
International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

- 403 -

Abstract— In today’s scenario, high performance computing

is needed to solve the complex scientific problems. In this
regards the Multi-core technology is one of the major
technologies. Intel’s Dual Core processors improve the
performance of applications by executing multiple programs at
a time. The objective of the present paper is to evaluate the
performance of well known Object-oriented programming
languages namely Visual C#, Visual C++ and Java on Intel’s
Dual Core processors. To check the performance of various
programs on Dual Core processors, a common program is
developed in these three languages. The run time of each
program is measured for quantitative comparison of
performance of these languages. Before evaluating the
performance of these processors, an efficient UML model is
designed for the program execution. The UML class and
sequence diagrams are designed and comparison is also made
between the performance of two selected Dual Core processors
namely Dual Core and Core 2 Duo.

Index Terms—Object-oriented programs, Intel Dual Core

processor, Intel Core 2 Duo Processor, UML class diagram,
UML sequence diagram

VI. INTRODUCTION
 In Object-oriented software development, the Unified

Modeling Language (UML) is one of the most powerful
modeling techniques. It is a set of diagrammatical notations
and is currently standardized and supported by the Object
Management Group (OMG). The details and good
description of the notations are given in Alhir [1], and Booch
et al. [2].

The UML can also be used in hardware or system
architecture modeling. It also provides extension
mechanisms using stereotypes and profiles which can be
applied in more domain specific modeling of a system.

The applications of UML design in computer architecture
modeling have been described in some research papers.
Gomma [3] has developed a UML based Concurrent Object
Modeling and Architectural Design Method for designing
real-time and distributed applications.

Manuscript received May 12, 2009.
Dr. Vipin Saxena is an Associate professor and Ex-Head of Department

of Computer Science, B.B. Ambedkar University (A Central University),
Vidya Vihar Rae Bareilly Road, Lucknow U.P. 226025, India, phone:
+91-9452372550; fax: +91-522-2440821

Manish Shrivastava (Corresponding Author), is a research student in
Department of Computer Science, B.B. Ambedkar University (A Central
University), Lucknow, India, phone: +919453847114

The UML based modeling of parallel and distributed
systems for performance oriented applications, is described
by Pllana, S. and Fahringer, T. [4]. Saxena et al. [5] proposed
the UML model for the Multiplex system for the processes
which are executing in distributed environment. Pustina
Lukas et al. [6] presented a UML based modeling
methodology of specifying processor details of ARM. In this
paper, UML diagrams are used to model the system
architecture and timing behavior. In a recent paper by Saxena
and Raj [7], UML modeling has been done for instruction
pipeline design and its performance evaluation. In their paper,
Fateh Boutekkouk et al. [8] presented a new UML-based
methodology for embedded applications design and
architectural modeling including the CPU model, the
Memory model etc. using stereotypes. An estimation
technique of performance is also proposed.

In available literature, some work was found in comparing
various programming languages, but they are mostly based
on their features, technical similarities, differences, and
capabilities. There are very few papers available on
quantitative performance comparison of Object-oriented
programming languages. Henderson Robert and Zorn
Benjamin [9] compared the run-time efficiency and
compilation time of language implementations of four
modern programming languages that support Object-oriented
programming (Oberon-2, Modula-3, Sather and Self), and
compared them with C++ also.

Glyph Lefkowitz [10] performed a comparison of
execution speed between Java and Python by running some
test-cases on Linux plateform. Cowell-Shah [11] discussed a
small-scale benchmark test run on nine modern computer
languages and their variants. All tests took place on a
Pentium 4-based computer (notebook) running Windows XP.
Recently Saxena and Arora [12] reported a performance
evaluation for Object-oriented software systems using VC++
and C#. The evaluation is done on nodes, equipped with
Pentium D and Core 2 Duo processor technologies.

