and process
instantiation; it turned out to be very difficult to show that
SystemCFL with new operators could be an operational
conservative extension [43] of SystemCFL as defined in [16],
[20]. Furthermore, we had several ideas to improve
SystemCFL in such a way that the semantics of SystemCFL
would be more intuitive, simpler and elegant.

Hence, we made a decision to redesign SystemCFL.
Recently, the successor of SystemCFL, called SystemCtlm

FL
(SCFL2 in ASCII format), has been developed. The aim of
SystemCtlm

FL is to serve as formalism to formally rep-resent
SystemC (current version) including SystemC TLM features.
In this paper, we sketch the newly developed formal language
SystemCtlm

FL. The SystemCtlm
FL language extends SystemCFL

with the possibility to define process term instantiations and
for the use of SystemC positional connections/named
connection and SystemC TLM.

A. Structure
The reminder of the paper is organized as follows. In

Section II, we give a brief overview of SystemCFL formalism
that is relevant for the use in this paper. The motivations and
outlines of the development of SystemCtlm

FL are given in
Section III and Section IV presents the SystemCtlm

FL language
including the syntax and the formal semantics. By means of
several examples, the practical use of SystemCtlm

FL is
illustrated in Section V and Section VI discusses the related
work of SystemCFL. Finally, concluding remarks are made in
Section VII and the direction of future work is pointed out in
the same section.

II. FORMAL LANGUAGE SYSTEMCFL

For the reason of space limitation, an overview of SystemC
is not given in this paper. Some familiarity with SystemC is
required. The desirable background can, for example, be
found in [12]. In this section, we give a short overview of the
formal language SystemCFL (that is relevant for the use in this
paper). Also note that SystemCFL is strongly influenced by
ACP and ATP. Hence, fundamental mechanisms used in
SystemCFL to model processes are similar to those process
algebras.

A. SystemCFL Data Types
In order to define the semantics of SystemCFL processes,

we need to make some assumptions about the data types. Let
Var denote the set of all variables (x0, . . . , xn), and Value
denote the set of all possible values (v0, . . . ,vm) that contains
at least B (Booleans) and R (reals). A valuation is a partial
function from variables to values (e.g. x0 7→v0). The set of all
valuations is denoted by Σ. The set Ch of all channels and the
set S of all sensitivity lists with clocks maybe used in
SystemCFL processes that are assumed.

Notice that the above proposed data types are the

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

 - 436 -

fundamental ones. Several extensions of data types (e.g. “sc
bit” and “sc logic”) were already introduced in [18].

B. Syntax of the SystemCFL Language
P denotes the set of process terms in SystemCFL and p ∈ P

are the core elements of SystemCFL. The formal language
SystemCFL is defined according to the following grammar for
process terms p ∈ P :

p ::= δ | skip | x := e | en | o | p J b I p
b ª p | p • p | pΘp | p 4d p | p¨dp | ∗p
p k p | p k p | p v p | ∂H (p) | τI (p) | π(p)

a(p) | Υ Â p
Below is a brief introduction of the syntax of SystemCFL:
n The deadlock δ is introduced as a constant, which

represents no behavior.
n The skip process term skip performs the internal

action τ, which is not externally visible.
n The assignment process term x := e, which assigns the

value of expression e to variable x (modeling a
SystemC assignment statement).

n The delay process term en is able to first delay the
value of numerical expression en and then terminates
by means of an internal action τ.

n The unbounded delay process term o (modeling a
SystemC wait statement) may delay for a long time
that is unbounded or perform the internal action τ.

n The conditional composition p J b I q operates as a
SystemC if_then_else statement, where b denotes a
boolean expression and p,q ∈ P . If b holds, p
executes. Otherwise, q executes.

n The watch process term b ª p is used to model a
SystemC construct of even control.

n The sequential composition p • q models the process
term that behaves as p, and upon termination of p,
continues to behave as q.

n The alternative composition pΘq models a
non-deterministic choice between p and q.

n The timeout process term p 4d q (modeling a SystemC
time out construct) behaves as p if p performs a time
transition before a time d ∈ R>0. Otherwise, it
behaves as q.

