
International Journal of Computer Theory and Engineering, Vol. 1, No. 2, June 2009 
1793-8201 

 

 - 102 - 

  
Abstract—DNA sequence similarity search is an important 

task in computational biology applications.  Similarity search 
procedure is executed by an alignment process between query 
and targeted sequences.  An optimal alignment process based on 
the dynamic programming algorithms has shown to have O(n 
  m) time and space complexity.  Heuristics algorithms can 
process a fast DNA sequence alignment, but generate low 
comparison sensitivity.  The biologists frequently demand for 
optimal comparison result so that the perfect structure of living 
beings evolution can be constructed.  This task becomes more 
complex and challenging as the sizes of public sequence 
databases get very large and are increasing exponentially each 
year.  The aim of this study is to develop a filtering algorithm in 
order to reduce the iteration of dynamic programming process 
and therefore an efficient process of retrieving a set of similar 
DNA sequences in database can be made.   The algorithm 
filtered the expected irrelevant DNA sequences in database 
from being computed for dynamic programming based optimal 
alignment process.  An automaton-based algorithm is used to 
develop the filtering process proposed.  A set of random 
patterns is generated from query sequence are placed in 
automaton machine before exact matching and scoring process 
is performed.  Extensive experiments have been carried out on 
several parameters and the results show that the developed 
filtering algorithm removed the unrelated targeted sequences 
from being aligned with query sequence 
 

Index Terms—Exact string matching, Aho-Corasick 
algorithm, sequence comparison, Smith-Waterman algorithm.  

I. INTRODUCTION 
A routine operation for biologists is to query a new 

discovered sequence against a collection sequences databases 
such as GenBank and EMBL to find a list of similar 
sequences.  DNA sequence comparison is among the 
fundamental tools in computational molecular biology.  

 
Manuscript received October 9, 2001. (Write the date on which you 

submitted your paper for review.) This work was supported in part by the 
U.S. Department of Commerce under Grant BS123456 (sponsor and 
financial support acknowledgment goes here). Paper titles should be written 
in uppercase and lowercase letters, not all uppercase. Avoid writing long 
formulas with subscripts in the title; short formulas that identify the elements 
are fine (e.g., "Nd–Fe–B"). Do not write "(Invited)" in the title. Full names of 
authors are preferred in the author field, but are not required. Put a space 
between authors' initials.  

F. A. Author is with the National Institute of Standards and Technology, 
Boulder, CO 80305 USA (corresponding author to provide phone: 
303-555-5555; fax: 303-555-5555).  

S. B. Author, Jr., was with Rice University, Houston, TX 77005 USA. He 
is now with the Department of Physics, Colorado State University, Fort 
Collins, CO 80523 USA. 

T. C. Author is with the Electrical Engineering Department, University of 
Colorado, Boulder, CO 80309 USA, on leave from the National Research 
Institute for Metals, Tsukuba, Japan. 

Basically, this process is used for determining the similarity 
(or distance) between sequences.  The obtained similarity 
degree can be used to infer the functionality or evolution 
history of the sequences.  The best possible way to achieve 
the optimal result of similarity between sequences is using 
Smith-Waterman algorithm [12] which based on dynamic 
programming method and running in quadratic time 
complexity O(n×m).  The Smith-Waterman algorithm is 
likely inefficient should it applied to a large-scale sequence 
similarity search process.  With the rapid growth of public 
sequence databases, modern biologists rely on tools that 
could detect the similarity between sequences efficiently and 
at the same the optimal alignment results are retained.  
Therefore, a specific approach is needed to remove the highly 
expected irrelevant targeted DNA sequences (sequence 
database) from being performed for alignment process. 

