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Abstract—Finite field or Galois field plays an important role 

in efficient architecture design and implementation of Elliptic 
curve cryptosystem. A lot of research work is going on in this 
area since it is suitable for cryptography as well as error 
correcting codes useful for digital communication, compact 
disks etc.  In this paper we discuss the basic concepts of finite 
field and its application to elliptic curve cryptography (ECC). A 
detailed study and analysis of various implementation options 
available in finite field has been explored and highlighted for 
effective system design. In section IX we discuss a few efficient 
hardware design approaches adopted by many researchers 
useful for ECC. 

 
Index Terms—Finite field, elliptic curve, multiplier, 

architecture. 

I.    INTRODUCTION 
Elliptic curve cryptography (ECC) was invented in the mid 

eighties independently by Victor Miller & Neal Koblitz. 
Since its invention, it has proved itself a strong alternative to 
the public key cryptographic systems like RSA and 
Deffie-Hellman (DH). It offers equivalent security with 
smaller key sizes resulting in faster computations, lower 
power consumption, as well as memory and bandwidth 
savings. This is because of its flexibility in the underlying 
mathematical concepts, efficient algorithm development  & 
subsequent efficient implementation in both hardware & 
software. These advantages are especially important in 
applications on constrained devices such as smart cards, 
mobile phones, PDAs. 

The efficiency of every public key cryptosystem depends 
on a hard mathematical problem, which is computationally 
intractable. For instance, RSA and Diffie-Hellman (DH) rely 
on the hardness of integer factorization and the discrete 
logarithm problem respectively. Unlike these cryptosystems, 
which operate over integer fields, the Elliptic Curve 
Cryptosystems (ECC) operates over a group of points on an 
elliptic curve over finite field. 

The basic mathematical operation in RSA and 
Diffie-Hellman is modular integer exponentiation. But, 
elliptic curve arithmetic relies on a operation called scalar 
point  multiplication, which computes Q = kP, where P is a 
point on a selected elliptic curve & k is a sufficiently large 
integer which is private in nature. This multiplication gives 
rise to a new point called Q on the same elliptic curve. Scalar 
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multiplication is performed through a combination of 
point-additions (which add two distinct points together) and 
point-doublings (which add two copies of a point together). 
For example, 11P can be expressed as 11P = (2. ((2 . (2 . P)) + 
P)) + P. 

The security of ECC depends on efficient computation of k 
for given P & Q. Although computing Q is easier, but 
computing k is too hard. This is, in fact, called Elliptic Curve 
Discrete Logarithm Problem (ECDLP). 

Although applying a brute-force approach to compute all 
multiples of P until Q is found, looks sound, but k is so large 
in a real cryptographic application that it would be infeasible 
to determine k in this way. Mathematicians have given their 
best effort to attack such problem since many years. But, the 
best known algorithm to attack ECDLP so far takes 
exponential time [1], where as sub-exponential time 
algorithm do exist, to solve the hard problems of  RSA [2] & 
DH [3]. 

The remaining part of this paper is organized as follows. 
Section 2 discusses the issues related to finite field & basis 
representation. A brief idea about finite field arithmetic 
operations is presented in section 3. Mathematical concepts 
of Elliptic curves over finite fields and representation of 
points in different coordinate system is presented in section 4. 
Performance and complexity metrics is explained in section 5. 
A note on how to choose architecture is given in section 6. 
Finally section 7 gives the conclusion.     

II.   FINITE FIELD 
A finite field is an algebraic system consisting of a finite 

set F together with two binary operations + & . , defined on F, 
satisfying the following axioms: 

• F is an abelian group with respect to “+”; 
• F\{0} is an abelian group with respect to “.”; 
• Distributive: for all x,y and z in F we have: 

o x.(y+z)=(x.y)+(x.z) 
o (x+y).z=(x.z)+(y.z). 

