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Abstract—DNA sequence similarity search is an important
task in computational biology applications. Similarity search
procedure is executed by an alignment process between query
and targeted sequences. An optimal alignment process based on
the dynamic programming algorithms has shown to have O(n

m) time and space complexity. Heuristics algorithms can
process a fast DNA sequence alignment, but generate low
comparison sensitivity. The biologists frequently demand for
optimal comparison result so that the perfect structure of living
beings evolution can be constructed. This task becomes more
complex and challenging as the sizes of public sequence
databases get very large and are increasing exponentially each
year. Theaim of thisstudy isto develop afiltering algorithm in
order to reduce the iteration of dynamic programming process
and therefore an efficient process of retrieving a set of similar
DNA sequences in database can be made. The algorithm
filtered the expected irrelevant DNA sequences in database
from being computed for dynamic programming based optimal
alignment process. An automaton-based algorithm is used to
develop the filtering process proposed. A set of random
patterns is generated from query sequence are placed in
automaton machine before exact matching and scoring process
is performed. Extensive experiments have been carried out on
several parameters and the results show that the developed
filtering algorithm removed the unrelated targeted sequences
from being aligned with query sequence

Index Terms—Exact string matching, Aho-Corasick
algorithm, sequence comparison, Smith-Waterman algorithm.

I. INTRODUCTION

A routine operation for biologists is to query a new
discovered sequence against a collection sequences databases
such as GenBank and EMBL to find a list of similar
sequences. DNA  sequence comparison is among the
fundamental tools in computational molecular biology.
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Basically, this process is used for determining the similarity
(or distance) between sequences. The obtained similarity
degree can be used to infer the functionality or evolution
history of the sequences. The best possible way to achieve
the optimal result of similarity between sequences is using
Smith-Waterman algorithm [12] which based on dynamic
programming method and running in quadratic time
complexity O(n" m). The Smith-Waterman agorithm is
likely inefficient should it applied to a large-scale sequence
similarity search process. With the rapid growth of public
sequence databases, modern biologists rely on tools that
could detect the similarity between sequences efficiently and
at the same the optimal alignment results are retained.
Therefore, a specific approach is needed to remove the highly
expected irrelevant targeted DNA sequences (sequence
database) from being performed for alignment process.

Another important algorithm considered in computational
biology applications is exact string matching processing.
String matching has broad applications; for instance in
bibliographic search, lexical analysis, web search engines
and recently as a filtering purpose for DNA sequence
searching [6][3]. Both single pattern and multi-patterns are
stressed in string matching application domain. Single
pattern matching problem consists of finding all occurrences
of a pattern with length a specific length, n, in a text with
particular length, m. Meanwhile, the multi-patterns string
matching problem consists of finding al occurrences of
patternsin P with total length nin atext with length m. One
of the most excellent exact multi-patterns string matching
algorithms is Aho-Corasick algorithm [1]. By means of
multi-attribute patterns matching, [3] has successfully
improved the Aho-Corasick algorithm. This algorithm used
automaton theory that can be implemented by using directed
tree data structure. Using this automaton structure, the
algorithm efficiently can scan all occurrences of any patterns
in atargeted text string. Aho-Corasick algorithm calculates
pre-processing phase where al the patterns are placed in a
keyword trees. The algorithm uses the failure links to speed
up matching and it can be calculated in linear time. Thetime
complexity of this algorithm is O(n) for preprocessing time
and O(m + k) for search time, where m is the targeted text
length, n istotal patterns length and k represents the number
of occurrences of patternsin the text.

The filtering technique has been utilized to enhance the
DNA sequence comparison speed. The technique is used in
BLAST [2], FASTA [11] and PatternHunter [9][10]
algorithms. Those algorithms utilize the idea to focus only
on the regions, which share some patterns and assume those
patterns to have potential similarity. However, this filtering
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technique may miss a group of potentia regions that have
high homologous features between the compared sequences.
This paper proposes a new model that attempts to eliminate
theirrelevance targeted DNA sequences from being executed
for optimal local aignment. Using a linear runtime
multi-patterns exact string matching algorithm, a set of
random patterns (subsequences) from query sequence is
scanned to the all targeted sequences in database. The
targeted DNA sequences that have a significant low of exact
matching score are removed from being executed for
dynamic programming based alignment process.