Another important algorithm considered in computational 
biology applications is exact string matching processing.  
String matching has broad applications; for instance in 
bibliographic search, lexical analysis, web search engines 
and recently as a filtering purpose for DNA sequence 
searching [6][3].  Both single pattern and multi-patterns are 
stressed in string matching application domain.  Single 
pattern matching problem consists of finding all occurrences 
of a pattern with length a specific length, n, in a text with 
particular length, m.  Meanwhile, the multi-patterns string 
matching problem consists of finding all occurrences of 
patterns in P with total length n in a text with length m.  One 
of the most excellent exact multi-patterns string matching 
algorithms is Aho-Corasick algorithm [1].  By means of 
multi-attribute patterns matching, [3] has successfully 
improved the Aho-Corasick algorithm.  This algorithm used 
automaton theory that can be implemented by using directed 
tree data structure.  Using this automaton structure, the 
algorithm efficiently can scan all occurrences of any patterns 
in a targeted text string.  Aho-Corasick algorithm calculates 
pre-processing phase where all the patterns are placed in a 
keyword trees.  The algorithm uses the failure links to speed 
up matching and it can be calculated in linear time.  The time 
complexity of this algorithm is O(n) for preprocessing time 
and O(m + k) for search time, where m is the targeted text 
length, n is total patterns length and k represents the number 
of occurrences of patterns in the text. 

The filtering technique has been utilized to enhance the 
DNA sequence comparison speed.  The technique is used in 
BLAST [2], FASTA [11] and PatternHunter [9][10] 
algorithms.  Those algorithms utilize the idea to focus only 
on the regions, which share some patterns and assume those 
patterns to have potential similarity.  However, this filtering 

A Filtering Algorithm for Efficient Retrieving of 
DNA Sequence 

M Nordin A Rahman, M Yazid M Saman, Aziz Ahmad and A Osman M Tap 

10.7763/IJCTE.2009.V1.16



International Journal of Computer Theory and Engineering, Vol. 1, No. 2, June 2009 
1793-8201 

 

 

 

 

- 103 - 

technique may miss a group of potential regions that have 
high homologous features between the compared sequences.  
This paper proposes a new model that attempts to eliminate 
the irrelevance targeted DNA sequences from being executed 
for optimal local alignment.  Using a linear runtime 
multi-patterns exact string matching algorithm, a set of 
random patterns (subsequences) from query sequence is 
scanned to the all targeted sequences in database.  The 
targeted DNA sequences that have a significant low of exact 
matching score are removed from being executed for 
dynamic programming based alignment process. 

The rest of the paper is organized as follows: The next 
section reviews some previous works in filtering based 
method for computing DNA sequence similarity search.  
Section II discusses the detailed of the filtering algorithm for 
effusion retrieving of DNA sequence.  Experimental results 
of the proposed model are presented in Section III.  
Conclusion is placed in Section IV. 

A. Related Works 
Smith-Waterman algorithm is one of the techniques that 

use dynamic programming in computing homology level 
between DNA sequences.  The algorithm compares every 
base in the evaluated sequences to produce a precise local 
alignment.  Therefore, this technique is very slow should 
applied to a large-scale DNA sequence similarity search 
problem.  In order to improve the efficiency, many ideas have 
been proposed such as filtering method.  Filtering process is 
trying to discard irrelevant subsequences in both compared 
sequences from being executed for rigorous Smith-Waterman 
algorithm.  BLAST [2], FASTA [11] and PatternHunter 
[9][10] are the common tools that use filtering approach for 
computing approximate sequence similarity search. 

BLAST and FASTA are introduced at the end of the 1980s 
and both rely on the so-called hit-and-extend heuristic, which 
can be implemented using hashing and lookup tables [4].  
FASTA and BLAST are faster than Smith-Waterman 
algorithm because they examine only a portion of the 
potential alignments between two sequences.  Ideally, 
BLAST looks for small identical patterns in both sequences 
and try to extend in both direction of the pattern until the 
obtained score is lower than a given threshold.  National 
Center for Biotechnology Information (NCBI) has 
introduced a web based system to BLAST that allows 
biologists from over the world to query their new discovered 
genomic sequences against the public sequence databases 
such as GenBank and EMBL.  The steps in BLAST algorithm 
is depicted in Figure 1. 

 
Figure 1: The steps in BLAST tool 

FASTA identifies some common short patterns called ktup, 
carefully chosen.  During the comparison process, an offset 
table is updated, reporting the number necessary shifts for 
ktup belonging to both sequences to be aligned.  Finally, the 
offset table contains offsets that highlight the best position(s) 
for achieving good alignments.  FASTA tool is freely used 
and can be accessed at European Bioinformatics Institute 
(EBI) website.  The detailed steps executed in FASTA 
algorithm can be viewed as in Figure 2.  