In this paper, the architectural modeling of Intel Core
micro-architecture is performed using UML. The UML
stereotypes for process and execution cores are defined.
UML class and sequence diagrams are designed for modeling
of process execution. A common program has been
developed in three Object-oriented programming languages
namely Visual C++, Visual C# and Java. The programs were
executed on Intel Dual Core and Core 2 Duo processor. A
comparison of execution time of the program is reported for
performance evaluation.

UML Design for Performance Evaluation of
Object Oriented Programs on Dual Core

Processors
Dr. Vipin Saxena and Manish Shrivastava

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October, 2009
1793-8201

 - 404 -

VII. BACKGOUND

A. Process Definition
A process is a block of instructions of a program, which are

executed by a processor. For defining the process, we need to
first define a processing unit. Using UML, a processing unit
can be modeled using a stereotype. Stereotypes are used to
define some specialized modeling elements based on core
UML base classes. Fig. 1a shows the UML stereotype
definition of a processing unit and Fig. 1b shows the class
diagram for representing a process. Fig. 1c shows the single
and multiple instances of process.

B. Intel Core micro-architecture
Intel’s Dual Core processors are based on Intel Core

micro-architecture. The Dual Core layout uses CMP (i.e. core
multi processor) technology, where two or more CPUs

(known as Cores) are fabricated together on one chip along
with dual L2 caches. With Dual Core architecture, processors
move blocks of many hundreds instructions into cache before
executing them in blocks of four or more at a time. The main
purpose is to execute even the most complex instructions in
one clock tick.

The Intel's Core micro-architecture technology provides
more efficient decoding stages, execution units, caches, and
buses for increasing the processing capacity, reducing
latency and thus achieving high performance. The
architectural details of Dual Core are described in [13] and
[14].

The architectural modeling of Intel Core
micro-architecture is performed using UML. The UML
stereotypes for the execution cores are defined. Fig. 2a shows
the UML stereotype definition of Execution core. Fig. 2b
shows the class diagram for representing a core and the Fig.
2c shows the single and multiple instances of core.

C. Object-oriented Programming
Object-oriented design and programming has become the

most prominent technique in today’s software development.
There are many significant improvements in modeling and
building complex systems using Object-oriented approach. It
provides many benefits such as encapsulation, polymorphism,
inheritance, reusability and extensibility. There are many

<<Execution_core>>
core1: core

<<Execution_core>>

_: core

Fig. 2c: Single and Multiple instances of Core

<< Execution_core>>
core

core_id: string

Fig. 2b: UML Class diagram of Core

<< stereotype >>
Execution_core

core_id: string

Base Class

Fig. 2a: Stereotype of Execution Core

<<Proessing_unit>>
process1 : process

<<Processing_unit>>

_: process

Fig. 1c: Single and Multiple instances of Process

<< Processing _unit >>
process

process_id: integer
process_size: integer
process_in_time: string
process_out_time: string
process_priority: integer

process_create()
process_delete()
process_update()
process_join()
process_suspend()
process_synchronize()
process_terminate()

Fig. 1b: UML Class definition of Process

<< stereotype >>
Processing _unit

process_id: integer
process_type: string
process_cardinality: integer

Base Class

Fig. 1a: Stereotype of Processing Unit

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

- 405 -

Object-oriented languages for commercial software
development. Among these languages, the three languages
namely Visual C++, Visual C# and Java are most popular and
powerful in today’s programming environment. All these
programming languages support all the features of an
Object-oriented language. Visual C++ and Visual C# are
developed by Microsoft and are available in Visual Studio.
Java was developed by Sun Microsystems and can be
executed at any platform using Java virtual machine.

VIII. UML ARCHITECTURAL MODELING

A. UML Class Diagram for Processor Architecture
The Fig. 3 shows the complete architectural model of Dual

Core processor architecture. The class Process is directly
interacting with the class Process_Execution_Controller
(PEC), which is fully responsible for the execution of the
assigned task. The PEC is controlling the processes by
message exchanging between the classes Processor and
Memory. The Processor class contains two cores, i.e. Core1
and Core2 and each core contains many components
responsible for process execution as shown in the figure. The
class diagram of the entire memory unit is also shown in the
figure. Here class L2_Cache is shared between two cores and
caches instructions through the class I_ Cache whereas the
class D_Cache is responsible for caching the data, which is a
sub class of L1_Cache.