The rest of the paper is organized as follows: The next
section reviews some previous works in filtering based
method for computing DNA sequence similarity search.
Section Il discusses the detailed of the filtering algorithm for
effusion retrieving of DNA sequence. Experimental results
of the proposed model are presented in Section IlI.
Conclusion isplaced in Section 1V.

A. Related Works

Smith-Waterman algorithm is one of the techniques that
use dynamic programming in computing homology level
between DNA sequences. The algorithm compares every
base in the evaluated sequences to produce a precise local
alignment. Therefore, this technique is very slow should
applied to a large-scale DNA sequence similarity search
problem. In order toimprove the efficiency, many ideas have
been proposed such as filtering method. Filtering processis
trying to discard irrelevant subsegquences in both compared
seguences from being executed for rigorous Smith-Waterman
algorithm. BLAST [2], FASTA [11] and PatternHunter
[9][10] are the common tools that use filtering approach for
computing approximate sequence similarity search.

BLAST and FASTA areintroduced at the end of the 1980s
and both rely on the so-called hit-and-extend heuristic, which
can be implemented using hashing and lookup tables [4].
FASTA and BLAST are faster than Smith-Waterman
algorithm because they examine only a portion of the
potential alignments between two sequences. Idedlly,
BLAST looks for small identical patterns in both sequences
and try to extend in both direction of the pattern until the
obtained score is lower than a given threshold. National
Center for Biotechnology Information (NCBI) has
introduced a web based system to BLAST that alows
biologists from over the world to query their new discovered
genomic sequences against the public sequence databases
such as GenBank and EMBL. Thestepsin BLAST agorithm
is depicted in Figure 1.

Steps in Basic Local Aligriment Search Tool (BLAST)

1y Generade seeds - break a query sequence mto a set of

The old version of BLAST uses of
consecutive 11 micleotide bases

2y Starning the database — search seed that have perfect match

contiguous regions.

or smilarity score greater than a threshold wvalue in the
targeted sequencein database.
3y Exdend the seed malkhing — from both sides, seed perfect
mmatching iz extended into a sign fcant walue length (the score
by X below its masdmmn walue).  This step is also called
alignment step.  Gaps insertion is allowed dunng extension
process. A standard scoring system is used to establish the
aligument, +1 iz @wen for a match and -3 for a mismatch
residue.  Although BLAST may use other scoring system

such as PAN or BLOSURM.

Figure 1: The stepsin BLAST tool

FASTA identifies some common short patterns called ktup,
carefully chosen. During the comparison process, an offset
table is updated, reporting the number necessary shifts for
ktup belonging to both sequences to be aligned. Finaly, the
offset table contains offsets that highlight the best position(s)
for achieving good alignments. FASTA tool is freely used
and can be accessed at European Bioinformatics Institute
(EBI) website. The detailed steps executed in FASTA
algorithm can be viewed asin Figure 2.

Steps in Fast Homology Search All Sequences (FASTAY
1y Look for hot spots — find initial regions in query sequence.

£ lookmp hash table iz used to scan a Aup match characters

between query and targeted sequence

2y Find ten best diagonal runs — rescore to find top ten initial
regions usng such as PARIS0 scoring matrices.  The score

of the diagonal run is the sum of the hot spots scores and the

inter-spot scores.  The best scoring initial region is given as
the inft-f score

3 Apply “foining threshold” — non-overlapping regions should
be joined. The sum of the scores for each individual regon
minus a joining peralty for each gap is calculated.  This sum
score 15 given as the fmit-n score and then it would used to
rank all the sequences in database

4y Perform fr local alignment process — full S th-Wat erman

algorithmis applied to the highest scoring sequences.

Figure 2: The stepsin FASTA tool

A commercial PatternHunter is a new generation
general-purpose  homology search tool that employed
heuristic method. The PatternHunter discovers short word
matches under spaced form. A spaced form is represented as
abinary string of length |, where a 1 bit at a position means
that a base match is required at the position and a O bit at a
position means that either a base match or mismatch is
acceptable at the position [9][10]. PatternHunter looks for
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runs of eighteen consecutive nucleotide bases in each
seguence. From these eighteen consecutive nucleotide bases
only eleven nucleotide matches are required according to the
1sinthestring 111010010100110111. Thisstring (or pattern)
is aso known as spaced seed. This method significantly
increases the hit number of homologous region while
reducing bad hits. Consequently, PatternHunter is able to
find more homologous regions than BLAST and FASTA as
well. In an experiment, PatternHunter performs at a speed
over hundred times faster than BLAST at the same sensitivity
[10]. PatternHunter uses a variety of advanced data
structures for handling data manipulation in its algorithm
specification. Those data structures include queues, priority
gueues, hash tables and a variation of red-black tree.

