
International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 65 -

Abstract—Recent advances in wireless, communication

systems have led to important new applications of Moving
object databases (MOD). Typical application examples of
moving object databases (MOD) might include mobile
computing, mobile E-Commerce, Traffic police, taxi
dispatchers and weather reporting services. The mobile
computing capabilities allow users to manage their work while
they are moving. In order to manage such moving objects in
database management systems (DBMS) an updating strategy
for moving object is required. In this paper the problem of
maintaining the current location of moving object in databases
and the required updating strategy for moving object will be
investigated. An implementation of two updating strategy will
be introduced. Those updating strategies are distance and
deviation updating polices. This implementation is based on the
generation of spatial-temporal data for the moving objects (e.g.
cars). The moving objects in the simulated system are moving
through a network street. Finally a complete comparison of the
predicted moving object path and the actual path is given.

Index Terms—Moving object databases (MOD), location
management, Location updating strategies.

I. INTRODUCTION
Recent advances in wireless communication systems and

GPS (Global Position system) are the main forces that make
position tracking of moving objects are feasible. As a result a
widely interest of many new applications that depend on
location management can be found in the literature[1].Tourist
services, mobile E-commerce and digital battlefield are
examples of this applications[1]-[3].
Traditional database management system (DBMS) is not
equipped to handle continuously changing data such as the
transient position of moving object. This means that
traditional DBMS deals with static data attributes at a given
time [4], leading to a rather discrete model. DBMS
technology provides a foundation for efficiently answering
 queries about moving objects. However, there is a critical set
of capabilities that have to be integrated, adapted, and built
on top of existing DBMS's in order to support moving objects
databases. These capabilities are added with other things to
support spatial and temporal information [4]. Temporal
databases [5] and spatial databases [1] were studied for
modeling moving object . Fig. 1 shows the relation between
moving object database, spatial database, and temporal

Manuscript received January 26 2009 accepted March 18 2009.
1- H. M. Abdul -Kader is a lecturer in Faculty of Computers and

Information, , Minufiya University, Shabin-Elkom, Egypt

database. However, the problem is further complicated
because the location of a moving object is inherently
uncertain, i.e. the position reflected in the database at a
particular time will usually not be identical to the actual
position of the moving object at that time [1], [3].

The next problem is how to set the uncertainty bounds for a
moving object.

Fig.1 Moving object database, spatial database, and temporal database

relations.

So in many MOD applications a continuous model for
these dynamic objects will be essential in order to mange
such moving objects [4]- [6]. In this case an updating strategy
for moving object is required. The objective of this strategy is
to accurately maintain the current location of moving object
while minimizing the number of update. The most common
approach is distance update policy which updates the
database every X distance of units. So it provides a certain
error in response to a query about the location of any object.
The answer is within a circle of radius X centered at location
L(which provided in the last updating for database).This is
approach is used in many applications due to its simplicity [7],
[8]. An alternative approach called a deviation policy which
concerned with motion on the road network given by map can
be shown in [9]. This approach improves the performance of
tracking by location prediction [9]. But it allows for location
error as distance policy. The advantage of the deviation
policy decreases as the uncertainty threshold increase. The
main objective of this paper is to study the trade-off between
number of update messages and information accuracy in
designing MOD systems using different update policies. This
objective will be achieved by minimizing overhead in the
communication cost and minimizing penalty in the
uncertainty of the moving object location.

This paper is organized as follows first a review for
spatio-temporal data Model for MOD is given in section 2.
An overview for distance and deviation updating strategies
will be presented in section 3. The proposed architecture for
the previously discussed updating strategy is introduced in
section 4. Simulation results for the proposed architecture

Location Updating Strategies in Moving Object
Databases

H. M. Abdul–Kader

DOI: 10.7763/IJCTE.2009.V1.11

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 66 -

will be shown in section 5. Discussion of the obtained results
is introduced in section 6. Finally conclusion will be drawn in
section 7.

II. MOVING OBJECT SPATIO-TEMPORAL DATA MODEL

 New applications which need frequently update are
appeared, so the need to design systems that can deals with
continuously changing of data is become essential (e.g.
Moving Object Spatio-temporal (MOST) data model
[4]).The MOST data model gives a solution to continuously
changing location problem. This model represents the
location as a function of time changing even without an
explicit update. For example, a car location of is given as a
function of its motion vector (e.g. north at 50 mile/hour).
Although the motion vector of an object can be changed but
this change is less frequent than the position change. This
model use dynamic without explicitly update. This model
considers database as a set of object-classes, where each class
has a set of attributes which is either static or dynamic
attribute. Some of object classes are spatial which is point
class, a line class or polygon-class [5]. Point object classes
are mobile or stationary if the object class is stationary its
location will be represented by two static attributes Lx and
Ly which representing the x and y coordinate of the object.
But if the object is mobile, its location is considered a
dynamic attribute and represented by seven sub attributes as
follow:

 1- Lxstartposition : is x coordinate of object position at start
time or x coordinate of last update.