The order of a finite field is the number of elements in the 
field. [4] Suggests that there exists a finite field of order q if 
and only if q is a prime power. In addition if q is a prime 
power, then there is essentially only one finite field of order q; 
denoted by Fq or GF(q). There are many ways of 
representing the elements of Fq and some of them lead to 
more efficient implementations of the field arithmetic in 
hardware or in software.   
If q p= , where p is a prime, then we can have different 
finite fields as follows: 
GF(p) called as general prime field. 
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GF( 2n c− ) called pseudo mersenne prime field.  
GF( 2 2 ... 1n s− − − ) called generalized mersenne prime 
field. 

If mq p= , where p is a prime and m is positive integer, then 
p is called characteristic (char.) of Fq and m is called the 
extension degree of Fq. So Fq is named as extension field. 
We can have different extension fields as follows:  
GF( 2m ), called binary field, when char.=2. 

GF( (2 )n m ), called composite field when char.=2.  

GF( (2 )n mc− ), called Optimal extension field when char.>2. 

III.   FINITE FIELD Fp OR GF(P) 

Let p be a prime number. The finite field Fp, called a prime 
field, consists of set of integers {0,1,2,3,…, p-1} with the 
following operations: 

Addition: If  a, b ∈  Fp, then a+b=r, where r is the 

reminder of the division of a+b by p and 0 1r p≤ ≤ − . 

This operation is called addition modulo p. 

Multiplication: If a, b ∈  Fp, then a.b=s, where s is the 

reminder of the division of a.b by p and 0 1s p≤ ≤ − . 

This operation is called multiplication modulo p. 

It is to be noted that one of the common aspect in both 

the arithmetic operations is the reduction modulo p., 

which is accelerated by the NIST-recommended primes 

such as 192 642 1192 2p − −= (this is an example of 

generalized mersenne prime [5] defined above). This is 

because these primes can be written as the sum or 

difference of a small number of powers of 2.Again the 

powers appearing in these expressions are all multiples 

of 32. So the reduction algorithms are especially fast on 

machines with word size 32. For a detailed list of such 

primes and corresponding algorithms, the reader is 

referred to  [4].   

IV.  FINITE FIELD m2
F  

The finite field m2
F , is called a binary finite field. The 

char.=2 is of special importance  because of  its easiness in 
hardware implementation It has a set of m elements 
{ 0 1 2 1, , , ... mα α α α − } in m2

F  such that each a ∈  m2
F can be 

written uniquely in the form 
1

0
,  {0,1}.

m

i
a a where ai i iα

−

=

= ∈∑  

So, a  can be represented as a binary vector  
{ 0 1 2 1, , ..., ma a a a − }. The set  { 0 1 2 1, , , ... mα α α α − } is called a 

basis of 
2mF over 2F . There are different bases 

proposed in literatures like Polynomial basis, Normal 
basis & Dual basis.  

V.  BASIS REPRESENTATION IN m2
F OR GF( 2m ) 

There are three important basis representations in m2
F : 

polynomial (standard, canonical), normal and dual basis. 
Different basis representation greatly affects the underlying 
arithmetic operations in the finite field and hardware 
implementations. 

  A. POLYNOMIAL BASIS 

A polynomial basis over GF( 2m ) is represented as 
2 3 1, , ..., }, ( ){1, , 2mm GFαα α α α − ∈ . Let f(x)= ( )mx r x+  be 

an irreducible binary polynomial of degree m. The elements 
of m2

F are the binary polynomials of degree at most m-1 with 

addition and multiplication performed modulo f(x). A field 
element is given as a(x) = 1 2

1 2 1 0...m
m x a x a x aa −

− + + + + , 

where {0,1}ia ∈  

   B. DUAL BASIS 
Unfortunately the conventional representation of finite 

field elements in a basis consisting of powers of α  is not 
well suited to hardware implementation of shift registers. [6] 
Presents a new basis representation by Berlekamp. The dual 

basis 0 1 2 1, , , ..., }{ nb b b b −  of 2 3 1, , ..., }{1, , mα α α α − , is defined 

as )( i
j ijtr b δα = . The trace over GF(2) of an element 

)(2mx GF∈  is given by:  2
1

0
( ) in

i
xtr x

−

=
∑=  

A typical problem with the dual basis is that, a multiplier 
designed using dual basis use polynomial basis and dual basis 
representations; therefore, we also have to address the 
problem of basis conversion. This problem certainly does not 
arise when α is a self-dual basis. A basis is called self-dual if 

it is equal to its dual basis. Self-dual bases of )(2mGF  exist 
only for few values of m. 