[l. THEMODEL

DNA sequence similarity search process becomes more complex
and challenging as the sizes of public sequence databases get very
large and are increasing exponentially each year. Generally, the
scopes of this research can be specified as studying,
designing and implementing a filtering algorithm for
performing optimal DNA sequence searching model
efficiently. Therefore, the developed solution model can be
formalized asfollows: Let T = {ty, t,, ..., t} bea collection of
DNA sequences from a set of databasesand qisa query DNA
sequence; let g be a fixed score threshold and F be an
alignment scoring function. By means of an optimal local
alignment that using dynamic programming based technique,
A of (g, t), find Ri Twhere" r; T R hasscore F(A) 3 q.
There arefive phasesinvolved in the proposed model. These
phases include Query initialization, Patterns generating,
Patterns scanning, Ranking and Optimal local alignment.
Figure 3 shows the general flow of five main phases in the
model.

The query isanew DNA sequence discovered by biologist.
Using a random algorithm, a set of random patterns with
length | characters are generated from g and can be denoted
as,P={rq,ry, ...,rg. Thenumber of patterns (d) that can
be generated may varies which give different patterns
scanning results. However, for the first attempt the model
decides to use the following formulato cal culate the number
of patterns used:

d=08*q. (1)
where q_ is query length. There are two conflict factors
that are created during exact patterns scanning. Sensitivity of
exact matching will be increased if many patterns are used.
However this condition will decrease search speed.
Reducing the number of patterns will increase the search
speed but it can reduce the comparison sensitivity. This
circumstance also happens in PatternHunter |l similarity
search tool. To increase the sensitivity in homology search,
PatternHunter |1 increases the number of seeds and reduces
the weight of a single seed [10]. However, those actions
increased the runtime because the search engine will generate
more random hits.

Query

!
.-==1 Initialize by user
initialization ;

A 4 '
——vy—— ___|
Patterns ,+©=7|  Automaton based
scanning g | technique
|
Ranki _.==--1 Linear sorting
anKing ‘ i technique
1 !
( v o N , .
Optimal local | -~} t%gmnh Ce programming
alignment ! q
| S

Figure 3: The model process flow

Hunting for a pattern in atargeted DNA sequence is much
easier if the size (Ilength) of pattern is sufficiently small. The
small patterns will be assured that appear in many locations
in a targeted DNA sequence. Although there will be many
different size of small patterns, the model considered nine
different pattern sizes (five to 13 characters) to be
experimented. Figure 4 shows the general agorithm for
generating random patterns from a query sequence. The
algorithm generates the patterns based on a set of random
integers, RN ={rny, rny, ..., rng}. rn indicatesthat the pattern
i is started at array index rn in targeted sequence.

Algorithan: generate yandor palterns

Inpuat: 1y query, o

2 Murnber of patterns, &
3y Pattern size, A
3 A set of random integers, ERN = {rn;,
T, ., g}
Ouatpoat: & set of patterns, P = {p1, p1. ... Pst

Ll &« 0.8"% g
L2 Generate, B4
L3 nop <10
L4 fori<« lto &
LS patt <=~
Lé. for j « (my+1)to (mg-1 + A
L7. patt «— patt + g[j-1]
LE. pj« patt
LI PP+ {p}
L10 nop «—nop+ 1
L11. retum P

Figure 4: Algorithm for generating random patterns

Figure 5 exhibits eight patterns with length, | = 6
generated from a query sequence. The patterns can be

denoted as, P = {“AAATGA”, “TTGCCC”, “GCCCTA”,
“TACATC”, “CACCAG”, “AAACAT”, “CGAGGG”,
“GTCCAA”}. Since the starting index of a pattern is
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randomly generated, the patterns may overlap. Some
patternswill share the same contiguous characters. However,
allowing overlapped patterns will help to increase the
sensitivity of ranking process. The creation of overlapped
patterns gives a set of various patterns with the same some
contiguous characters. After patterns have been generated,
the model will read the DNA database. The retrieved DNA
sequences are temporarily stored into computer memory
before patterns scanning is started.

