
International Journal of Computer Theory and Engineering, Vol. 1, No. 3, August, 2009
1793-8201

 - 236 -

Abstract—Data warehousing technology aims at providing

support for decision making for operational data. Defining a
data warehouse for data stored in XML (Extensible Markup
Language) format should be addressed as various organizations
use XML to facilitate the promotion of their businesses. In this
paper we describe a semi-automated approach for designing
multiple Cubes of multidimensional model from XML schema.
In our approach an attribute tree is arrived at by parsing the
XML schema. Pruning and grafting are used to remove
unnecessary nodes in the attribute tree. Facts, dimensions and
measures, which are used to describe the multidimensional cube,
are identified. Single or multiple facts can be chosen giving rise
to multiple cubes. The choice construct of the XML schema is
shown to give rise to multiple Cubes in both the cases.

Index Terms - Data warehouse, XML schema, OLAP,

Multidimensional Cubes, Attribute tree, Data Warehouse
design

I. INTRODUCTION
Data warehousing [1], [2] technology aims at providing

support for decision making by integrating data from various
heterogeneous systems in the data warehouse. In contrast to
operational systems which support OLTP (on line
transactional processing) applications, data warehousing
technology aims at providing integrated, consolidated and
historical data for OLAP (on line analytical processing)
applications [3].The focus of OLAP tools [4], [5] is to
provide multidimensional analysis to the underlying
information. Towards this purpose, multidimensional models
for the storage and presentation of data have been developed.
Many efforts have been made to develop a multidimensional
model whose main entities are facts and dimensions [6], [7],
[8]. Data is organized as cubes that have several dimensions,
which together define the multidimensional space. Each
dimension comprises of a set of aggregation levels.

XML (Extensible Markup Language) is a meta markup
language that provides a format for describing semi
structured data. It is a method for putting structured data in a
text file. XML documents are self describing so that both
human and machine can understand it.

Due to its wide variety of features, today XML is used by
various organizations as it facilitates the promotion of their
businesses. Some of the key factors why XML has gained
importance are:

Manuscript submitted April 21, 2009.
Prof. Parimala N. is Dean (School of computer and system sciences),

Jawaharlal Nehru University, Delhi, India.
Prof. Payal Pahwa is professor in Guru Premsukh Memorial College of

Engineering, I.P. university, Delhi.

• Different computers in an organization using XML can
exchange data easily. This improves the data flow throughout
the organization.
• XML data exchange is specifically designed to be used
by small and medium sized organizations as it is less
expensive than other forms of data exchange. Due to this, it
has gained wide acceptance and can be used even for small
businesses.
• XML provides a standard common format for multiple
sources of information.
• XML is format independent and can generate multiple
outputs in an application
• If an organization wants to store information for a long
period of time then XML can be used for this.
• XML is flexible and thus used by number of
organizations.
• XML is adaptable.

Thus more and more companies are inclined towards the
use of XML for storing data for their business activities.

As more and more organizations and enterprises are using
XML data for their day to day business activities so it has
become necessary to integrate XML data into a data
warehouse environment. It can provide the organizations
with up-to-date information in their areas of business which
in turn can help them in decision making

Attempts have been made to build data warehouse from
XML data [9], [1], [11].The emphasis is on identifying the
fact, the dimensions and their hierarchies. However, all these
approaches do not consider the choice of sub elements that
can be specified in a XML schema[12] while arriving at the
multidimensional model. For example, the schema in Fig.1
the complexType promoterstructure represents the choice
element. It is clear that the data which refers to organization
will be totally disjoint from the data concerned with personal
contact. The question is whether all the information should be
in a single cube or should be separated out into two cubes. In
all the approaches so far [6], [8] all the data is in one cube. In
this paper we take the second approach. We propose that data
concerned with the choice element be separated into multiple
cubes.

The second aspect considered in this paper is whether a
single XML schema can have more than one fact. We find
that it is possible that a single XML schema may have more
than one fact. As an example, consider the schema given in
Fig. 6. Production and Order can be both facts, which can be
analyzed along the product dimension. Therefore, choosing
more than one fact is provided for in our system. The
dimensions associated with each fact are arrived at. As a
result we get multiple multidimensional cube definitions for a
single XML schema. It turns out that the cubes may or may
not have any common dimension.