 
Figure 2: The steps in FASTA tool 

A commercial PatternHunter is a new generation 
general-purpose homology search tool that employed 
heuristic method.  The PatternHunter discovers short word 
matches under spaced form.  A spaced form is represented as 
a binary string of length l, where a 1 bit at a position means 
that a base match is required at the position and a 0 bit at a 
position means that either a base match or mismatch is 
acceptable at the position [9][10].  PatternHunter looks for 

10.7763/IJCTE.2009.V1.16



International Journal of Computer Theory and Engineering, Vol. 1, No. 2, June 2009 
1793-8201 

 

 - 104 - 

runs of eighteen consecutive nucleotide bases in each 
sequence.  From these eighteen consecutive nucleotide bases 
only eleven nucleotide matches are required according to the 
1s in the string 111010010100110111.  This string (or pattern) 
is also known as spaced seed.  This method significantly 
increases the hit number of homologous region while 
reducing bad hits.  Consequently, PatternHunter is able to 
find more homologous regions than BLAST and FASTA as 
well.  In an experiment, PatternHunter performs at a speed 
over hundred times faster than BLAST at the same sensitivity 
[10].  PatternHunter uses a variety of advanced data 
structures for handling data manipulation in its algorithm 
specification.  Those data structures include queues, priority 
queues, hash tables and a variation of red-black tree. 

II. THE MODEL 
DNA sequence similarity search process becomes more complex 

and challenging as the sizes of public sequence databases get very 
large and are increasing exponentially each year.  Generally, the 
scopes of this research can be specified as studying, 
designing and implementing a filtering algorithm for 
performing optimal DNA sequence searching model 
efficiently.  Therefore, the developed solution model can be 
formalized as follows: Let T = {t1, t2, …, tk} be a collection of 
DNA sequences from a set of databases and q is a query DNA 
sequence; let θ be a fixed score threshold and F be an 
alignment scoring function.  By means of an optimal local 
alignment that using dynamic programming based technique, 
A, of (q, ti), find R ⊆ T where ∀ri ∈ R has score F(A) ≥ θ.  
There are five phases involved in the proposed model.  These 
phases include Query initialization, Patterns generating, 
Patterns scanning, Ranking and Optimal local alignment.  
Figure 3 shows the general flow of five main phases in the 
model. 

The query is a new DNA sequence discovered by biologist.  
Using a random algorithm, a set of random patterns with 
length λ characters are generated from q and can be denoted 
as, P = {ρ1, ρ1, …, ρδ}.  The number of patterns (δ) that can 
be generated may varies which give different patterns 
scanning results.  However, for the first attempt the model 
decides to use the following formula to calculate the number 
of patterns used: 

δ = 0.8 * qL      (1) 
where qL is query length.  There are two conflict factors 

that are created during exact patterns scanning.  Sensitivity of 
exact matching will be increased if many patterns are used.  
However this condition will decrease search speed.  
Reducing the number of patterns will increase the search 
speed but it can reduce the comparison sensitivity.  This 
circumstance also happens in PatternHunter II similarity 
search tool.  To increase the sensitivity in homology search, 
PatternHunter II increases the number of seeds and reduces 
the weight of a single seed [10].  However, those actions 
increased the runtime because the search engine will generate 
more random hits.   
 
 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 3: The model process flow 

Hunting for a pattern in a targeted DNA sequence is much 
easier if the size (length) of pattern is sufficiently small.  The 
small patterns will be assured that appear in many locations 
in a targeted DNA sequence.  Although there will be many 
different size of small patterns, the model considered nine 
different pattern sizes (five to 13 characters) to be 
experimented.  Figure 4 shows the general algorithm for 
generating random patterns from a query sequence.  The 
algorithm generates the patterns based on a set of random 
integers, RN = {rn1, rn2, …, rnδ}.  rni indicates that the pattern 
i is started at array index rn in targeted sequence. 