/ A
|‘ verlapped
pallerns |

'y
c c|1 A|T }'\‘T

1 C|AAATGA|T‘T T|GC Ao
o ECATCGAGTAITAGCACTTAAI Q
# ITTA‘GACCAG|C|AAACAT|CGTGﬁﬂ
5§ CGAAGGGT CTAAAGCATGATSG

Bl GCCC|CGAGG|G|TCCAA| %

£ Overapped
palterns

Figure 5: Generating the patterns from a query sequence

Let, P={rq ro ..., rq} isthe set of generated patterns
from aquery. The model treatseachr; 1 P asbeing distinct
even if there are multiple copies of it in P. The overlapped
patterns will help to increase the sensitivity of similarity
degree comparison between query and targeted sequences.
The proposed model assumes that sequences with highest
exact matching score are the most likely potentia to be
similar with the query sequence. The next processis to scan
alr;T Pthat are identical to the given t. Sometimes it is
called as exact set matching problem. Thisprocessisdone by
using Aho-Corasick algorithm search technique.

The Aho-Corasick algorithm search uses akeyword tree to
store the series of patterns. The DNA sequence alphabet size
is relatively small and has a fixed size. The size of this
nuclectides alphabet is four. Therefore, the constructed
keyword tree will not have many root branches (edges). This
minimal number of edges from a root makes exact patterns
matching process becomes more simple and efficient.
Theoretically, if an aphabet is afixed size, then to construct
the keyword tree for P isin O(n) time, where n is the total
length of al patterns. In this study, the problem is to
determineif asubstring in targeted sequence from database, t;,
completely matches some string in P. By means of this
condition, the utility of akeyword treeisclear. The patterns
are encoded into a keyword tree (g), and when an individual
targeted sequence from database is presented, a walk from
theroot of g determinesif there are substringsin t; arein the
g.

Using this keyword tree, each targeted DNA sequencesin
databaseis processed in asingle pass. Figure 6 illustratesthe
algorithm used to search the query patternsin targeted DNA
seguences in the database. From the theorem given by [1], if
P is a set of patterns with total length n and t is a DNA
seguence from database of total length m, then one can find
all occurrencesin t of patterns from P in O(n) preprocessing
time (to build keyword tree) plus O(m + k) search time,
where k is the number of occurrences. Once the scanning

process is completed, the exact matching score for each
pattern found will be calculated.

The choice of a scoring function that reflects biological or
statistical observations about known seguences is important
to producing good alignments. Thismodel used BLOSUM62
[7] or PAM250 [5] scoring matrices for assigning exact
matching score to the processed DNA sequences. The found
pattern is given exact matching score which can be calculated
by:

p(ri, ta) = s(ri[0], tafj]) + s(ri[1], tafj+1]) + ... + S(ri[l -1],
tfj+ -1]) 2

At thispoint, sis similarity score between two appropriate
characters and j isthe initial index location where pattern is
foundint, Oncescanningall r;1 Pinatiscompleted, the
total exact matching score for t is computed, and represented

by:
ety = g_ e(rb,ta) (3)
b=1

Finally, the model will have a set of total exact matching
scoreand canbedenoted as, Y ={ey, &, ..., &}. Thegenera
algorithm for this scoring processis depicted in Figure 7.

Alsoridun: pattern scamrning
Inpuat: 13 frepwords tree
I DA sequences databaze, = f15, 12 ..., I}

Outpt: The matching status for each pattem, patternFound

i canstract automaton machine
L1. goto fimction
L2 jailure Amction

i search ¥pyin t= bbby b, and caloulate for total exact
tatching score t, ai)
L3 forae ltokdo
L4 fori«— 0to &
L5 patternFound; «—— 0
£ perform Aho-Corasick search
La. for i «— 0to sequencel ength
L7 a+h
fuse goto function
L3, while (g state, a3 =null)
L9 astate «— fstated
L10. state «— gistate, a)
fprocess output
LIl pi«10
L12 while(not end of output state)
L13.
L14. return patternF ound

pattemFoundy; < 1

Figure 6: Pattern scanning algorithm
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Algorithm: Exact matching scoring
Input: 1 patternF ound status for each pattern
Dy Betofpaterns, P={pL p1..... s}
2y Beoring matrizx, BLOSULA 2
Cutput: Exact matching score for a targeted sequence, =