n The watchdog process term p¨dq behaves as p during a
period of time less than d, at time d, q takes over the
execution from p in p¨dq; if p performs an internal
cancel χ action, then the delay is cancelled, and the
subsequent behavior is that of p after χ is executed.

n The repetition process term ∗p (modeling a SystemC
loop construct) executes p zero or more times.

n The parallel composition p k q, the left-parallel
composition p k q and the communication
composition p v q are used to express parallelism in
which actions are executed in an interleaving manner
with the possibility of synchronization of actions. The
synchronization of actions take place using a (partial,
commutative and associative) synchronization
function γ ∈ Aτ × Aτ 7→Aτ (the set Aτ is defined in
Subsection II-C). For example, if the actions a and b
synchronize, the resulting action is c such that γ(a, b)
= c.

n The encapsulation of actions is allowed using ∂H (p),
where H represents the set of all actions to be blocked
in p.

n The abstraction τI (p) behaves as the process term p,
except that all action names in I are renamed to the
internal action τ.

n • The maximal progress π(p) assigns action
transitions a higher priority over time transitions;
this operator is needed to establish a desired
communication behavior, that is, both the sender
and the receiver must be able to perform time
transitions, but if two of these can communicate
(i.e. performing action transitions), they should not
perform time transitions.

n The grouping of actions in p and executing them in
one single step can be done by using a(p).

n The signal emission operator Υ Â p requires that the
predicate Υ always holds; if it is the case, Υ Â p
behaves like p, otherwise, it is a δ; this operator is
needed for defining the translation from SystemCFL to
the SMV language [29] (see also [22]).

It is worth mentioning that the syntax in ASCII format of a
subset of SystemCFL was defined in [28] to ease the
development of SystemCFL toolset.

1) Outlines: It is worth to show some outlines concerning
the syntax of SystemCFL:
n Synchronous and asynchronous systems. It is not hard

to see that the behavior of asynchronous systems can
be easily modeled using the parallel composition
operator in SystemCFL, whose actions are interleaved
between process terms (e.g. x := 1 k y := 5) in a
parallel context. In addition, it is possible to describe
synchronous systems, using the parallel composition
operator in SystemCFL with the application of the
grouping operator on it (e.g. a(x := 1 k y := 5)), where
the assignments are taken into account in parallel and
simultaneously. We illustrate it by means of a simple
example. Let us consider the process term a(x := 1 k
y := 5), it can be rewritten to a(x := 1 • y := 5 Θ y := 5 •
x := 1) and then to a(x := 1 •y := 5) Θ a(y := 5 •x := 1)
using SystemCFL axioms/properties [25]. Process term
a(x := 1 • y := 5) Θ a(y := 5 •x := 1) models a
non-deterministic choice between a(x := 1 • y := 5)
and a(y := 5 • x := 1). Let us first discuss the process
term a(y := 5 • x := 1). The application of the grouping
operator to the process term x := 1 • y := 5 makes the
assignment x := 1 followed by y := 5 become atomic
(i.e. in one transition). A similar reasoning can be
made to describe the behavior of the process term
a(y := 5 • x := 1). Putting all together, from an
observer’s point of view, the process term a(x := 1 •
y := 5 Θ y := 5 • x := 1) only performs a single
transition in which the assignments x := 1 and y := 5
are executed in parallel and simultaneously.

n TLM and communication mechanism in SystemC.
Informal semantics of SystemC in [12] states that
SystemC incorporates both point-to-point
communication and multi-party communication
mechanisms for the interaction between concurrent
processes. However, there are no (specific)
statements in SystemC for modeling these
communication mechanisms. Loosely speaking,
components in TLM are modeled as
modules/processes in a parallel context. They are
communicated in the form of transactions through an
abstract channel. In order to capture the
communication behaviors as indicated above between
concurrent processes, operators k, k , v, ∂H , τI , and π
(from ACP) were introduced in SystemCFL. Over the
years, the communication mechanism in ACP has
been widely used for modeling such communication
behaviors. In addition, the idea of using a

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

- 437 -

synchronization/communication function γ (ACP) to
define the synchronization/communication behaviors
among parallel processes is particularly well-suited
for defining TLM semantics possibly in SystemCFL
(see [25] for details).