 
Figure 4: Algorithm for generating random patterns 

Figure 5 exhibits eight patterns with length, λ = 6 
generated from a query sequence.  The patterns can be  

denoted as, P = {“AAATGA”, “TTGCCC”, “GCCCTA”, 
“TACATC”, “CACCAG”, “AAACAT”, “CGAGGG”, 
“GTCCAA”}.  Since the starting index of a pattern is 

Query 
 initialization 

Patterns 
generating 
Patterns 
scanning 

Ranking 

Optimal local 
alignment 

Initialize by user 

Random algorithm Automaton based  
technique 

Linear sorting  
technique 

Dynamic programming 
technique 

10.7763/IJCTE.2009.V1.16



International Journal of Computer Theory and Engineering, Vol. 1, No. 2, June 2009 
1793-8201 

 

 

 

 

- 105 - 

randomly generated, the patterns may overlap.  Some 
patterns will share the same contiguous characters.  However, 
allowing overlapped patterns will help to increase the 
sensitivity of ranking process.  The creation of overlapped 
patterns gives a set of various patterns with the same some 
contiguous characters.  After patterns have been generated, 
the model will read the DNA database.  The retrieved DNA 
sequences are temporarily stored into computer memory 
before patterns scanning is started. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5:  Generating the patterns from a query sequence 

Let, P = {ρ1, ρ2, …, ρδ} is the set of generated patterns 
from a query.  The model treats each ρi ∈ P as being distinct 
even if there are multiple copies of it in P.  The overlapped 
patterns will help to increase the sensitivity of similarity 
degree comparison between query and targeted sequences.  
The proposed model assumes that sequences with highest 
exact matching score are the most likely potential to be 
similar with the query sequence.  The next process is to scan 
all ρi ∈ P that are identical to the given t.  Sometimes it is 
called as exact set matching problem.  This process is done by 
using Aho-Corasick algorithm search technique.  

The Aho-Corasick algorithm search uses a keyword tree to 
store the series of patterns.  The DNA sequence alphabet size 
is relatively small and has a fixed size.  The size of this 
nucleotides alphabet is four.  Therefore, the constructed 
keyword tree will not have many root branches (edges).  This 
minimal number of edges from a root makes exact patterns 
matching process becomes more simple and efficient.  
Theoretically, if an alphabet is a fixed size, then to construct 
the keyword tree for P is in O(n) time, where n is the total 
length of all patterns.  In this study, the problem is to 
determine if a substring in targeted sequence from database, ti, 
completely matches some string in P.  By means of this 
condition, the utility of a keyword tree is clear.  The patterns 
are encoded into a keyword tree (g), and when an individual 
targeted sequence from database is presented, a walk from 
the root of g determines if there are substrings in ti are in the 
g.    

Using this keyword tree, each targeted DNA sequences in 
database is processed in a single pass.  Figure 6 illustrates the 
algorithm used to search the query patterns in targeted DNA 
sequences in the database.  From the theorem given by [1], if 
P is a set of patterns with total length n and t is a DNA 
sequence from database of total length m, then one can find 
all occurrences in t of patterns from P in O(n) preprocessing 
time (to build keyword tree) plus O(m + k) search time, 
where k is the number of occurrences.  Once the scanning 

process is completed, the exact matching score for each 
pattern found will be calculated. 

The choice of a scoring function that reflects biological or 
statistical observations about known sequences is important 
to producing good alignments.  This model used BLOSUM62 
[7] or PAM250 [5] scoring matrices for assigning exact 
matching score to the processed DNA sequences.  The found 
pattern is given exact matching score which can be calculated 
by:  

π(ρi, ta) = s(ρi[0], ta[j]) + s(ρi[1], ta[j+1]) + … + s(ρi[λ-1],  
   ta[j+λ-1])    (2)   

At this point, s is similarity score between two appropriate 
characters and j is the initial index location where pattern is 
found in ta.  Once scanning all ρi ∈ P in a t is completed, the 
total exact matching score for t is computed, and represented 
by: 

ε(ta) = ∑
=

δ
ρε

1
),(

b
ab t     (3)   

Finally, the model will have a set of total exact matching 
score and can be denoted as, Y = {ε1, ε2, …, εk}.  The general 
algorithm for this scoring process is depicted in Figure 7.   