From XML Schema to Cube
Parimala N. and Payal Pahwa

International Journal of Computer Theory and Engineering, Vol. 1, No. 3, August, 2009
1793-8201

- 237 -

The first step in our approach is to convert the XML
schema into an attribute tree. While doing so the different
grouping constructs-sequence, choice and all of an XML
schema are considered. Of these different grouping elements
that can be specified, we study the choice element in detail.
The choice in an XML schema is clearly defined to mean that
one of the sub elements will appear in a XML document
corresponding to this schema. We carry this choice
specification forward when we convert XML schema to an
attribute tree. One or more than one fact is chosen in the
attribute tree. Some nodes in the attribute tree may not carry
additional information. Grafting and pruning is used to
remove these nodes. Using some heuristics, the dimensions
and the measures are identified for each fact.

II. XML SCHEMA
An XML schema [13] describes the structure of an XML
document. It has a nested structure starting with a root
element. The schema defines the elements and attributes that
can appear in a document. These can be either simple or
complex type. Order indicators define the order of elements
in the XML schema. The order indicator may be a choice, a
sequence or all. The choice indicator specifies that either one
child element or another can occur. The sequence indicator
specifies that the child elements must appear in a specific
order and the all indicators specifies that the child elements
can appear in any order and that each child element must
occur only once. The elements in the XML schema can
contain text, other elements, a mixture of text and elements or
nothing at all. The cardinality of the sub elements can be
expressed using minOccurs and maxOccurs attributes. The
maximum number of times an element may appear is
determined by the value of a maxOccurs attribute in its
declaration. This value may be a positive integer or the term
unbounded to indicate there is no maximum number of
occurrences. Similarly, the minimum number of times an
element may appear is determined by the value of minOccurs
attribute in its declaration.
<?xml version="1.0" encoding="utf-8"?>

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name="RoadEvent">
<xsd:sequence>
<xsd:element name="promoter" type="promoterstructure"/>
<xsd:element name="location" type="locationstructure"/>
<xsd:element name="time" type="timestructure"/>
<xsd:attribute name="number" type="xsd:positiveInteger"/>
<xsd:attribute name="status" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="promoterstructure">
<xsd:choice>
<xsd:element name="organization" type="orgstructure"/>
<xsd:element name="personal contact"
type="personalstructure"/>
</xsd:choice>
</xsd:complexType>
<xsd:complexType name="orgstructure">

<xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="personalstructure">
<xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="address" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="locationstructure">
<xsd:sequence>
<xs:complexContent>
<xs:extension base="locationaddressstructure">
<xsd:attribute name="city" type="xsd:string"/>
</xs:extension>
 </xs:complexContent>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="locaddressstructure">
<xsd:sequence>
<xsd:attribute name="longitude" type="xsd:string"/>
<xsd:attribute name="lattitude" type="xsd:string"/>
/xsd:sequence>
</xsd:complexType
<xsd:complexType name="timestructure">
<xsd:sequence>
<xsd:element name="day" type="monthstructure"/>
</xsd:sequence>
</xsd:complexType
<xsd:complexType name="monthstructure">
<xsd:sequence>
<xsd:attribute name="month" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType

Fig. 1 XML Schema

III. THE DATA MODEL DM
In [14] we have defined a multidimensional data model DM
whose main components are dimensions and a fact scheme.
We include the definition here so that the mapping can be
defined.
A Cube has the following components
• N dimensions
• The fact scheme
A Dimension is composed of
• a set of dimensional attributes V. Each attribute has a set
of instances associated with it.
• a set of non dimensional attributes N.
• a connected, directed graph D(V, E). Every vertex in the
graph corresponds to an aggregation Level, and an edge (ai,
aj) reflects that ai can be rolled up to aj. An instance of aj
decomposes into a collection of instances of ai. Each Level
corresponds to granularity in the Dimension.
A Fact scheme is an expression of the form f [D1: A1, D2:
A2 … Dn: An] → [M1, M2 ….Mk] where Ai is a

http://www.w3.org/2001/XMLSchema

International Journal of Computer Theory and Engineering, Vol. 1, No. 3, August, 2009
1793-8201

 - 238 -

dimensional attribute of dimension Di. M1 ….Mk are distinct
measures.

IV. REV DEFINING CUBES
In this section we describe a semi automatic approach for
building multiple Cubes from XML sources. Starting with the
XML schema the following steps are performed:
1. Map XML schema to an attribute tree
2. Choose fact/facts
3. Define dimensions and measures for each fact.