L1. totalZcore < 0
L2 fori« DOto &
L3 if{patternFound; = 17
L4 forj«— Dto A
L5, score «— get3corelp,

BLOSULIADY
La. totalBcore «— totalScore +

SCore
L7 = t) « total3core
L& return & t)

Figure 7: Calculate the exact matching score algorithm

To minimize the total cost of retrieval the most expected
similar DNA sequences, we need to sort the sequences in
descending order based on its exact matching score. The
model expected that the most similar DNA sequences to the
guery are to be placed at the top of ranking and therefore
optimal alignment process can directly focus on this group.
An efficient sorting algorithm Quick-Sort has been used to
complete thistask. The runtime of this algorithm is O(n log
n). Typicaly, Quick-Sort is significantly faster in practice
than other O(nlogn) agorithms, because in the most
architecture its inner loop can be efficiently implemented.

Theranking simplifiesto evaluate uncertain information in
DNA sequence record according to certain criteria.  In
general, this ranking process is not guaranteed for highly
expected similar DNA sequencesto a query are positioned at
top of the ranked list. Therefore, dynamic programming
based techniques such as Smith-Waterman algorithm is still
required to compute accurately the degree of similarity
between two DNA sequences. The ranking will just makethe
next stage in the model possible quicker to select the DNA
sequences for computing the local alignment. Figure 8
illustrates the order of targeted DNA sequences after ranking
process.

t; ACCATTTCGCGTTAAATCGCG

t, TTTCGGCTATATATCGGCT

t3 GGGCCTCTTAAATTCTCCTC

t, GGCTCCCTATATCTCTCGGAGAGA
ts CCGGATATAGCCTATT

t2 AAAAATTCTCTCCGGGCTATAT
tk-; CGCTCTTTTCTCTGGAGAG v
tx CCCGGGATCTCTCTAGGCGCGA

Degree of expected similar to be decreased

10.7763/1JCTE.2009.V1.16
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Figure 8: A ranked DNA sequences

In order to obtain optima loca aignment, we

implemented the Smith-Waterman algorithm that uses
bi-dimensional arrays.
scoring factor, BLOSUM62 (or PAM250) scoring matrix has
been applied. The implemented Smith-Waterman algorithm
is designed to support constant gap penalty function. The
constant gap penalty function gives each gap the same score
no matter how long it is.
Smith-Waterman algorithm which is implemented in the
model. If Dgand Dt arethe best local alignment with length L
produced from an alignment process, then the alignment
score between Dqg and Dt can be denoted as:

Moreover, to guarantee the good

Figure 9 depicts the detailed of

W)= & SOl D) (@

where s is similarity score between Dq[i] and Dt[i] that

suggested by BLOSUM62 or PAM 250 scoring matrices. The
percent identity formula for the aligned of sequences Dg and
Dt is given by the following equation:;

I(Dg, DY) = g“%g X 100 5)

where R is number of matching residues after alignment

process. Let Sbe aset of optimal alignment score and C be a
set of identity score.
alignment process, then the computation output of optimal
alignment score and identity can be represented as:

If A is denoted as optimal local

A(g, t) ={W, I} (6)
whereW 1T Sandl;1T C.
Algorithin: Skhith- Haterrnan
Inpat: 17 Caery sequence, g
2y Targeted sequence t
5% Booring matrices e g BLOSUIIWAZ
Cutput: Alignment best scoring, bestScore

bestScore «— 0
£ cornpute for the query and targeted sequence length
L1 gp « count for the q bases
L2 tr «— count for the t bases
ffinitialize the base condition
L3 forie— Oto gy
L4, for j «— 0toty
L: Fy« 0
£ recurrence condition
La foris«— 1toqp
L7, forj«— 1toty
L&. choicel «— 0
LY. choice? «— Fi;; + similaritywalue
L10. choiced «— Fiaj - gapPenalty
L11l. choicet «— Fij, - gapPenalty
L12 Fyj «— maximmmichoicel | choicel,
chocel,
choiced )
L13. ifFy; » bestScore
L14. bestScore «— Fyy
L15. Fetirn bestSoore

Figure 9: Smith-Waterman algorithm
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I11. EXPERIMENTAL RESULTS

We use Java 2 Platform Standard Edition Version 1.5.0in
our project implementation and Microsoft Windows XP
Professional as operating systems. The Java programming
language and its environment is designed to solve a number
of modern and complex problems. It is a mature language,
ready for widespread used and integrated with other
environment and architecture aswell. The implementationis
undergoing object oriented software development approach.
The processor used was 1.8GHz Intel Pentium IV with
640MB RAM.