B. UML Sequence Diagram for Process Execution
The UML sequence diagram for process execution inside a

core is shown in Fig. 4. Here the messages are exchanged
among various class objects like Process,
Process_Ececution_Controller, L2_Cache and L1_Cache are
shown. Instructions are fetched from L2_Cache, decoded into
the executable micro operations. The data are loaded from
L1_Cache. After execution, the results of these micro
operations are passed to the Retirement_Unit. It takes the
results, reordered them and rebuilds the final results.

IX. EXPERIMENTAL STUDY

A fundamental performance metric of any computer
system is the time required to execute a given application
program. During the performance testing of a developed
program, programmers measure program execution time. The
programmers may measure the execution time of an entire
program or only parts of a program.

The experimental results are obtained by executing a
common code written in each programming language. A
sample code for displaying a message repetitively inside a
loop is taken to evaluate the performance. These sample
codes were executed on two systems having different
processor architectures. The Visual C++ and Visual C#
programs are developed as windows applications and
executed under Visual studio 2008 on Microsoft.Net
framework v3.5. The Java program was developed for
console application and executed using JDK1.5.0_18. We
measured the execution time spent in a critical loop of the
program. The architectural detail of the systems is given in
table 1 below. All the experimental results are averaged from
5 different runs. Table 2 shows the execution time computed

in milliseconds on Dual Core processor and the table 3 shows
the execution time computed in milliseconds on Core 2 Duo,
for which the experimental study is performed. Table 4
shows the comparison between average execution times.

Fig. 5a and 5b clearly display above results in the form of
graph as a performance comparison of Dual Core and Core 2
Duo processor in term of execution time of programming
codes having 1000 and 10000 lines.

X. RESULTS AND DISCUSSIONS
Based on the experimental results, it was found that Visual

C++ is more efficient Object-oriented programming
language in comparison to Visual C# and Java. It is clear
from the above tables that the execution time is lesser in case
of Visual C++ in comparison to Visual C# and Java. It is also
observed that the execution time on Core 2 Duo processor
based system is less than the Dual Core processor based
system as per the specifications mentioned above.

XI. CONCLUSION
It is concluded that UML is a powerful modeling language

for formal specifications of hardware systems and various
research problems. In present paper, the performance of two
processors namely Intel Dual Core and Core 2 Duo is
observed by taking different lines of codes, which are
developed in three Object-oriented programming languages
namely Visual C++, Visual C# and Java. Results showed that
the Intel Core 2 Duo had the best performance for a variety of
lines of codes as compared to Intel Dual Core as per the given
specifications. It is also found that Visual C++ takes less
execution time as compared to Visual C# and Java over
similar processor architectures. It is also observed that the
performance of Core 2 Duo processor is better than the Dual
Core and therefore, recommended for long computations.

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October, 2009
1793-8201

 - 406 -

Fetch_Unit

Fig. 3: UML Class Diagram for Processor Architecture

Processor

Memory

Decoder

Instruction_Queue

ALU

RAM Cache

D_Cache
I_Cache

Register_Allocator

Retirement_Unit

Scheduler

Process_Execution_Controller

L2_Cache L1_Cache

ROM

Register_file

Core1 Core2

Process

1

1

1

1

1 1

D_TLB

Microcode
-ROM

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October2009
1793-8201

- 407 -

Fig. 4: UML Sequence Diagram for Process Executio

TABLE I: ARCHITECTURAL DETAILS OF PENTIUM DUAL CORE AND CORE 2 DUO MACHINES

Specifications Intel® Pentium® Dual Core CPU Intel® Core™2 Duo Core CPU
Number of cores 02 02