Fig. 2 Attribute tree of XML Schema of Fig. 1

V. BUILDING AN ATTRIBUTE TREE
As a first step the XML schema is converted to an attribute
tree. Essentially a node in the tree represents a construct of
the XML schema. The edges are drawn so that the attribute
tree represents the hierarchical relationships between the
different constructs of the XML schema. Thus, the tree is a
directed tree. The construction process is explained below.
While doing so the different constructs of XML schema are
considered. XML schema can have simple and complex types,
which have grouping constructs - sequence, choice and all. In
addition a simple type or a complex type can be extended or
restricted. In the case of restriction, only the properties can be
restricted. On the other hand, a type can be extended by
adding attributes and elements. We consider each of these.
The algorithm to construct an attribute tree from the XML
schema is as follows:
 Create a node to represent the root element of the XML
schema.
a For an attribute a node is created corresponding to it and
marked as A. An edge is drawn from the node of which it is a
sub part and this newly created node.
b An element with no sub elements in the XML schema
belongs to the category of simple type and a node is created
corresponding to it. An edge is drawn from the node of which
it is a sub part and this newly created node.
c An element in the XML schema that is defined as a
complex type is mapped to a new node and an edge is drawn
from the parent node to this node. Further, the grouping
constructs are mapped as follows:

i) A node is created for each sub element that is a
sequence and connected to the node corresponding to the
complex type.
ii) A node is created for each alternative element of the
choice construct of an XML schema and connected to the
node of the complex type. A choice construct is graphically
represented by drawing a parallel line across the edge, as
shown in fig. 2.
iii) If the grouping element is all then it is treated as
sequence as discussed above.
d In a XML schema the cardinality is 1:N, in the direction
from the root to the element. The minOccurs and maxOccurs
options specify the cardinality N of the element concerned. In
the absence of any specification, the default cardinality for
element is minOccurs=0 and maxOccurs=1 and for attribute
it is minOccurs=1 and maxOccurs=1. These are used to
unambiguously specify the cardinalities in the direction of
the edge in the attribute tree. When the cardinality is 1:N then
the user has to decide whether to include the element or not.
e A simple or a complex type can be used as a base and a
new type can be specified as an extension of the base type.
Since the base type is already defined, a node corresponding
to it already exists. A new node is created for the extended
type with an edge between them. This edge is marked with a
pair of parallel lines across the edge as shown in Fig. 2.
Applying the above steps, the XML schema of Fig. 1 is
converted to an attribute tree of Fig. 2.

A. Pruning and Grafting
The attribute tree can be pruned and unnecessary nodes can
be removed. If a node that is a leaf is pruned then only that
node is deleted. If a node other than a leaf is pruned then the
sub tree rooted at this node is deleted. For example in Fig. 2 if
name is pruned then only it is deleted from the tree and if
personalcontact is pruned then name and address are
automatically deleted. However this needs input from the
user.
Grafting one node to another is clubbing two nodes and
removing the edge between them. More formally, let n1 and
n2 are two nodes and e(n1, n2) the edge between them.
Grafting n2 to n1 implies
a) delete e
b) connect all edges connected to n2 to n1
c) delete n2.
There are multiple situations when grafting can be useful.
The situations and the action taken is explained below.
1) When the cardinality between two nodes is 1:1: In this
case grafting one onto the other is permitted. The cardinality
1:1 can mean that one of the nodes is superfluous. However,
the grafting is performed only after confirmation from the
user as most of the constructs in the XML schema display 1:1
relationship.
2) When choice construct is represented: The grafting is
done for every alternate element of the choice construct i.e.
for every edge that has a parallel line. However, it is deferred
and performed later as explained in rule 2 of section VI.
3) When extension of types is represented: In this case the
base type becomes superfluous if all the elements of the base
type are available with the extended type. Both the nodes are
not necessary. The extended type is retained with all its

name

A

address

A

longitude

A

month

A

lattitude

A

name

A

organization personalcontact city locationaddress day

status

M

promotor location time number

M

Road Event

International Journal of Computer Theory and Engineering, Vol. 1, No. 3, August, 2009
1793-8201

- 239 -

elements and the elements of the base type. That is, if n and
n1 are two nodes such that the edge e1 (n, n1) has a double
parallel line drawn across it as shown in fig. 2, then the edges
other than e1 which are connected to n in the direction of the
edge to n1 are attached to n1. Node n1 is grafted to n.
At the end of pruning and grafting we have an attribute tree
with unnecessary nodes removed. From the attribute tree of
Fig. 2 we get the attribute tree shown in Fig. 3.