III. FROM SYSTEMCFL TO SYSTEMCTLM
FL

As we already mentioned in Section I, it turned out to be

impossible to use SystemCFL to formally represent the
cur-rent version of SystemC. The main clauses are the
following:
n Expressivity and TLM. Clearly, SystemCFL

(developed in 2004) is rather old. It is not expressive
enough to formally represent SystemC (today) and
SystemCFL has no well-defined semantics for TLM.

n Lack of SystemC features. There are also quite a lot of
SystemC constructs and features that were not
formalized in SystemCFL yet. As examples,
instantiation of SystemC modules, positional
connections in SystemC and some C++ constructs.

n Unintuitive syntax. Generally speaking, the common
syntax used in process algebraic theories (including
SystemCFL) is not intuitive for designers and
engineers in the electronic design community. Also,
designers and engineers are uncomfortable with
mathematical notations used in SystemCFL.

n Unintuitive semantics. Needless to say that the formal
semantics of SystemCFL is also not intuitive for
designers and engineers in the electronic design
community. In our experience, for example, the
use/definition of two valuations (e.g. previous
accompanying valuation and current valuation) in the
quintuple of a SystemCFL process is highly unintuitive
for the users. According to the deduction rules of
some SystemCFL operators (e.g. the watch operator ª),
this is needed and can be used to observe the change
of the valuation of variables in the sensitivity list.

IV. FORMAL LANGUAGE SYSTEMCTLM
FL

Based on the concept of SystemCFL towards a slightly

richer language, the successor of SystemCFL, the formal
language SystemCtlm

FL has been recently developed, which
can be used to formally represent (most of the features of) the
current version of SystemC (2.2) including SystemC TLM
features. A detailed account of SystemCtlm

FL date types,
syntax and semantics can already be found at [44], please
refer to [44] for details.

V. EXAMPLES IN SYSTEMCTLM
FL

In this section, we aim to illustrate that SystemCtlm

FL can
be used for SystemC positional connections/named
connection modeling and SystemC TLM.

A. Synchronous D Flip Flop Example
Using the syntax and semantics of SystemCtlm

FL, we can
obtain a much more simpler, intuitive and elegant
specification of the synchronous D flip flop (as shown in
Subsection II-E) as follows:

h¬clk− clk∧ + ª Q := d, σOE for some σ and E such that
σ = {clk 7→false, d 7→true, Q 7→true, time 7→0}

and

E = ({clk}, ,).

 Sample

 Mult

din dout

 s1

 a

 q

 Coeff

 b

 m1

out

 c1

Fig. 2. A filter design.

B. Filter Design Example
Figure 2 depicts a simple filter design. This example

consists of three modules Sample, Mult and Coeff.
In SystemCtlm

FL, Sample(d0
out ,d0

in) = ps, Mult(q0,a0,b0) =
pm and Coe (out0) = pc are the process term definitions for
modules Sample, Mult and Coeff respectively, where ps, pm
and pc are process terms that describe some behavior of such
modules Sample, Mult and Coeff. Notice that the variables
with a prime (e.g. d0

out and q0) are the formal parameter
variables in the process term definitions.

In the example, we use named connection for the
component instantiations, for example, din of s1 (which is the
instantiation of Sample) is connected to q of m1 (which is the
instantiation of Mult). The SystemCtlm

FL filter process is
given below:

hΥ Â (s1(dout , din) k m1(q, a, b) k c1(out)), σOE for some
Υ, σ and E such that Υ t s1 = Sample ∧ m1 =

Mult c∧ 1 = Coe d∧ in = q d∧ out = a out ∧ = b,
σ = {dout = din = q = a = b = out 7→ ,⊥ time 7→0} and

E = (, , {Sample(d0
out , d0

in) = ps, Mult(q0, a0, b0) =

pm, Coe (out0) = pc}).