 

 
Figure 6: Pattern scanning algorithm 

 

10.7763/IJCTE.2009.V1.16



International Journal of Computer Theory and Engineering, Vol. 1, No. 2, June 2009 
1793-8201 

 

 - 106 - 

 
Figure 7: Calculate the exact matching score algorithm 

To minimize the total cost of retrieval the most expected 
similar DNA sequences, we need to sort the sequences in 
descending order based on its exact matching score.  The 
model expected that the most similar DNA sequences to the 
query are to be placed at the top of ranking and therefore 
optimal alignment process can directly focus on this group.  
An efficient sorting algorithm Quick-Sort has been used to 
complete this task.  The runtime of this algorithm is O(n log 
n).  Typically, Quick-Sort is significantly faster in practice 
than other O(n log n) algorithms, because in the most 
architecture its inner loop can be efficiently implemented.  

The ranking simplifies to evaluate uncertain information in 
DNA sequence record according to certain criteria.  In 
general, this ranking process is not guaranteed for highly 
expected similar DNA sequences to a query are positioned at 
top of the ranked list.  Therefore, dynamic programming 
based techniques such as Smith-Waterman algorithm is still 
required to compute accurately the degree of similarity 
between two DNA sequences.  The ranking will just make the 
next stage in the model possible quicker to select the DNA 
sequences for computing the local alignment.  Figure 8 
illustrates the order of targeted DNA sequences after ranking 
process. 
 

t1 ACCATTTCGCGTTAAATCGCG 

t2 TTTCGGCTATATATCGGCT 

t3 GGGCCTCTTAAATTCTCCTC 

t4 GGCTCCCTATATCTCTCGGAGAGA 

t5 CCGGATATAGCCTATT 

  

  

tk-2 AAAAATTCTCTCCGGGCTATAT 

tk-1 CGCTCTTTTCTCTGGAGAG 

tk CCCGGGATCTCTCTAGGCGCGA 

Figure 8: A ranked DNA sequences 

In order to obtain optimal local alignment, we 
implemented the Smith-Waterman algorithm that uses 
bi-dimensional arrays.  Moreover, to guarantee the good 
scoring factor, BLOSUM62 (or PAM250) scoring matrix has 
been applied.  The implemented Smith-Waterman algorithm 
is designed to support constant gap penalty function.  The 
constant gap penalty function gives each gap the same score 
no matter how long it is.    Figure 9 depicts the detailed of 
Smith-Waterman algorithm which is implemented in the 
model.  If ∆q and ∆t are the best local alignment with length L 
produced from an alignment process, then the alignment 
score between ∆q and ∆t can be denoted as:  

Ω(∆q, ∆t) = ∑
=

L

i 0
s(∆q[i], ∆t[i])    (4) 

where s is similarity score between ∆q[i] and ∆t[i] that 
suggested by BLOSUM62 or PAM250 scoring matrices.  The 
percent identity formula for the aligned of sequences ∆q and 
∆t is given by the following equation: 

Ι(∆q, ∆t) = 







L
R  X 100     (5) 

where R is number of matching residues after alignment 
process.  Let S be a set of optimal alignment score and C be a 
set of identity score.  If A is denoted as optimal local 
alignment process, then the computation output of optimal 
alignment score and identity can be represented as:  

A(q, ti) = {Ωi, Ιi}     (6) 
where Ωi ∈ S and Ιi ∈ C. 

 
Figure 9: Smith-Waterman algorithm 

D
eg

re
e 

of
 e

xp
ec

te
d 

si
m

ila
r t

o 
be

 d
ec

re
as

ed
 

 

10.7763/IJCTE.2009.V1.16



International Journal of Computer Theory and Engineering, Vol. 1, No. 2, June 2009 
1793-8201 

 

 

 

 

- 107 - 

III.  EXPERIMENTAL RESULTS 
We use Java 2 Platform Standard Edition Version 1.5.0 in 

our project implementation and Microsoft Windows XP 
Professional as operating systems.  The Java programming 
language and its environment is designed to solve a number 
of modern and complex problems.  It is a mature language, 
ready for widespread used and integrated with other 
environment and architecture as well.  The implementation is 
undergoing object oriented software development approach.  
The processor used was 1.8GHz Intel Pentium IV with 
640MB RAM.  