Fig. 3 Attribute tree after pruning and grafting

VI. CHOOSING FACT
After the XML schema is converted to an attribute tree, fact F
is chosen in the attribute tree. The fact is chosen by the user.
The fact can be a single node or more than one fact can be
identified by the user. Once the fact is chosen by the user,
dimensions and measures are identified

A. Choosing A Single Fact
Firstly let us consider that a user chooses a single fact. Let F
be the fact chosen by the user. This corresponds to the f of the
fact scheme. Then the nodes, which are connected to F, can
be either measures or dimensions. We define the following
heuristics to choose measures and dimensions in the attribute
tree.

1. If a node connected to F is a leaf then it is a measure Mi
(marked as M in Fig.2). If a node connected to F is not a leaf
node then it defines a dimensional hierarchy. The tree with n
as root forms the collection of dimensional and non
dimensional attributes. Within the tree (Fig.2) all nodes
marked as ‘A’ are non-dimensional attributes. Remaining
nodes are dimensional attributes. The directed tree with root
n is treated as the graph of the dimension. For example; in
Fig.2 status and number are measures. The node Time defines
a dimensional hierarchy which has time and day as
dimensional attributes and month as non dimensional
attribute.
2. Let multiple edges connected to a node n have a parallel
line across them (which will be the case for a choice
construct). These nodes are mapped to dimensions. If they are
to be translated as dimensions, we observe that the fact
instances will relate to one of the dimensions at a time and
never all of them. Therefore, it is preferable to have these
nodes as dimensions in different cubes. In such a situation,
we create multiple Cubes. Each Cube will have only one of
the nodes connected to n. Only one choice element construct
appears as a dimension in one cube. Effectively, there are as

many cubes as edges with a single parallel line. For each edge
e1(n, n1), graft n1 to n and create a Cube with all other
dimensions and measures as derived in 1.
The above heuristics give an initial definition of the Cube.
Let us consider Fig. 2. As clearly seen in the figure there is a
choice construct in the edges connected to promoter marked
as a parallel line across them. The choice is between
organization and personalcontact. We create multiple cubes
as explained above. Certain adjustments are made. For
example, since day can be rolled up to month, month is
moved from a non-dimension attribute to a dimensional
attribute. Two Cubes for the XML schema of Fig.1 are
defined below:

Cube OrgRoadEvent
Dimension Org with V = {organization} and
N= {Name}
Dimension Place V = {locationaddress, city } and
N = {longitude, latitude } Graph = (V, E) where
E = {(locationaddress, city) }
Dmension TimeOfEvent with V = { time, day, month } and N
= { } Graph = (V, E) where E = {(time, day), (day, month) }
Fact Scheme
OrgRE [Org: organization, Place: locationaddress,
TimeOfEvent: time] → [Number, status]
Cube PerRoadEvent
Dimension Promotor with V= {personalcontact } and
N = {name, address }
Dimension Place V = { locationaddress, city } and
N = {longitude, latitude } Graph = (V, E) where
E = {(locationaddress, city) }
Dimension TimeOfEvent with V = { time, day, month } and
N = { } Graph = (V, E) where E = {(time, day), (day,
month) }

Fact scheme
PerRE [Place: locationaddress, TimeOfEvent: time,
Promotor: personalcontact] → [Number, status]

B. Choosing Multiple Facts
Now let us consider the case where the user identifies more
than one fact. Let F and F’ be the two facts identified by the
user. The following cases arise regarding the relationship
between those elements in the XML schema, which
correspond to the nodes identified as facts in the attribute tree
a) the nodes are part of choice construct
b) there are intervening nodes between the two fact nodes.
That is, the nodes are connected indirectly through other
nodes.
c) there is no intervening node between the two fact nodes.
That is, there is an edge between them.
We will discuss these cases individually

Case (a) Nodes are part of choice construct
Let us consider the case when the nodes are part of choice
construct. If the nodes are part of a choice construct then they
are elements of the same parent element P. Let F and F’ be
two nodes as identified by the user. If there is a choice
construct among these nodes then they are considered to

name

A
address

A

longitude

A

month

A

lattitude

A
name

A

organization personalcontact

city

locationaddress

day

status

M time
number

M

Road Event

International Journal of Computer Theory and Engineering, Vol. 1, No. 3, August, 2009
1793-8201