2 - Lystartposition : is y coordinate of object position at start
time or y coordinate of last update.

3 - Lroute: is a line spatial object to the route on which object
is moving.

 4- Lstarttime: is the time when moving object at location
Lxstartposition and Lystartposition and also the time of the last update
assuming that database updates are instantaneous [10].

5- Ldirection: is a binary indicator having value of 0 or
1(these values may correspond to north-south or east-west or
the two end points of the route).

 6 - Speed : linear function of the form f(t) = b.t its defined
by speed b of the moving object and gives the current
distance from start position or last location update as a
function of time t elapsed since last location update.

7- Uncertainty: is either a constant or a time function of the
number t time units elapsed since Lstarttime. It represents the
threshold on the location deviation; when the deviation
reaches the threshold the moving objects send a location
update message.

The route-distance between two points on a given route
can be defined as the distance along the route between those
two points. Assuming it is straightforward to compute the
route-distance between two points. The database location of a
moving object at a given point in time is defined as follows:

- At time Lstarttime the database Location is the pair of
(Lxstartposition, Lystartposition) . While the database location at time
(Lstarttime + t) is the point (x, y) which is at route-distance
(Lspeed .t) from the point with coordinates (Lxstartposition,
Lystartposition).

Intuitively, the database location of a moving object m at a
given time point t is the location of m as far as the DBMS

knows; it is the location that is returned by the DBMS in
response to a query entered at time t that retrieves m's
location. Such a query also returns the uncertainty at time t,
i.e. it returns an answer of the form: m is on Lroute at most
L.uncertainty ahead of or behind (Lxstartposition, Lystartposition)
coordinates. We assume at the beginning of the trip the
moving object writes all the sub attributes of the location
attribute. Subsequently, the moving object periodically
updates its current location and

III. MOVING OBJECT LOCATION UPDATES STRATEGIES

Tracking moving objects are one of the most common
requirements for many location management services. Since,
the location of moving object changes continuously but the
database location of the moving object cannot be updated
continuously; therefore, an updating strategy for moving
object is required [4]. The objective of this strategy is to
maintain the current location of moving object accurate while
minimizing the number of update messages. It is obvious that
the more data is updated so, the data is more accurate.
However, the cost of updating data increases as more
frequently the data is updated. That is, there is the trade-off
between number of update messages and information
accuracy in designing MOD systems [9]. In the literature
there are many updating polices. This section introduces the
problems of updating strategies for moving object databases.
Followed by, different types of location updating strategies
are discussed.

A. The distance-based policy
The distance-based policy is a traditional approach used in

all existing commercial transportation systems for the
moving object or the cellular network to update periodically
the location database; e.g. every 2 miles as shown in Fig. 2.
From this figure the moving object m starts its trip at location
L0, and after 2 miles sends update message to the database
sever to update the previous location to new location (L1).
After the moving object moved 2 miles from L1, it updates the
database server with new location L3 and so on. The
advantage of the distance update policy, which updates the
moving object m every x distance units that is, it provides a
bound on the error in response to database queries.
Specifically, in response to a query: “what is the current
location of m?” the answer is within a circle of radius x,
centered at location L (provided in the last database update).
Similarly, in context awareness application, if a Personal
Digital Assistant (PDA) can hold images or graphics that
pertain to an interval of 10 meters, then the moving object
will provide its location every 10 meters, and get the next set
of images from the database. Therefore, this policy is used in
many applications due to its simplicity [7].

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 67 -

 Fig. 2 Distance-based policy

B. The deviation policy
 The deviation-based policy is another updating strategy

that concerned with moving object motion on a road network
given by map [7]. Since, the moving object m updates the
server that track its position with all location sub-attributes in
the beginning of the trip. The moving objects have various
classes (e.g. cars, trucks, and vehicles). Each class has a
specific speed. When the moving object in a specific class
with V.x , V.y, L.x, L.y update the database at time L.starttime,
sub-attributes the database location (L.x, L.y) can be expected
at any time t. Since, the moving object does not travel at
exactly speed (V.x, V.y) so, the actual location of the moving
object deviates from its expected location. When the
deviation reach to a given threshold the moving object will
update the database with the actual location. Thus in response
to a query entered at time t (L.starttime + t) that retrieve m
location, the DBMS returns the location of m within a circle
with radius equals the threshold value centered at a point of
the last location update.