For simplicity, the behavior of some variables (e.g. din and q)
defined by means of the process terms (e.g. ps,pm and pc) in
the process term definitions for modules (e.g. Sample and
Mult) is not given. Clearly, all process term instantiations
execute in a parallel context (i.e. s1(dout , din) k m1(q, a, b) k
c1(out)). The signal emission operator with the predicate Υ
applied on such a parallel context is used to enforce/ensure
the correct named connection for the component
instantiations (e.g. dout = a) and process term instantiations
(e.g. s1 is the instantiation of Sample) always hold during the
evolution (in terms of transitions) of the SystemCtlm

FL filter
process. It is not hard to see that using the idea of positional
connection to describe the filter design can also work well.

C. TLM Buffer Example
This subsection presents an example which implements a

TLM one slot buffer. In the example, a process term
ReadWrite issues randomly and continuously write and read
actions to an one slot buffer and a process term Status
describes the availability of the buffer if it is ready for
reading from the channel m (i.e. when the flag variable busy
evaluates to true) or if it is free for writing to the channel m

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

 - 438 -

(i.e. when the flag variable busy evaluates to false). The
process term Status is defined as follows:

Status ≡ busy := false J busy I busy := true.

As mentioned already in Definition 5, actions are

considered as parameters of SystemCtlm
FL that can be freely

instantiated. For this process term, we also write busym and
freem as the actions associating with the assignment process
terms busy := false and busy := true respectively. These
actions are used for the synchronization with other actions
(see the process term Buffer below for details) for writing to
the buffer through the channel m when the buffer is free or
reading from the buffer through the channel m when the
buffer is occupied. As shown in the process term Status,
depending on the status of the flag variable busy, a choice is
made between performing action busym or action freem. In
either case, the value of the flag variable busy will be
converted (from true to false or vice versa) after performing
such actions.

The process term ReadWrite is defined below:

ReadWrite ≡ data := true Θ data := false.

For this process term ReadWrite, we write actions readm

and writem as the actions associating with the assignment
process terms data := true and data := false respectively.
When readm executes, the reading action is performed
through the channel m and leads to free the buffer by means
of assigning a predicate true to the variable data (to denote
that the buffer is not busy). Similarly, when writem executes,
the writing action is performed through the channel m and
leads to occupy the buffer by means of assigning a predicate
false to the variable data (to denote that the buffer is busy).

The complete system is described by the process term Bu
er as follows:

Buffer ≡ (o •τI (∂H (ReadWrite k Status))), where I =

{writeokm, readokm}, H =
{writem, readm, busym, freem}, γ(writem, freem)

= writeokm, and γ(readm, busym) = readokm.

Clearly, process terms ReadWrite and Status exe-cute

concurrently with synchronization of actions between writem,
readm, busym and freem over the channel m. Intuitively, writem
is synchronized with freem and leads to an action writeokm (let
us say). Also, readm is synchronized with busym and leads to
an action readokm (let us say). The execution of writeokm
refers to the case that the buffer is free and then is written
through the channels m; and the execution of readokm refers
to the case that the buffer is occupied and then is read from
the channels m. Figure 3 shows the interaction of
synchronization actions over the channel m.

It is not hard to see that the encapsulation operator is used
to enforce actions over the channel m into synchronization,
while the abstraction operator makes synchronization actions
over the channels m invisible. In order to make the
specification of the process term Buffer more interesting,
process terms o and are used to introduce some arbitrary

delay and repetition to such a process term.
Finally, the SystemCtlm

FL process BUFFER is given below:

 (writem,freem)

writeokm

Channel m
(readm,busym)

readokm

Fig. 3. Interaction of synchronization actions over the channel m.

BUFFER t hBu er, σOE for some σ and E such that
σ = {data 7→ ,busy⊥ 7→false, time 7→0} and

E = (, {m},).