Family Intel Pentium Dual Core for Moile Intel® Core™2 Duo Mobile Processor
Model number T3200 T5670
Clock speed 2.00GHZ 1.86 GHZ
Bus speed 667 MHZ 800 MHZ

Level 1 cache size 2 x 32 KB instruction caches
2 x 32 KB data caches

2 x 32 KB instruction caches
2 x 32 KB write-back data caches

Level 2 cache size shared 1 MB shared 2 MB
Instruction sets MMX instruction set, SSE, SSE2, SSE3,

EM64T
MMX instruction set, SSE, SSE2, SSE3, EM64T,

Supplemental SSE3
Memory size 1.86 GB 3.00 GB

Operating System Windows XP Professional, Ver. 2002,
Service pack2

Windows Vista Ultimate Service pack1

Make Lenovo Dell

TABLE II: EXECUTION TIME ON INTEL DUAL CORE CPU

 VC++ VC# JAVA
Lines of Code 10 102 103 104 10 102 103 104 10 102 103 104

0 16 187 1140 0 31 218 1156 15 63 281 2766
0 15 203 1203 0 15 171 1109 16 46 297 2828
0 16 218 1938 0 31 171 1937 16 47 344 2859
0 31 187 1141 0 31 203 1296 15 47 328 2828

Execution Time in
Milli Seconds

0 32 203 1062 0 15 203 1359 16 46 343 2860

TABLE Ⅲ:EXECUTION TIME ON INTEL CORE 2 DUO CPU

 VC++ VC# JAVA
Lines of Code 10 102 103 104 10 102 103 104 10 102 103 104

0 15 125 1124 0 15 140 1138 0 47 203 1607
0 15 109 1139 0 15 109 1154 0 46 172 1560
0 15 109 1192 0 15 124 1170 16 47 187 1653
0 15 109 1107 0 15 109 1076 15 32 203 1638

Execution Time in
Milli Seconds

0 15 125 1061 0 15 124 1107 16 31 203 1591

TABLEⅣ.COMPARISON BETWEEN AVERAGE EXECUTION TIME (IN MILLI SECONDS)

 VC++ VC# JAVA
Processor 10 102 103 104 10 102 103 104 10 102 103 104
Dual Core T3200 0 22.0 165.8 1296.8 0 22.6 193.2 1371.4 15.6 49.8 318.6 2828.2
Core 2 Duo T5670 0 15.0 115.4 1124.6 0 15.0 121.2 1129 9.4 40.6 193.6 1609.8

0

50

100

150

200

250

300

350

Dual Core Core 2 Duo

Processors

E
xe

cu
tio

n
Ti

m
e

(M
ill

i S
ec

on
ds

)

VC++ VC# Java

Fig. 5a: Performance comparison for 103 lines of code

0

500

1000

1500

2000

2500

3000

Dual Core Core 2 Duo

Processors

E
xe

cu
tio

n
Ti

m
e

(M
ill

i S
ec

on
ds

)

VC++ VC# Java

Fig. 5b: Performance comparison for 104 lines of code

ACKNOWLEDGMENT

The authors are very thankful to Prof. B. Hanumaiah,

Vice-Chancellor, Babasaheb Bhimrao Ambedkar University
(A Central University), Vidya Vihar, Rae Bareilly Road,
Lucknow, India, for providing excellent computation
facilities in the University campus. Thanks are also due to the

International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October, 2009
1793-8201

 - 408 -

University Grant Commission, India, for providing financial
assistance to the Central University for research work.

REFERENCES
[15] Alhir, S.S. UML in a Nutshell: A Desktop Quick Reference, O’Reilly &

Associates, First Indian Reprint, 1998.
[16] Booch, G., Rumbaugh, J., Jacobson, I. The Unified Modeling

Language User Guide, Twelfth Indian Reprint, 2004, Pearson
Education.

[17] Gomaa, H., “Designing Concurrent, Distributed, and Real-Time
Applications with UML”. In proceedings of the 23rd International
Conference on Software Engineering (ICSE’01), 2001, IEEE
Computer Society.