 Note that the above deviation-based policy allows also a
maximum location error equal threshold and the advantage of
the deviation policy decreases as the threshold increase. To
compare the deviation update policy with traditional popular
distance update policy (periodically updates the database
every x distance units) the deviation policy is more efficient
than the distance policy in terms of number of update
required by each policy given the same threshold. Since, the
objective is not only, to make each update more efficient but
also reducing the number of required update. In distance
update, policy the database cannot predict the next location
but the database location does not change until the next
location update, occurs in contrast the deviation policies can
expect the next location as the moving object move in the
same street [7], [14].

Other literature of road networks, [2], [8], [9] propose a set
of dead-reckoning policies when the route and the destination
of the trip are available, which update the database location
whenever the distance between the current real location and
the expected location exceeds a given threshold. When the
route and destination of the trip are not given, two update
policies [7] can be applied. One is the deviation policy that
works in a way similar to the dead reckoning policies, and the
other is the distance policy that works in a way similar to the
distance-based update policy in wireless networks.

C. Network-based generation of spatio-temporal data
 Previous approaches for generating spatio-temporal data

do not consider that moving objects often follow a given
network [3], [5]. Therefore, benchmarks require datasets
consisting of such “network-based” moving objects [5]. In
this section, the most important properties of network-based
moving objects are presented and discussed. Essential
aspects are the maximum speed and the maximum capacity of
connections. These characteristics are the basis for the
specification and development of a new generator for
spatio-temporal data. This generator combines real data (the
network) with user-defined properties of the resulting dataset.

In this paper, a framework is proposed where the user can
control the behavior of the generator by re-defining the
functionality of selected object classes. The following
requirements are needed for generating spatio-temporal data:

One important technique to evaluate spatial and
spatiotemporal database systems and their components are
experiments. Many parameters can be measured
investigating, e.g., an access method [8]. The most important
parameters are the query time (I/O and CPU) for essential
queries, the time for building up or modifying the index, and
the space requirements. Furthermore, the data used by the
experiments are of high importance. We can distinguish
between synthetic data generated according to statistical
distributions and real data, which originate from real-world
applications. However, it is difficult to assess the
performance of real applications by employing synthetic data.
The use of real data tries to solve this problem. In this case,
the selection of the data is essential. For non-experts it is
often difficult to decide whether the data reflect a “realistic”
situation or not.

IV. THE PROPOSED SYSTEM ARCHITECTURE

 In this section the proposed architecture and the simulation
results are presented. The proposed architecture is shown in
Fig. 3. This model consists of many main subsystems.

Fig. 3 the framework of the proposed model based on Network-Based

Generator.

 The main subsystem is the moving object subsystem
which normally contains a GPS system and local database.
Where the current position of moving object is stored and
updated by a GPS at a fixed rate (e.g. 2 sec.). The local
database is managed by a DBMS which supports triggers. A
trigger fires and updates the central database when the
deviation bound is reached. Through a wireless
communication network the moving object connected to
database server. Where the location update is send to
database server to update the position attributes of the
database. The database server subsystem is used maintain the
current location of large number of moving object, and also
to query a set of real moving objects. Location data is
generated by each moving object. The moving object
subsystem updates the Central Database when deviation
bound is reached. The query processor is used to query the
central database. The pseudo code of the distance update the

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 68 -

deviation update policies can be described as shown in
figures 4 and 5 respectively.

V. SIMULATION RESULTS

 The first part of simulation considers a comparison
between different values for the threshold value to select the
suitable value to complete the required comparison between
the selected updating strategies. At the beginning of
simulation the moving object update its local database and
the central database at the server with its location sub
attributes (x, y, vx , vy , t , Lstreat) and with threshold value(th).
Also assuming that every (t= 2 second) for example both
position and speed supposed to be known as it coming from
the GPS. These values inserted in the local database of the
moving object. When these values are inserted fire a trigger
which computes