VI. RELATED WORK

Over the last ten years or so, research works in formal
semantics in electronic design community that have targeted
to obtain some applicable opportunity mainly focused on
Verilog, VHDL and SystemC. Quite often, their definitions
were based on Abstract State Machine (ASM) specifications,
Denotational Semantics and rewrite rules [31], [37], [39],
[38], [5], [6]; for instance (as related work for the research in
SystemC semantics), [31], [37] addressed respectively the
simulation semantics of SystemC in the form of distributed
ASM specifications and in the denotational semantics for
various subsets of SystemC. Recently, some research works
on the SystemC TLM semantics have also been done by
means of deduction rules [40] and via PROMELA (an
asynchronous formalism).

It is generally believed that a SOS provides more intuitive
descriptions and that ASM specifications and denotational
semantics appear to be less suited to describe the dynamic
behavior of processes [1]. Since processes are the basic units
of execution within Verilog, VHDL and SystemC that are
used to simulate the behavior of a device or a system, process
algebras with a SOS style semantics are more immediate
choices for giving formal specifications of systems in
electronic design community (these motivated us to develop
SystemCFL in a process algebraic way with SOS deduction
rules).

In the recent years, various formal approaches (based on
ASM specifications, deduction rules and denotational
semantics) have already been studied and investigated for
SystemC (e.g. [31], [37]) that can only be considered as
theoretical frameworks, except a few trails (e.g. [9]), because
they are not directly executable.

In contrast to such formal approaches and others [31], [37],
[39], [38], [5], [6], [40], [42], SystemCFL specifications are
completely executable (as in many process algebraic
specifications). More precisely, the behavior of a
specification described in SystemCFL can be illustrated by
means of transition traces according to SystemCFL deduction
rules together with the TTS associating to SystemCFL.
Similarly, formal analysis of the SystemCFL specifications
can be performed using SystemCFL deduction rules together
with the TTS associating to SystemCFL.

However, in our view, SystemCFL has generally some
disadvantages. First, the formal language SystemCFL is small

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

- 439 -

and has no well-defined semantics for TLM. Second, the
syntax and semantics of SystemCFL are probably not intuitive
for one not having a strong background in Computer Science;
and designers of system-level design are often uncomfortable
with mathematical notations used in SystemCFL.

Recently, as pointed out incorrectly by [42], that
SystemCFL claims its similarity with SystemC, does not have
a non-preemptive scheduler1 and does not seem to manage a
notion of “event” (which is the basic synchronization
primitive on top of which everything else is built in
SystemC), etc. In respond to these, strictly speaking,
SystemCFL is the formalization of a subset of SystemC based
on the classical process algebras and it is not a claim of
certain similarity with SystemC; the notion of a
non-preemptive scheduler (as given in [42]) is ensured by the
(termination, action and time) transition rules defined for
various SystemCFL operators (see [16], [20] for details); and
clearly the watch process term in SystemCFL is used to model
the construct of a “event control” in SystemC (see the
example given in Subsection II-E for details).

In SystemC, statements, macros, classes and other core
language elements are predefined. Users/modelers can use
such language elements in SystemC to make models, which
repre-sent, for instance, state machines and asynchronous
systems. With the same idea as in SystemC, users/modelers
can use process terms in SystemCFL to model various systems.
Al-though, there are no deduction rules in SystemCFL
explicitly defined for synchronous and asynchronous
composition as defined in [40], the semantics of them can be
captured in SystemCFL in a combination of deduction rules of
the parallel composition and the grouping operator (see also
the example given in Subsection II-B1 for details). As shown
previously, SystemC is currently aimed to use as a vehicle to
perform formal analysis of SystemC processes and not for
simulation. So, the semantics of delta cycle is not
well-defined in SystemCFL yet. However, a well-defined
semantics of SystemC delta cycle, for example, can be found
at [34].

Based on the similar motivations and needs, PAFSV [41],
[26] (a similar timed process algebra) was recently
introduced for the formal specification and analysis of IEEE
1800TM SystemVerilog [13] designs. Clearly, SystemVerilog
and SystemC are similar and the research work in PAFSV
was highly inspired by the theoretical aspects of SystemCFL.
Hence, a formal comparison between them is indispensable
(as a future work).