Figure 10 illustrates a state diagram that shows the detailed 
behavior of operations in the model.  The diagram shows the 
instance changes state depending on the message(s) that it 
receives.  The diagram splits the states in the model into five 
main categorizes: initialization state, exact matching state, 
ranking state, alignment state and reporting state.  
Initialization state consists of three sub-states: read query, 
generate patterns and read database.  Exact matching state 
includes the Aho-Corasick algorithm operations: construct 
automaton machine, Patterns searching (scanning) and Exact 
matching scoring.  Ranking state serves only for one 
sub-state known as Ranking.  Alignment state consists of 
Smith-Waterman algorithm operations: Optimal local 
alignment and Alignment scoring.  The final state is 
Reporting which consists of Generate reports.  All the related 
reports to sequence similarity are generated within this 
sub-state. 

In order to obtain realistic experimental results, five 
GenBank databases have been downloaded from Bio-Mirror 
website [14].  These databases are maintained by National 
Center for Biotechnology Information (NCBI). The 
databases correspond to viral sequences and contain 345,383 
sequences with 335,979,422 base pairs (bp).  There are 
30,000 sequences are selected and used in the experiments.  
This process is done by picking up the first 6,000 sequences 
from each database.  Query sequences are selected randomly 
from these 30,000 selected sequences.    The model also 
utilized the BioJava library [13] to manipulate and extracting 
genome database from GenBank.  Pattern length (λ) is used 
as a parameter to evaluate the performance and reliability of 
the developed model.  The model considered percent identity, 
Ι, is equal to 30% as a threshold or a confident value for 
accepting the targeted DNA sequences that have similarity to 
the query.  Throughout the performance evaluation, the 
model attempts to retrieve 10% sequences in T that are 
satisfies the threshold value (θ = 3,000).For each query, the 
experiments used various pattern lengths which are preset 
between five to 13 bases.  Figure 11 shows the experimental 
results for those 10 queries.  The figure represents the number 
of SW algorithms iterations versus different of λ.  For the 
queries such as Query 1, Query 2, Query 3 and Query 4, the 
number of targeted DNA sequences to be processed under 
SW algorithm are very consistent with pattern length 
between five to 12 bases.   However, the number of targeted 
DNA sequences involved in optimal alignment processed is 
increased when the pattern lengths used are equal or greater 
than 13 characters.   Table 1 exhibits the experimental result 
from ten queries and λ is preset to ten characters.  The 
experimental results show that the proposed filtering 
mechanism can discard irrelevant DNA sequences from 

being executed for rigorous Smith-Waterman algorithm.  The 
implemented filtering technique successfully generated a 
group of DNA sequences from databases that have a highly 
potential similarity to the query sequence.   

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

5 6 7 8 9 10 11 12 13
Patterns length

S
m

ith
-W

at
er

m
an

 it
er

at
io

ns

Query 1
Query 2
Query 3
Query 4
Query 5
Query 6
Query 7
Query 8
Query 9
Query 10

 
 Figure 11: Number of Smith-Waterman algorithm iterations versus patterns 

length 

TABLE 1:  SMITH-WATERMAN ITERATIONS DISCARDED (λ = 10) 

Query 
No. 