 - 240 -

exhibit ‘is-a’ relationship with P. At any given point in time,
only one of the fact i.e. either F or F’ is considered and the
other is ignored. If the node F is considered then the parent P
is grafted to F and a cube is arrived at. Similarly if F’ is
considered then the parent P is grafted to F’ and a cube is
obtained. The parent P is grafted because its choice construct
is considered and thus the parent node now becomes
superfluous and can be grafted. As an example, consider the
following XML schema and its corresponding attribute tree.
< xs: complexType name =”Item” >
<xs: choice>
<xs: element name = “Library book” type = “booktype”/>
<xs: element name = “Moviecd” type = “movietype”/>
</xs: choice>
<xs: attribute name = “Title” type = “xs: string”/>
</xs: complexType>
<xs: complexType name = “booktype”>
<xs: sequence>
<xs: attribute name = “Pages” type = “xs: string”/>
<xs:element name = “Author” type = “ authortype”/>
<\xs: sequence>
<\xs: complexType>
<xs: complexType name = “authortype”>
<xs: sequence>
<xs: attribute name = “Name” type = “xs: string”/>
<xs: attribute name = “add” type = “xs: string”/>
<\xs: sequence>
<\xs: complex type>
<xs: complex Type name = “Movie type”>
<xs: element name = “Actor” type = “actor type”>
<\xs: complex type>
<xs: complex Type name = “Actor type”>
<xs: sequence>
<xs: attribute name = “ First name” type = “xs: string”/>
<xs: attribute name = “Last name” type = “xs: string”/>
<xs: sequence>
<xs: complex type>

Fig. 4 XML Schema

Fig. 5 Attribute tree of XML schema of fig. 4

There is a choice construct in the XML schema and is
represented by parallel lines in the above attribute tree. The
item can either be a Librarybook or Moviecd. Thus there are
two facts Librarybook and Moviecd. First the subtree under
Library book is ignored. Item is grafted to Movie cd. Next the
subtree under Moviecd is ignored and Item is grafted to
Library book. After making adjustments regarding dimension
and measures, the following cubes are arrived at:

Cube Lbook
Dimension Ath with V = {Author} and N = {name, address}
Fact scheme
Lib book [Ath: Author] → [Pages, Title]
Cube Mcd
Dimension Act with V = {Actor} and N = {first name, last
name}
Fact scheme
Movie cd [Act: Actor] →[Title]
Case(b) There are intervening nodes between the two fact
nodes.
When there are intervening nodes between the two fact nodes
then related cubes are created. If F and F’ are the two facts
identified by the user then F is mapped to the fact scheme of
one cube and F’ to the other. In order to create the dimensions
of the two cubes we consider the intervening nodes. There
may be one or more nodes, which connect these facts. If there
is a single node connecting the two facts then it is usually
treated as a common dimension and this dimension is defined
in both the cubes. If there is more than one node connecting
the two fact nodes then these intervening nodes are treated as
dimensions in either of the cubes. However this requires an
input from the user. The following example considers the
case when there is a single intervening node between the two
fact nodes.
<?xml version="1.0" encoding="utf-8" ?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Production" type="ProductionType" />
 <xs:complexType name="ProductionType">
 <xs:sequence>
<xs:element name=”Product” type=”ProductType”
 minOccurs="1" maxOccurs="unbounded" />
 </xs:sequence>
<xs:attribute name=”Time” type=”xs:time” />
<xs:attribute name=”Factory” type=”xs:string” />
 </xs:complexType>
 <xs:complexType name=”ProductType”>
 <xs:sequence>
 <xs:element name=”Order” type=”OrderType”
minOccurs=”1” maxOccurs=”unbounded” />
</xs:sequen</xs:complexType>
 <xs:complexType name=”OrderType”>
<xs:attribute name=”Time” type=”xs:time” />
<xs:attribute name=”Retailer” type=”xs:string” />
<xs:attribute name=”Client” type=”xs:string” />
 </xs:complexType>

Last
Name Add Name

Item

Library
book

Pages

Moviecd

Author
Actor

Title

First
Name

http://www.w3.org/2001/XMLSchema

International Journal of Computer Theory and Engineering, Vol. 1, No. 3, August, 2009
1793-8201