   C. NORMAL BASIS 

   A normal basis over GF( 2m )  is   represented   as   

{ β , 2β , 4β , 8β ,…,
12m

β
−

} ,where β ∈  GF( 2m ). So, a 
field element in such basis is given as 

1

1

0 1 2

2 4 2( ) ... m

m

a x a a a aβ β β β
−

−

= + + + + , where 

{0,1}ia ∈ . The concept of optimal normal basis(ONB) was 
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introduced in [11] to reduce the complexity of hardware 
architecture. Again it can be of two types i.e. Type I & Type 
II. The basic difference between these two variants is that, 
Type I has less irreducible polynomials then Type II.  

VI.   FINITE FIELD OPERATIONS 
The generalized operations on the finite field are 

addition/subtraction, multiplication, squaring, inversion, 
exponentiation, reduction and division. However, all the 
operations are not individually realized in hardware or 
software. Because some primitive operations like addition 
can do subtraction under modulo 2 operation, multiplication 
can be helpful for realizing inversion, division can be 
implemented by multiplication and inversion and so on. 
Again these operations are basis dependent except 
addition/subtraction. 

Multiplication under polynomial basis is performed by 
multiplying polynomial a(x) and b(x) and taking the modulo 
with respect to a reduction polynomial f(x). The following 
procedure is commonly used to choose a reduction 
polynomial: if an irreducible trinomial 1m kxx + +  exists 
over F2 ,then the reduction polynomial f(x) is chosen to be the 
irreducible trinomial with the lowest-degree middle term xk . 
If no irreducible trinomial exists, then select instead a 
pentanomial 3 2 1 1k k km x x xx + + + + , such that 1k  has the 

minimal value; the value of 2k  is minimal for the given 1k ; 

and 3k  is minimal for the given 1k and 2k . 
Squaring an element in normal basis is a simple cyclic shift of 
the vector representation of the polynomial   a(x) 
i.e. a linear operation in m2F  as follows: 

12 2 2 2 2
1

1 1 1

0 0 0
mod( ) ( )

i i i

i i i
m m m

i i i
ma x a a aβ β β

+

−

− − −

= = =
∑ ∑ ∑= == = 

(am-1a0a1…am-2) 
 
Extended Euclidean algorithm and the other one by 
employing Fermat’s little theorem can achieve inversion in 
the finite fields. A method for efficiently implementing 
division was proposed by Itoh and Tsuji [14].  

A. Finite Field Multipliers 
Since the central operation of ECC is the elliptic scalar 

multiplication (described in section 1), this section gives 
some more insight into finite field multipliers. 
Finite field multipliers can be grouped into two major 
categories, namely serial and parallel. Serial multipliers have 
less complex structure than parallel but produce only a few 
result bits per clock cycle [9]. These are more attractive under 
hard area constraints, since they require fewer gates than 
parallel ones. On the other hand, parallel ones can perform 
the total multiplication in one clock cycle at the cost of large 
chip area [10]. Efficient bit-parallel multipliers for both 
polynomial and normal basis representation have been 
proposed [15, 16, 17], including the Mastrovito multiplier 
[18]. In a recent paper [19], Huapeng Wu has proposed low 
complexity bit parallel multipliers for three classes of finite 
fields.  