No. of 
Smith-Waterman 

performed 

Smith-Waterman 
iterations discarded (%) 

 
Query 1 

 
3488 (488) 

 
88.37 

Query 2 3617 (617) 82.94 
Query 3 3350 (350) 88.83 
Query 4 3325 (325) 88.92 
Query 5 3756 (756) 87.48 
Query 6 3318 (318) 88.94 
Query 7 5243 (2243) 82.52 
Query 8 3245 (245) 89.18 
Query 9 3282 (282) 89.06 
Query 10 
 

3880 (880) 87.07 

 
For instance, Query 2, the model successfully retrieved θ 

sequences that are definitely relevant to query after executing 
the optimal local alignment process to 3,617 targeted DNA 
sequences.  Based on the percent identity (Ι) threshold value, 
there are 617 sequences from the group are not relevant to the 
query and are executed for Smith-Waterman algorithm.  
Therefore, 26,383 targeted DNA sequences (82.94%) have 
been skipped from the exhaustive local optimal alignment 
process.  Meanwhile, for Query 10 there are 3,880 DNA 
sequences from the database have been performed for 
optimal local alignment process with 880 sequences are 
determined as irrelevant to the query.  The result exhibits that 
87.07% or 26,120 DNA sequences from the database have 
been discarded from rigorous Smith-Waterman algorithm. 

Obviously, the model yields high efficiency processes for 
optimal DNA sequence similarity search with low 
computational numbers for O(n × m) time complexity 
Smith-Waterman algorithms.  Therefore, the time taken for 
retrieving a set of similar sequences from databases to a 
query is been minimized.  The execution analysis of the 
proposed model can be summarized as follows: 
• For any query sequences, the patterns of length 13 

characters and above will cause inefficient filtration 
process.  The best possible pattern lengths that could be 
used and most appropriate with all queries in various 

10.7763/IJCTE.2009.V1.16



International Journal of Computer Theory and Engineering, Vol. 1, No. 2, June 2009 
1793-8201 

 

 - 108 - 

lengths are seven to12 characters.  This pattern length 
range size will produce a good quality of ranking; 

• If the pattern length is less than six bases used in the 
experiment, a bad quality ranking is produced and 
therefore a huge number of Smith-Waterman algorithm 
iterations will be executed for the targeted DNA sequences 
in the database.  In other words, the related targeted DNA 
sequences will not placed at appropriated position before 
Smith-Waterman algorithm is executed; 

• When λ ≥ 13, many patterns cannot be found in targeted 
sequences and consequently, exact matching score value 
will be 0.  This situation will produce a bad ranking quality 
and; 

• If query length is too short, for example below 500 
characters, the most appropriate pattern length should be 
used are 10 to 12 characters.  These sizes will give a good 
quality ranking position output. 

The quality of the proposed filtering technique is 
evaluated by Average Normalized Rank (ANR) [8].  The 
ANR describes the quality of the whole ranked list of DNA 
sequences after filtering process.  Generally, the ANR can be 
defined as: 

                                                        

α =
wNN

1 )
2

1
(

1

+
−∑

=

=

w
Ni

i
i

NR
w

   (7) 

where N is the number of targeted objects in the database, 
Nw is the number of wanted targeted objects from the 
database and Ri is the rank of each wanted targeted object in 
the database.   

Clearly, Nw can be referred to θ.  Furthermore, this 
precise measurement is also shows the consistencies of the 
filtering quality.  As defined by [10], α has a value of 0 when 
the wanted targeted objects have all been sorted on top.  The 
α has value close to 0.5 if targeted objects are randomly 
shuffled in the list.  If the targeted objects are all sorted at the 
bottom then the α value is closed to 1.  From the experiments, 
we can perceive that all the required targeted DNA sequences 
are sorted on top of the list (below than 10,000 out of 30,000).  
As a result, if all the required variables are placed in the 
defined ANR metric and calculations are executed, then all 
the α values will become close to 0.  This condition is true to 
all pattern lengths exclusive of query length which is too 
short such as below than 500 characters.  However, this 
problem can be fixed if pattern lengths are set to 10, 11 or 12 
characters.  As a result, the proposed technique has 
successfully generated a precise and consistent DNA 
sequence ranking. 

IV.  CONCLUSIONS 
Generally, it is reasonable to align two sequences by using 

classical Smith-Waterman algorithm when the sequences 
length is not very long.  However this approach is not 
applicable for large-scale DNA sequence comparison that 
requires for more time and spaces complexity.  A mechanism 
to discard the unrelated or irrelevant sequences compared to a 
query is highly demanded.  To address the outlined problem, 

we customized automaton-based multi-patterns exact string 
matching that acts as a filtering process.  The technique 
rapidly filters all those targeted DNA sequences that are 
likely irrelevant to the query.  Only the relevant sequences 
are considered for execution in Smith-Waterman algorithm 
process.  In other words, the proposed filtering technique can 
reduce the size of dataset.  As a result, the processing time for 
retrieving a set of targeted DNA sequences, which are similar 
to the query, can be minimized.  