[18] Pllana, S. and Fahringer, T., “UML based modeling of Performance
Oriented parallel and Distributed Applications”, in winter Simulation
Conference, 2002.

[19] Saxena, V., Arora D. and Ahmad S., “Object Oriented Distributed
Architecture System through UML”, in IEEE International Conference
on Advanced in Computer Vision and Information Technology,
ACVIT-07, Nov. 28-30, 2007, ISBN 978-81-89866-74-7, pp. 305-310.

[20] Pustina, Lukas, Schwarzer, Simon, Martini, Peter, Muurinen, Jari,
Salomaki, Ari,, “A Methodology for Performance Predictions of Future
ARM Systems Modelled in UML”, in SysCon 2008 - IEEE
International Systems Conference, Montreal, Canada, April 7–10,
2008.

[21] Saxena, V. and Raj D., “UML Modeling for Instruction pipeline”, in
World Conference on Science, Engineering and Technology, WCSET
2008, August, 30-September, 1, 2008. Available:
www.waset.org/pwaset.

[22] Fateh Boutekkouk, Mohammed Benmohammed, Sebastien Bilavarn
and Michel Auguin, “UML for Modelling and Performance Estimation
of Embedded Systems”, in Journal of Object Technology, vol. 8, no. 2,
2009, pp. 95-118. Available:
http://www.jot.fm/issues/issue_2009_03/article1/

[23] Henderson, Robert and Zorn Benjamin, “A Comparison of

Object-oriented Programming in Four Modern Languages”, in
Software—Practice and experience, vol. 24(11), pp. 1077–1095, John
Wiley & Sons, Ltd. 1994.

[24] Glyph Lefkowitz, “A subjective analysis of two high-level,
object-oriented languages Comparing Python to Java”, 2000. Available:
http://twistedmatrix.com/~glyph/rant/python-vs-java.html

[25] Cowell-Shah, Christopher W., “Nine Language Performance
Round-up: Benchmarking Math & File I/O”, 2004. Available:
http://www.osnews.com/story/5602

[26] Saxena, Vipin and Arora, Deepak , “Performance Evaluation for
Object Oriented Software Systems” , SIGSOFT Software Engineering
Notes, March 2009, Volume 34, Number 2.

[27] Simcha Gochman, Avi Mendelson, Alon Navh and Efraim Rotem,
“Introducttion to Intel Core TM DUO Processor Architecture” , Intel
technology Journal, Vol. 10, Issue 2, May, 15, 2006.

[28] Ofri Wechsler, “Inside Intel® Core™ Microarchitecture: Setting New
Standards for Energy-Efficient Performance”, Technology@Intel
Magazine, March 2006.

Dr. Vipin Saxena: He is a Reader, Founder
and Ex-Head, Dept. of Computer Science,
Babasaheb Bhimrao Ambedkar
University, Lucknow, India. He got his
M.Phil. Degree in Computer Application
in 1992 & Ph.D. Degree work on
Scientific Computing from University of
Roorkee (renamed as Indian Institute of
Technology, India) in 1997. He has more

than 13 years and 08 months of teaching experience and 17 years
research experience in the field of Scientific Computing & Software
Engineering. Currently he is proposing software designs by the use
of Unified Modeling Language for the various research problems
related to the Software and Hardware Domains. He has published
more than 75 International and National publications. Phone:
+91-9452372550

Manish Shrivastava: He is a Research
Scholar, Dept. of Computer Science,
Babasaheb Bhimrao Ambedkar
University, Lucknow, India. He got his
M.Phil. Degree in Computer Applications
in 1992. He has more than 12 years of
teaching experience. Currently he is
actively engaged in the research work on
the Unified Modeling Language. He has
produced several outstanding research

publications. Phone: +91-9453847114;

http://www.waset.org/pwaset
http://www.jot.fm/issues/issue_2009_03/article1/
http://twistedmatrix.com/~glyph/rant/python-vs-java.html
http://www.osnews.com/story/5602