- 241 -

</xs:schema>
Fig. 6 XML schema

The attribute tree for the above schema using the method
explained is shown below:

Fig. 7 Attribute tree of XML schema of Fig. 6
In this case if user identifies Production and Order as two
facts then Product is an intervening node between the two.
There is no relationship between them. So as explained
earlier, two cubes with Product as the common dimension are
formed. The first cube has Production as the fact scheme and
Product as a dimension. As per the heuristics given above
both Factory and Time become measures. But Time is
deleted as a measure and introduced as a dimension. In the
second cube, Order is the fact scheme and Product is a
dimension. As before adjustments are made to measures and
dimensions and Time is again treated as a dimension. The
two cubes are shown below. Note that Time will become a
common dimension if the semantics of Time in the first
schema is the same as the semantics in the second cube. Else
they will stay as separate dimensions.
Cube Production
Dimension Pro with V={Product} and N={Order}
Dimension Timeofproduction with V = {Time} and
 N = { }
Production[Pro: product, Timeofproduct: time]
 → [Factory]
Cube Order
Dimension Pro1 with V = {Product} and N = { }
Dimension Timeoforder with V = {time} and N={ }
Order[Pro1: product, Timeoforder: time] → [Retailer,
Client]
Case (c) there is no intervening node between the two fact
nodes
If F and F’ are the two facts identified by the user and there is
no intervening node between the two fact nodes then their
connecting edge is removed and two separate cubes with F
and F’ as fact scheme are created. The dimensions and the
measures are identified for each cube ce>
separately as given in heuristics defined above. The cubes
created are unrelated to each other i.e. they do not share a
common dimension. For example consider the following
XML schema and its corresponding attribute tree:
<?xml version="1.0" encoding="utf-8" ?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Order" type="OrderType" />

<xs:complexType name="OrderType">
 <xs:sequence>
<xs:element name=”Product” type=”ProductType”
 minOccurs="1" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name=”Client” type=”xs:string” />
 <xs:attribute name=”Address” type=”address type” />
</xs:complexType>
<xs:complexType name=”ProductType”>
 <xs:sequence>
<xs:element name=”Brand” type=”BrandType” />
 <xs:element name=:Warehouse” type=”WarehouseType”
 minOccurs=”1” maxOccurs=”unbounded” />
 </xs:sequence>
 <xs:attribute name=”ProductName” type=”xs:string” />
 <xs:attribute name=”ProductQty”
type=”xs:positiveInteger” />
</xs:complexType>
<xs:complexType name=”BrandType” >
<xs:attribute name=”BrandName” type=”xs:string” />
<xs:attribute name=”Category” type=”xs:string” />
</xs:complexType>
<xs: complexType name=”address type”>
<xs: attribute name=”city” type=”xs: string”/>
<xs:attribute name=”Longitude” type=”xs:string”/>
</xs:complexType>
<xs:complexType name=”WarehouseType” >
 <xs:attribute name=”WarehouseAddress”type=”xs:string”
/>
</xs:complexType>
</xs:schema>

Fig. 8 XML schema

Fig. 9 Attribute tree of XML schema of Fig. 8

If Order and Product are the two facts identified by the user,
then, the connecting edge between them is removed and the
following cubes are arrived at. These cubes share no common
dimension.
Cube Or
Dimension add with
V = {address, city} and N = {Longitude}
Graph = (V, E) where E= { address, city}
Fact scheme
Order [add: address} [Client]
Cube Pro
Dimension brd with

Factory Product Time

Production

Order

Time Client Retailer

Product
Name

Brand

Brand Name
Category

 Longitude

Client

Address

Product

Warehouse

 Warehouse
 Address City

Order

ProductQty

http://www.w3.org/2001/XMLSchema

International Journal of Computer Theory and Engineering, Vol. 1, No. 3, August, 2009
1793-8201

 - 242 -

V = {brand} and N = {category, name}
Graph = (V, E) where E= {brand, category}
Dimension wh with
V={warehouse} and N={address}
Fact scheme
Product [brd: brand, wh:warehouse] [name, quantity]
The first cube will have Order as fact scheme with Client as
measure and Address as its dimension. The second will have
Product as fact scheme with Name and Quality as measures.
It will also have Brand and Warehouse as dimensions.