VII. CONCLUDING REMARKS AND FUTURE WORK

Although the introduction of SystemCFL (since three years
ago) initiated an attempt to extend the knowledge and
experience collected in the field of process algebras to
system-level modeling and design, it turned out unfortunately
that SystemCFL could not be practically used to formally
repre-sent the current version of SystemC (2.2).

Indeed, the current semantics of SystemCFL is rather old. In
this paper, we have motivated and presented the newly
developed language of SystemCtlm

FL, the successor of
SystemCFL. The SystemCtlm

FL language is extended with
process term instantiations, SystemC positional
con-nections/named connection modeling features as well as

the semantics for SystemC TLM. In addition, the syntax and
semantics of SystemCtlm

FL are much simpler, intuitive and
elegant (than in SystemCFL). We have illustrated the practical
use of SystemCtlm

FL through some examples of SystemC
designs including a SystemC TLM design.

As future work, we plan to apply SystemCtlm
FL for the

formal specification and analysis of larger SystemC designs.
Also, we focus on SystemC parsing for the making of the
automatic translator SC2SCFL2 (from SystemC to
SystemCtlm

FL), which is the next release of SC2SCFL.

ACKNOWLEDGMENT
K.L. Man would like to thank Jos Baeten, Bert van Beek,

Mohammad Mousavi, Koos Rooda, Ramon Schiffelers,
Pieter Cuijpers, Michel Reniers, Kees Middelburg, Uzma
Khadim and Muck van Weerdenburg for many stimulating
and helpful discussions focusing on process algebras for
distinct systems in the past few years.

The authors would like to thank Andrea Fedeli, Michel
Schellenkens and Menouer Boubekeur for their cooperation
of the previous research work on SystemCFL; and Flaviano
Garberoglio and Angelo Trischitta for their comments and
support for the current research work on SystemCtlm

FL.

REFERENCES
[1] Luca Aceto, Willem Jan Fokkink, and Chris Verhoef. Structural

opera-tional semantics. In J. A. Bergstra, A. Ponse, and S. A. Smolka,
editors, Handbook of Process Algebra, chapter 3, pages 197–292.
Elsevier, 2001.

[2] R. Alur and D.L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–236, 1994.

[3] J. C. M. Baeten and C. A. Middelburg. Process Algebra with Timing.
EACTS Monographs in Theoretical Computer Science.
Springer-Verlag, 2002.

[4] J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of
Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, United Kingdom, 1990.

[5] J. Bowen. Animating the semantics of Verilog using Prolog. Technical
Report UNU/IIST Report No. 176, International Institute for Software
Technology, United Nations University, Macau, 1999.

[6] P.T. Breuer and C. Delgado Kloos, editors. Formal Semantics for
VHDL. Kluwer Academic Publishers, 1995.

[7] SystemCFL. http://digilander.libero.it/systemcfl/.
[8] A. Fin, F. Fummi, and M. Signoretto. SystemC: A homogenous

environment to test embeddded systems. In the IEEE Codesign
Conference, Copenhagen, Denmark, 2001.

[9] A. Gawanmeh, A. Habibi, and S. Tahar. An executable operational
semantics for SystemC using abstract state machines. Technical report,
Concordia University, Department of Electrical and Computer
Engineer-ing, USA, 2004.

[10] Frank Ghenassia, editor. Transaction-Level Modeling. Springer,
2005.

[11] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison Wesley Professional, Boston, 2003.

[12] IEEE. IEEE Standard for SystemC Language Reference Manual (IEEE
STD 1666TM-2005). IEEE, 2005.

[13] IEEE. IEEE Standard for SystemVerilog - Unified Hardware Design,
Specification, and Verification Language (IEEE STD 1800TM-2005).
IEEE, 2005.

[14] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a
Nutshell. Journal on Software Tools for Technology, 1(1–2):134–152,
1997.

[15] K. L. Man. Analyzing SystemCFL designs using timed automata. In the
9th IEEE Baltic Electronics Conference BEC, Tallinn, Estonia, 2004.