The ranking result produced by the model has been 
compared to the BLAST tool.  The model has successfully 
generated a good ranking result as produced by the BLAST 
tool.  The proposed model has applied Smith-Waterman 
algorithm to the whole bases in the compared DNA 
sequences, and therefore it will generate a complete 
alignment structure.  Hence, it can produce better alignment 
structure compared to BLAST tool which is examined only a 
portion of the potential alignments between the compared 
DNA sequences.  In order to improve the performance of the 
model, clustering the database can be considered as an 
immediate action.  The experiment shows that two or more 
DNA sequences can have the same exact matching score and 
positioned at the same ranking.  This condition infers that 
those DNA sequences may be included in the same ‘cluster’.  
Hence, to improve the efficiency of the model a further 
database classification can be done. 

REFERENCES 
 

[1] Aho, A. V. & Corasick, M. J.  “Efficient String Matching: An Aid to 
Bibliographic Search”, Communication of the ACM, Vol. 18(6), 1975, 
333 – 340. 

[2] Altschul, S. F., Gish, W., Miller, W., Myers, E. and Lipman, D. J.  
“Basic Local Alignment Search Tool”, Journal Molecular Biology, Vol. 
215, 1990, 403 – 410. 

[3]  Ando, K., Kinoshita, T., Shishibori, M. & Aoe, J-I.  “An Improvement 
of the Aho-Corasick Machine”, Information Sciences, Vol. 111, 1998, 
139 – 151. 

[4] Csuros, M. and Ma, B.  “Rapid Homology Search with Two-Stage 
Extension and Daughter Seeds”, Proc. of 11th International Computing 
and Combinatorics Conference, 2005, 104 – 114. 

[5]  Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C.  “A Model of 
Evolutionary Change in Proteins”.  In Atlas of Protein Sequence and 
Structure, 5(3), Dayhoff, M. O. (ed.),  1978, 345 – 352. 

[6] Gusfield, D.  Algorithms on Strings, Trees, and Sequences, Cambridge 
University Press, 1997. 

[7] Henikoff, S. & Henikoff, J. G.  “Amino acid substitution matrices from 
protein blocks”.  Proceedings of National Academic Science USA, 89, 
1992, (pp. 10915 – 10919). 

[8]  Huang, M., DeMenthon, D., Doermann, D. & Golebiowski, L.  
“Document Ranking by Layout Relevance”.  Proceedings of the 8th 
International Conference on Document Analysis and Recognition, 
2005, (pp. 362 – 366). 

[9] Li, M., Ma, B., Kisman D. & Tromp, J. “PatternHunter II: Highly 
Sensitive and Fast Homology Search” Genome Informatics, Vol. 14, 
2004, 164 – 175. 

[10] Ma, B., Tromp, J. and Li, M.  “PatternHunter: faster and more sensitive 
homology search”, Bioinformatics, Vol. 18(3), 2002, 440 – 445. 

[11] Pearson, W. R. and Lipman, D. J.  “Improved Tools for Biological 
Sequence Comparisons”, Proc. of the National Academy of Sciences of 
the USA, Vol. 85, 1988, 2444 – 2448. 

[12] Smith, T. F. and Waterman, M. S.  “Identification of Common 
Molecular Subsequences”, Journal of Molecular Biology, Vol. 147, 
1981, 195 – 197. 

[13] BioJava Library Website,http://biojava.org/wiki/main_page  

10.7763/IJCTE.2009.V1.16

http://biojava.org/wiki/main_page


International Journal of Computer Theory and Engineering, Vol. 1, No. 2, June 2009 
1793-8201 

 

 

 

 

- 109 - 

  
Figure 10: The model state diagram

10.7763/IJCTE.2009.V1.16