VII. CONCLUSION
In this paper we have proposed a semi-automated approach

for arriving at multiple cubes of the data model DM of a data
warehouse from XML schema. The approach adapted by us
converts the XML schema to an attribute tree. We have also
identified grouping constructs, attributes, 1:1 cardinality and
extension to types in the XML schema and carried it over to
the attribute tree. Pruning to remove unnecessary nodes in the
attribute tree is undertaken. Grafting removes nodes, which
are superfluous. It has been shown that whenever there is a
choice construct or multiple facts, then more than one cube of
the data model DM is arrived at.

It can be argued that whenever there is only one fact, then
there should be only one cube. However, we split the XML
schema into multiple cubes when there is a choice construct
because if the choice construct is not taken into account then
while arriving at cubes, a fact instance will have null values
for the non-relevant dimension. Firstly, this will not be a
quite a correct relationship between the fact instance and the
dimension instances. Secondly, the processing time while
querying will significantly increase. Due to creation of
multiple cubes both the difficulties have been taken care of.

In an earlier proposal [15] we converted an XML schema
to Canonical Conceptual Model [16] which was further,
converted to an attribute tree. In the current proposal we have
done away with the CCM. The proposal did not consider
extension to types and the cardinalities in depth. The
emphasis there was using CCM as an intermediary model.

We have implemented the approach using Java TM 2
Platform Standard Edition 5.0 Development Kit (JDK 5.0) as
the front end and Oracle 10g as the back end. The Java
Database Connectivity (JDBC) has been used for providing
connectivity between Java programming

language and Oracle 10g.The implementation takes an
XML schema as input and produces the cube definition as
output.

DOM has been used to read XML data. Transfer of data
from XML document to tables in Oracle is done using table
based mapping described at http://www.xml.com. This type
of mapping views an XML document as a serialized table.

During implementation the following points were
considered:

1. As XML data types are not identical with the data types
of Oracle, a table was created which contained the
association of types in XML with a type in Oracle. For
example the XML data type integer was translated to number
in Oracle and similarly XML data type string was translated

to varchar in Oracle.
2.An XML schema is mapped to multiple cubes giving rise

to tables with the same name appearing in multiple cubes. If
all the tables corresponding to a single XML schema are
stored in a single database, then there is a name conflict for
the tables representing common dimensions. A table each is
created for the common dimension but every time one table is
renamed. This information is stored in the data dictionary.

3. The attributes of the tables were defined to be in the
same order as in XML schema so that it is easy to load XML
data into the tables corresponding to the cubes.

We have tested our approach on the XML schemas taken
from the following websites:

http://www.w3.org/XML/Schema
http://wwwxml.com/pub

/a/2000/11/29/schemas/part1.html
http://www.brics.dk/~amoeller/XML/schemas/xmlschema

-recipes.html
We show the results of our approach on the schema taken

from http://www.w3.org/XML/Schema. For the sake of
compactness we have given the reference of the XML
schema and have not included the XML schema.

The attribute tree obtained from this XML schema is as
follows:

Fig. 10 Attribute tree

The above attribute tree is pruned and grafted as described
above. The attribute tree obtained after pruning and grafting
is shown below:

Fig. 11 Attribute tree after pruning and grafting

It can be clearly seen in the Fig.10 above that there is a
choice construct in the edges connected to Client type
marked as a parallel line across them. The choice is between
Company and Individual customer. And there is also a choice
construct between Different Country and Same Country. We

http://www.xml.com
http://www.w3.org/XML/Schema
http://wwwxml.com/pub
http://www.brics.dk/~amoeller/XML/schemas/xmlschema
http://www.w3.org/XML/Schema

International Journal of Computer Theory and Engineering, Vol. 1, No. 3, August, 2009
1793-8201

- 243 -

create multiple cubes as explained earlier. Cubes for the
above XML schema are defined below:

Cube POCompany1
Dimension Comp with V = {Company} and N= {Profile,
Turnover}
Dimension DC with V = {Different Country} and
 N = {Country Name, Custom Duty, Distribution
Office}
Dimension Itm with V = {Item} and
 N = {Product Name, US Price, Quantity}
Fact Scheme
POC1 [Comp: Company, DC: Different Country, Itm:Item]
→ [Order Date, Total Amount]
Cube POCompany2
Dimension Comp with V = {Company} and N= {Profile,
Turnover}
Dimension SC with V = {Same Country} and
 N = {Country Name, Local Taxes}
Dimension Itm with V = {Item} and
 N = {Product Name, US Price, Quantity}
POC2 [Comp: Company, DC: Different Country, Itm:Item]
→[Order Date, Total Amount]
Cube POIndCustomer1
Dimension ID with V= {Individual Customer } and
 N = {id_no, Name}
Dimension DC with V = {Different Country} and
 N = {Country Name, Custom Duty, Distribution
Office}
Dimension Itm with V = {Item} and
 N = {Product Name, US Price, Quantity}
Fact scheme
POIC1 [ID: Individual Customer, DC: Different Country,
Itm:Item] → [Order Date, Total Amount]
Cube POIndCustomer2
Dimension ID with V= {Individual Customer } and
 N = {id_no, Name}
Dimension SC with V = {Same Country} and
 N = {Country Name, Local Taxes}
Dimension Itm with V = {Item} and
 N = {Product Name, US Price, Quantity}
POIC2 [ID: Individual Customer, SC: Same Country,
Itm:Item] → [Order Date, Total Amount]

 REFERENCES
[1] W. H. Inmon, “Building the Data warehouse”, 1996, Second Edition

John Wiley & Sons.
[2] R. Kimball, “The Data warehouse toolkit”, 1996, John Wiley & Sons.
[3] S. Chaudhari and U. Dayal, “An overview of data warehousing and

OLAP technology”, SIGMOD Record, 26 (1), pp. 65-74, 1997.
[4] C. Li and X.S. Wang, “A data model for supporting on–line analytical

processing”, Proceedings of the 5th International Conference on
Information and Knowledge Management (C1K M’96), pp. 81 – 88,
1996.

[5] OLAP Council. The APB – 1 Benchmark (1997) Available at
http://www.olapcouncil.org/research/bmarkly.htm

[6] R. Agrawal, A. Gupta and S. Sarawagi, “Modeling multidimensional
databases”, Proceedings of 13th International Conference on Data
Engineering (ICDE’97), IEEE computer society, pp.232-243, 1997.

[7] L. Cabibbo and R. Torlone, “Querying multidimensional databases”,
Proceedings of the 6th International Workshop on Database
Programming Languages (DBPL6), Springer, pp. 319-335, 1997.

[8] P. Vassiliadis, “Modeling multidimensional databases, cubes and cube
operations”, Proceedings of the 10th International Conference on
Scientific and Statistical DatabaseManagement (SSDBM), IEEE
computer society, pages 53-62, 1998.

[9] M. Golfarelli, S. Rizzi and B. Vrdoljak, “Data warehouse design from
XML sources”, Proceedings DOLAP’01, Atlanta, pp. 40-47, 2001.

[10] J. Pokorny, “XML Data Warehouse: Modeling and Querying”, In:
Databases and Information Systems II, Selected Papers from the Fifth
International Baltic Conference, Baltic DB & IS 2002 Kluwer
Academic Publishers.

[11] B. Vrdoljak, , M. Banek and S. Rizzi, “Designing web warehouse
from XML schemas”, LNCS vol 2737/2003, pp 89-98.

[12] W3C XML schema. Available by WWW in:
http://www.w3.org/XML/schema

[13] W3C. Extensible Markup Language (XML) 1.0
http://www.w3c.org/TR/REC-XML

[14] N. Parimala and P.Pahwa, “Coalescing Data Marts”, Proceedings of
XVI international conference on computer and information science
and engineering (CISE). pp.280-285, 2006.

[15] P. Pahwa and N. Parimala, “ Conceptual Design of Data warehouses
from XML Schemata”, 2nd International Conference on Intellectual
Capital, Knowledge Management and Organizational Learning,
ICICKM., Dubai. pp. 387-394, 2005.

[16] R.D.S. Mello and C.A. Heuser, “A bottom-up approach for integration
of XML Sources”, International Workshop on Information Integration
on the Web. (WIIW’2001), UNIRIO, Riode Janeiro, Brazil, pp.
118-124, 2001.

Prof. Parimala N. is presently Dean (School of Computer and System
Sciences) Jawaharlal Nehru University, Delhi. Her areas of interest include
Data Warehousing and Software Engineering. She has various research
publications in different international conferences and journals.
Prof. Payal Pahwa is professor in Guru Premsukh Memorial College of
Engineering, I.P. university, Delhi. Database management systems and Data
Warehousing are her areas of interest.

http://www.olapcouncil.org/research/bmarkly.htm
http://www.w3.org/XML/schema
http://www.w3c.org/TR/REC-XML