[16] K. L. Man. SystemCFL: Formalization of SystemC. In the 12th
Mediterranean Electrotechnical Conference MELECON, Dubrovnik,
Croatia, 2004. IEEE.

[17] K. L. Man. Extensions of SystemCFL for mixed-signal system and
formal verification. In the PROGRESS 2004 Embedded Systems
Symposium PROGRESS04, Nieuwegein, The Netherlands, 2004.

[18] K. L. Man. Modeling with the formal language of SystemC: Case

http://digilander.libero.it/systemcfl/

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

 - 440 -

studies. In the 11th IEEE International Conference Mixed Design of
Integrated Circuits and Systems MIXDES, Szczecin, Poland, 2004.

[19] K. L. Man. SystemCFL: A formalism for hardware/software co-design.
In the 17th European Conference on Circuits Theory and Design
ECCTD05, Cork, Ireland, 2005. IEEE.

[20] K. L. Man. Formal communication semantics of SystemCFL. In the 8th
Euromicro Conference on Digital System Design DSD, Porto,
Portugal, 2005. IEEE.

[21] K. L. Man. An overview of SystemCFL. In the Ph.D. Research in
Microelectronics and Electronics Conference PRIME05, Lausanne,
Switzerland, 2005. IEEE.

[22] K. L. Man. Verifying SystemCFL designs using the SMV model
checker. In the 8th IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems DDECS, Sopron, Hungary, 2005.

[23] K. L. Man. SystemCFL: Formal specification and analysis of
hardware/software co-designs. The World Scientific and Engineering
Academy and Society Transactions on Circuits and Systems, 3(5):361–
368, 2006.

[24] K. L. Man. Formal verification of SystemCFL specifications using
SPIN. In the 5th WSEAS International Conference on
Microelectronics, Nanoelectronics and Optoelectronics MINO, Prague,
Czech Republic, 2006. WSEAS.

[25] K. L. Man. Operational semantics of SystemCFL and SystemCtlm
FL.

Draft paper, 2007.
[26] K. L. Man, M. Boubekeur, and M. P. Schellekens. Process algebraic

approach to SystemVerilog. In the 20th IEEE Canadian Conference on
Electrical and Computer Engineering, Columbia, Canada, 2007. IEEE.

[27] K. L. Man, A. Fedeli, M. Mercaldi, M. Boubekeur, and M. P.
Schellekens. SC2SCFL: Automated SystemC to SystemCFL
trans-lation. In the 7th International Symposium on Systems,
Architectures, Modeling and Simulation, Lecture Notes in Computer
Science 4599, pages 34–45. Springer-Verlag, 2007.

[28] K. L. Man, A. Fedeli, M. Mercaldi, and M. P. Schellekens. SystemCFL:
An infrastructure for a TLM formal verification proposal (with an
overview on a tool set for practical formal verification of SystemC
descriptions). In the 4th East-West Design & Test Workshop
(EWDTS), Sochi, Russia, 2006. IEEE.

[29] Ken L. McMillan. Symbolic Model Checking. Kluwer Academic
Publisher, 1993.

[30] M. Mercaldi, A. Fedeli, and K.L. Man. SC2SCFL: An overview. In the
4th IEEE International SoC Conference, Seoul, South Korea, 2007.

[31] W. Mueller, J. Ruf, D. Hofmann, J. Gerlach, T. Kropf, and W.
Rosen-stiehl. The simulation semantics of SystemC. In the Proceedings
of Design, Automation, and Test in Europe, 2001.

[32] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP:
Theory and application. Information and Computation, 114:131–178,
1994.

[33] NuSMV. NuSMV Model Checker User Manual, 2006.
http://nusmv.irst.itc.it/.

[34] Xiaoqing Peng, Huibiao Zhu, Jifeng He, and Naiyong Jin. An
opera-tional semantics of an event-driven system-level simulator. In
the Pro-ceedings of 30th Annual IEEE/NASA Software Engineering
Workshop, 2006.

[35] G. D. Plotkin. A structural approach to operational semantics.
Technical Report DIAMI FN-19, Computer Science Department,
Aarhus University, 1981.