Polynomial multiplication can be efficiently implemented 

using well-known techniques such as the Ofman Karatsuba 
method [16]. Field multiplication, i.e. polynomial 
multiplication combined with reduction, can be implemented 
using techniques such as the least significant digit (LSD) first 
or most significant digit (MSD) first multiplication method 
[8]. Division a(x)/b(x); a(x), b(x) ∈  m2

F is defined as a 
multiplication of the dividend a(x) with the multiplicative 
inverse of the divisor b(x). This also necessitates efficient 
exponentiation division circuit.  

VII.   ELLIPTIC CURVES OVER FINITE FIELDS 
There are several ways of defining equations for elliptic 

curves, which depend on whether the field is a prime field 
Fp  or binary field m2

F . 

B. Elliptic curves over GF(p) 

   LET P>3 BE AN ODD PRIME AND LET pFba ∈, SATISFY 

0274 23 ≠+ ba MOD P. THEN AN ELLIPTIC CURVE 

)( pFE OVER FP DEFINED BY PARAMETERS 

pFba ∈, CONSISTS OF THE SET OF SOLUTIONS OR POINTS 

),( yxP = FOR pFyx ∈,   TO THE EQUATION 

baxxy ++= 32
TOGETHER WITH A SPECIAL POINT 

Ο CALLED THE POINT AT INFINITY.  

The operation in )( pFE is specified as follows:  

1. )( allfor  pFEPPP ∈+Ο=Ο+ . 

2.  Ο. y)(x,,y)), then (xE(F(x,y)If P p =−+∈=  The point 

)E(Fy)(x, p∈− is denoted as P− , and is called the 
negative of P . 
3. Let 1 1 p P (x , y ) E(F )= ∈  and 2 2, )( yQ x= , where 

P Q≠ ± . Then 3 3, )( yP Q x+ = , where 2
3 1 2x x xλ= − − , 

3 1 3 1( )y x x yλ= − − , and 2 1 2 1( ) /( )y y x xλ = − − . 

4.Let 1 1 p P (x , y ) E(F )= ∈ . Then 2 P P P+ = =(x3, y3) 

where 2
3 12x xλ= − , 3 1 3 1( )y x x yλ= − −  and  
2
1 1(3 2) /x a yλ = + . This operation is called doubling of a 

point. 
Note that addition of two different elliptic curve points in 

)( pE F  requires the following arithmetic operations in pF : 

one inversion, two multiplications, one squaring and six 
additions. Similarly, doubling an elliptic curve point requires 
one inversion, two multiplications, two squarings and   8 
additions. 

Since inversion in pF is an expensive operation, an 

alternative method to compute the sum of two elliptic points 
is to use projective coordinates. In such case, the inversion 
operation is performed by more multiplications and other less 
expensive finite field operations. 
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C. Elliptic curves over m2F  

   A non-supersingular elliptic curve m2E(F ) over m2F  

defined by the parameters m2, , 0a b F b∈ ≠ , consists of the 

set of solutions or points m2( , ) for ,P x y x y F= ∈  to the 

equation: 2 3xy x ax by + = + +  together with a special point 
Ο called the point at infinity. 
The operation in m2E(F ) is specified as follows: 

1. 
2

)( mP E F∈  for all 
2

)( mP E F∈ . 

2. 
2

)( , ) ( mP x y E F= ∈ , then ( , ) ( , )x y x y+ − = Ο . The point 

2
)( , ) ( mx y E F− ∈ is denoted –P and is called the negative of 

P. 

3. Let 1 1 2
)( , ) ( mP x y E F= ∈ and 2 2 2

)( , ) ( mQ x y E F= ∈ , 

where P Q≠ ± . Then 3 3, )( yP Q x+ = , where 

2
3 1 2x x x aλ λ= + + + + , 3 1 3 3 1( )y x x x yλ= + + +  

and 2 1 2 1( ) /( )y y x xλ = + + . 