Figure 10illustrates a state diagram that shows the detailed
behavior of operationsin the model. The diagram showsthe
instance changes state depending on the message(s) that it
receives. The diagram splits the statesin the model into five
main categorizes: initialization state, exact matching state,
ranking state, aignment state and reporting State.
Initialization state consists of three sub-states: read query,
generate patterns and read database. Exact matching state
includes the Aho-Corasick algorithm operations: construct
automaton machine, Patterns searching (scanning) and Exact
matching scoring. Ranking state serves only for one
sub-state known as Ranking. Alignment state consists of
Smith-Waterman algorithm operations: Optimal local
alignment and Alignment scoring. The final state is
Reporting which consists of Generate reports. All therelated
reports to sequence similarity are generated within this
sub-state.

In order to obtain realistic experimental results, five
GenBank databases have been downloaded from Bio-Mirror
website [14]. These databases are maintained by National
Center for Biotechnology Information (NCBI). The
databases correspond to viral sequences and contain 345,383
sequences with 335,979,422 base pairs (bp). There are
30,000 sequences are selected and used in the experiments.
This process is done by picking up the first 6,000 sequences
from each database. Query sequences are selected randomly
from these 30,000 selected sequences.  The model also
utilized the BioJavalibrary [13] to manipulate and extracting
genome database from GenBank. Pattern length (1) is used
as a parameter to evaluate the performance and reliability of
the developed model. The model considered percent identity,
I, is equal to 30% as a threshold or a confident value for
accepting the targeted DNA sequences that have similarity to
the query. Throughout the performance evaluation, the
model attempts to retrieve 10% sequences in T that are
satisfies the threshold value (g = 3,000).For each query, the
experiments used various pattern lengths which are preset
between five to 13 bases. Figure 11 shows the experimental
resultsfor those 10 queries. Thefigure representsthe number
of SW algorithms iterations versus different of | . For the
gueries such as Query 1, Query 2, Query 3 and Query 4, the
number of targeted DNA sequences to be processed under
SW algorithm are very consistent with pattern length
between five to 12 bases. However, the number of targeted
DNA sequences involved in optimal alignment processed is
increased when the pattern lengths used are equal or greater
than 13 characters. Table 1 exhibits the experimental result
from ten queries and | is preset to ten characters. The
experimental results show that the proposed filtering
mechanism can discard irrelevant DNA sequences from

being executed for rigorous Smith-Waterman algorithm. The
implemented filtering technique successfully generated a
group of DNA sequences from databases that have a highly
potential similarity to the query sequence.

10000 1

9000 1 ——Query 1
172
S 8000 | —+—Query?2
= ] Query 3
£ 7000 ol
6000 2
©
£ 5000 +gueryz
£ 4000 i
= 3000 | * - Queny?
s ——Query 8
E 2000 - ey

1000 1 Query 10

0 -—

5 6 7 8 9 10 11 12 13
Patterns length

Figure 11: Number of Smith-Waterman algorithm iterations versus patterns
length

TABLE 1. SMITH-WATERMAN ITERATIONS DISCARDED (I = 10)

Query No. of Smith-Waterman
No. Smith-Waterman iterations discarded (%)
performed
Query 1 3488 (488) 88.37
Query 2 3617 (617) 82.94
Query 3 3350 (350) 88.83
Query 4 3325 (325) 88.92
Query 5 3756 (756) 87.48
Query 6 3318 (318) 88.94
Query 7 5243 (2243) 82.52
Query 8 3245 (245) 89.18
Query 9 3282 (282) 89.06
Query 10 3880 (880) 87.07

For instance, Query 2, the model successfully retrieved g
sequencesthat are definitely relevant to query after executing
the optimal local alignment process to 3,617 targeted DNA
sequences. Based on the percent identity (1) threshold value,
there are 617 sequences from the group are not relevant to the
query and are executed for Smith-Waterman algorithm.
Therefore, 26,383 targeted DNA sequences (82.94%) have
been skipped from the exhaustive local optimal alignment
process. Meanwhile, for Query 10 there are 3,880 DNA
sequences from the database have been performed for
optimal local alignment process with 880 sequences are
determined asirrelevant to the query. The result exhibits that
87.07% or 26,120 DNA sequences from the database have
been discarded from rigorous Smith-Waterman algorithm.