[36] Ivan Radojevic, Zoran A. Salcic, and Partha S. Roop. Modeling
embedded systems: From SystemC and Esterel to DFCharts. IEEE
Design & Test of Computers, 23(5):348–358, 2006.

[37] Ashraf Salem. Formal semantics of synchronous SystemC. In the
Proceedings of Design, Automation, and Test in Europe, 2003.

[38] G. Schneider and X. Qiwen. Towards a formal semantics of Verilog
using duration calculus. In Formal Techniques for Real-Time and Fault
Tolerant Systems (FTRTFT’98), Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[39] G. Schneider and X. Qiwen. Towards an operational semantics of
Verilog. Technical Report UNU/IIST Report No. 147, International
Institute for Software Technology, United Nations University, Macau,
1998.

[40] R. K. Shyamasundar, F. Doucet, R. Gupta, and I. H. Kruger.
Com-positional reactive semantics of SystemC and verification in
rulebase. In the Proceedings of the Workshop on Next Generation
Design and Verification Methodologies for Distributed Embedded
Control Systems, 2007.

[41] PAFSV. http://digilander.libero.it/systemcfl/pafsv.
[42] Claus Traulsen, Jerome Cornet, Matthieu Moy, and Florence

Maraninchi. A SystemC/TLM semantics in Promela and its possible
applications. In the 14th Workshop on Model Checking Software
SPIN, 2007.

[43] C. Verhoef. A general conservative extension theorem in process

algebra. In the Proceedings of PROCOMET, 1994.
[44] K.L. Man, M. Mercaldi, F. Garberoglio, A. Trischitta, H.Y. Lai, .M.

Ho, SystemCFL
tlm: Motivation and Development. in the Proceedings of

the IAENG International MultiConference of Engineers and Computer
Scientists 2008 (IMECS 2008), Hong Kong, 2008.

Ka Lok Man He holds a Dr. Eng. degree in Electronic Engineering from
Politecnico di Torino, Italy, and a PhD degree in Computer Science from
Technische Universiteit Eindhoven, The Netherlands.Currently, he is a
senior researcher at the Centre for Efficiency-Oriented Languages (CEOL),
Department of Computer Science, University College Cork, Ireland and a
research and engineering consultant for Solari - Hong Kong. His research
interests include logic synthesis, formal verification and low power design
methodologies for integrated circuits and systems, formalization of SystemC
and SystemVerilog designs including TLM, formal methods, process
algebras, formal analysis of real-time and hybrid systems, communication
and wireless sensor networks, reversible computing, and software
development. In the above-mentioned topics, he has authored or co-authored
about 80 refereed publications including books, edited books, journal articles,
book chapters and conference proceedings. He has been a committee
member, reviewer, session chair and special session/workshop organizer of
different IEEE, IASTED and IAENG conferences.He is also the
editor-in-chief of the International Journal of Design, Analysis and Tools for
Integrated Circuits and Systems (IJDATICS), the editor of the Journal of
Computers (JCP), the associate editor of the Journal of Engineering,
Computing and Architecture (JECA), the associate editor of the Journal of
Computer Science, Informatics and Electrical Engineering (JCSIEE), the
editor of the Journal of Computer Science and Information Technology
(JCSIT), the editor of the International Journal of Advancements in
Computing Technology (IJACT), the editor of the Magazine of Wireless and
Cellular Networks (MWCN), the editor of the International Journal of
Digital Content Technology and its Applications (JDCTA) and the editor of
the Journal of Convergence Information Technology (JCIT).

Michele Mercaldi He received his Dr. Eng, Degree in Software Engineering
from the Politecnico di Torino (Italy) in 1998. From 1997 to to 1999 he
worked at the Politecnico di Torino as software and database developer.
From 2000 to 2007 he worked in MOST (Turin, Italy) which is a highly
skilled firm for documental activation using Oracle and Postgresq running on
Linux. Currently he is employed by the Critical Path (Turin, Italy) which is
one of the world leading providers of internet messaging and directory
software.

http://nusmv.irst.itc.it/
http://digilander.libero.it/systemcfl/pafsv