4. Let 1 1 2
)( , ) ( mP x y E F= ∈ . Then 2P P P+ = =(x3,y3) 

where 2
3x aλ λ= + + , 3 1 3 3 1( )y x x x yλ= + + +  and 

1 1 1( / )x x yλ = +  

Note that the addition of two elliptic curve points in 

m2E(F ) requires one inversion, two multiplications and eight 

additions in m2F . Doubling a point requires one inversion, 
two multiplications, one squaring and six additions. Since 
inversion is an expensive operation comparison to 
multiplication, hence projective coordinates can be useful, 
where inversion is expressed as multiplication and other field 
operations. A hardware and a software implementation of 

m2F  can be found in [12] and [13] respectively, where an 
inversion costs about 24 and 10 multiplications respectively. 

VIII.   PERFORMANCE AND COMPLEXITY METRICS 
Several performance and complexity metrics are used to 

compare and evaluate finite field multipliers. Following 

is a short description of those metrics. 

Gate count This is the main complexity metric which is 
usually considered as the numbers of 2-input AND and XOR 
gates, flip-flops and switches or 2-to-1 multiplexers. It is 
sometimes tied to the silicon area used for implementation 
using the area and count of an equivalent 2 input NAND gate 
to represent the hardware complexity. 

Latency The delay between first input and first output of 
the multiplier expressed in clock cycles is defined as latency. 
This measure is of special importance in systolic and 
semi-systolic design as the output makes a delay of multiple 
clock cycles after the arrival of the input. 

Regularity and Modularity These two metrics are 
interrelated. Design regularity helps in extending a system to 
perform more operations easily and modularity helps in 
visualizing the entire system as a combination of independent 
modules. Polynomial basis multipliers are most preferred in 
terms of regularity while normal basis are less preferred. 

IX.   HOW TO CHOOSE AN ARCHITECTURE 

   The choice of )(2mGF  multiplier architecture depends 
heavily on the basis representation as well as hardware 
complexity and the critical path delay of the architecture. 
Polynomial basis representation has the advantage over the 
other bases as it can be performed using ordinary polynomial 
arithmetic. It is also easier to extend to high order finite fields 
than the dual or normal basis [8]. In the normal basis where 
squaring is only a shift left operation is crucial to inversion 
operation. For example, Massey-Omura multiplier [7] is very 
effective in performing squaring, exponentiation, and 
inversion operations. The dual basis yields the simplest 
architecture. The dual basis multiplier [6] for example, needs 
the least number of gates, which leads to the smallest area 
required for VLSI implementation.  

Selecting serial or parallel architecture depends on the 

availability of operands during computation. 

Coming to systolic and non-systolic, systolic architecture 
allows for pipelining while non-systolic are more hardware 
efficient.  

Taking all those factors into account although absolute 
hardware architecture is difficult to realize but it helps in 
focusing the target. For example if the target is for low 
hardware complexity then non-systolic design is a better 
choice. Although, semi-systolic design gives still less 
hardware complexity than fully systolic but the common 
control signal in semi-systolic make it difficult to expand the 
multiplier to higher fields. In a recent paper Meher [20] has 
proposed a bit-level-pipelined systolic design, which takes 
nearly half of the time complexity of the corresponding 
existing design that of Wang and Lin [21], Lee [22], Lee et al. 
[23] by appropriate cut-set retiming and logic optimization in 
the processing elements (PEs). 

Using composite fields to construct the multiplier 
architecture is also helpful in lowering the area complexity 
and increases the modularity of the architecture. Because, 

multiplication over composite field GF( (2 )n m ) is performed 
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using arithmetic modules of GF( 2n ). Multiplier 
architectures for two different classes of composite fields 

GF( 2(2 )n ) and GF( 4(2 )n ) and their complexity analysis can 
be found in [24].  

X.   CONCLUSION 
This study of different implementation options in finite 

field multipliers helps in identifying the suitable target easily 
and effectively. Although there are many papers on 
arithmetic operations in finite field, but more and more 
optimal hardware architecture is what we are looking for. 
Because of the miniaturization of electronic devices, power 
efficiency and cost-effectiveness without compromising the 
security will be the real challenge of future ECC based 
system design. 
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