Obviously, the model yields high efficiency processes for
optimal DNA sequence similarity search with low
computational numbers for O(n ©~ m) time complexity
Smith-Waterman algorithms. Therefore, the time taken for
retrieving a set of similar sequences from databases to a
query is been minimized. The execution analysis of the
proposed model can be summarized as follows:

- For any query sequences, the patterns of length 13
characters and above will cause inefficient filtration
process. The best possible pattern lengths that could be
used and most appropriate with al queries in various
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lengths are seven tol2 characters. This pattern length
range size will produce agood quality of ranking;

- If the pattern length is less than six bases used in the
experiment, a bad quality ranking is produced and
therefore a huge number of Smith-Waterman algorithm
iterations will be executed for the targeted DNA sequences
in the database. In other words, the related targeted DNA
sequences will not placed at appropriated position before
Smith-Waterman algorithm is executed;

- When | 3 13, many patterns cannot be found in targeted
sequences and consequently, exact matching score value
will be 0. Thissituation will produce abad ranking quality
and;

- If query length is too short, for example below 500
characters, the most appropriate pattern length should be
used are 10 to 12 characters. These sizes will give a good
quality ranking position output.

The quality of the proposed filtering technique is
evaluated by Average Normalized Rank (ANR) [8]. The
ANR describes the quality of the whole ranked list of DNA
sequences after filtering process. Generally, the ANR can be
defined as:

1 g N, +1
= - w 7
G NN, ia='1(R 5 ) O

where N isthe number of targeted objectsin the database,
N, is the number of wanted targeted objects from the
database and R, is the rank of each wanted targeted object in
the database.

Clearly, N,, can be referred to g. Furthermore, this
precise measurement is also shows the consistencies of the
filtering quality. Asdefined by [10], a hasavalue of 0 when
the wanted targeted objects have al been sorted ontop. The
a has value close to 0.5 if targeted objects are randomly
shuffled inthelist. If the targeted objects are all sorted at the
bottom thenthea valueisclosedto 1. From the experiments,
we can perceivethat al the required targeted DNA sequences
are sorted on top of thelist (below than 10,000 out of 30,000).
As a result, if al the required variables are placed in the
defined ANR metric and calculations are executed, then all
the a values will become closeto 0. This conditionistrueto
all pattern lengths exclusive of query length which is too
short such as below than 500 characters. However, this
problem can be fixed if pattern lengths are set to 10, 11 or 12
characters. As a result, the proposed technique has
successfully generated a precise and consistent DNA
sequence ranking.

IV.  CONCLUSIONS

Generdly, it isreasonable to align two sequences by using
classical Smith-Waterman algorithm when the sequences
length is not very long. However this approach is not
applicable for large-scale DNA sequence comparison that
requires for more time and spaces complexity. A mechanism
to discard the unrelated or irrel evant sequences compared to a
query is highly demanded. To address the outlined problem,
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we customized automaton-based multi-patterns exact string
matching that acts as a filtering process. The technique
rapidly filters all those targeted DNA sequences that are
likely irrelevant to the query. Only the relevant sequences
are considered for execution in Smith-Waterman agorithm
process. In other words, the proposed filtering technique can
reducethe size of dataset. Asaresult, the processing timefor
retrieving aset of targeted DNA sequences, which are similar
to the query, can be minimized.

The ranking result produced by the model has been
compared to the BLAST tool. The model has successfully
generated a good ranking result as produced by the BLAST
tool. The proposed model has applied Smith-Waterman
algorithm to the whole bases in the compared DNA
sequences, and therefore it will generate a complete
alignment structure. Hence, it can produce better alignment
structure compared to BLAST tool which is examined only a
portion of the potential alignments between the compared
DNA sequences. In order to improve the performance of the
model, clustering the database can be considered as an
immediate action. The experiment shows that two or more
DNA sequences can have the same exact matching score and
positioned at the same ranking. This condition infers that
those DNA sequences may be included in the same “cluster’.
Hence, to improve the efficiency of the model a further
database classification can be done.
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