 Fig. 4 The pseudocode of the distance update policy

the expected values (x_exp , y_exp)of the position. Since
x_exp =x + vx .t where x is the x coordinate at the last update,
t is the time elapsed from last update and vx is the speed of
moving object at last update. In the same y_exp = y + vy.t.
Then compute the deviation value which represent
difference between the position of moving object coming
from the GPS (actual position) and these values computed
by the database trigger (the expected position). If the value of
the difference is greater than the value of (th) the local
database of the moving object is updated with the actual
position and actual speed. Also update the central database
with the actual position and speed. Otherwise if the
difference value is less than the (th) no update occur. In our
implementation we assume the moving object move for 20
second every two second the position and speed (x, y, vx, vy)
are known and we compute the expected value of the position

based on the given sub attributes. Then compute the deviation
and if the deviation >= a specific threshold (given in Luncertainty
sub attribute) an update occur. In Fig. 6 that represent the
actual and expected path through 20 second at th = .01 mile.
We note that central database need to be update with actual
location only three times at point a, b and c. Since the
deviation is greater than the value of th instead of updating
the database every two second. In Fig. 7 we reduce the value
of threshold (th=.001) we observe that the number of update
increase but the uncertainty decrease.

Fig. 5 The pseudocode of the deviation update policy.

Fig. 6 The actual and expected path at (th =.01)

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 69 -

Fig.7 The actual and expected path at (th =.001)

To complete the evaluation of the proposed data model the
value of UPL of this moving object should be at the threshold
value equals 0.55. In deviation update policy, the total
number of update messages equals 3 while the total length of
routes equals 16.617 km. By substituting in UPL= total nu.
of update messages/total length of routes then UPL=
3/16.617= 0.181. However, in the distance update policy the
value of UPL=16/16.617=0.963. The number of update
messages per unit length with threshold value ranges from
0.05 to 2.2 is shown in Fig. 8.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3

Threshold Va lue

no
. o

f u
pd

at
e

m
es

sa
ge

s/
Le

ng
th

of

 r
ou

te
s

No. of update
messages/length of
routes using
deviation policy
No. of update
messages/length of
routes using
distance policy

Fig. 8 Number of update messages per unit length using distance and
deviation update policy.

The average number of update messages per unit length
with threshold value ranges from 0.05 to 2.2 using the
distance update policy and the deviation update policy is
shown in Fig. 9.

0
2
4
6
8

10
12
14
16
18

0 0.5 1 1.5 2 2.5

Thre shold Va lue

Av
.n

o.
of

 u
pd

at
e

m
es

sa
ge

s

Av. no. of update
messages us ing
dis tance policy
Av. no. of update
messages us ing
deviation policy

Fig. 9. Average number of update messages with threshold values.

From this figure, the average number of update messages

(equals 2.4) using deviation update policy is smaller than the
average number of update messages (equals 10.8) using the
distance update policy at the same threshold value (equals
0.55). In additional to, when the threshold value equals 1.65
the average number of update messages in the distance and
the deviation policy is an identical. The average number of
update messages per unit length of routes with threshold
value ranges from 0.05 to 2.2 using the distance update policy
and the deviation update policy is shown in Fig. 10.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5

Threshold Value

A
v.

no
.o

f u
pd

at
e

m
es

sa
ge

s

Av. No. of update
messages/Length
of routes using
devaition policy
Av. No. of update
messages/Length
of routes using
distance policy

Fig. 10 Average number of update messages per unit length of routes with
threshold values.

From this figure, the average number of update messages
per unit length of routes (equals 0.3308) using the deviation
update policy is smaller than the average number of update
messages per unit length of routes (equals 0.9266) using the
distance update policy at the same threshold value (equals
0.55). In additional to, when the threshold value equals 1.65
the average number of update messages per unit length of
routes in the distance and the deviation policy is an identical.
Table I shows the comparison between the deviation update
policy and the distance update policy [10].

TABLE I: COMPARISONS BETWEEN THE DEVIATION AND THE DISTANCE
UPDATE POLICY

 Deviation
update policy

 Distance
update policy

Threshold
Value

Fixed for all
location update
messages.
Th=0.55

Fixed for all
location update
messages.
Th=0.55

No. of
update
messages

Require less
number of update
messages (3).

Require more
number of update
messages (16).

Location
Prediction

Can expect
future location
so, it is respond
to future query.

Cannot expect
the future
location.

Information
cost

39.8 units of
money

104.8

UPL 0.181 0.963

VI. RESULTS DISCUSSION

The main results of the data model can be summarized as
follows:

The model uses the network-based generator to get the
appropriate updating policy to model moving objects

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 70 -

database. This data model is consists of three parts, the first
part consists of graphical user interface, update policy and
network –based generator. This part is responsible for
enabling the user to redefine the required function,
generating realistic database and maintaining the location of
moving objects with minimum number of updates. The part,
used to help the moving objects to connect with database
server and vice verse. The third part, consists of application
sever, JDBC, and database management system (Oracle 9i).
This part is responsible for helping the user to access the
database through the interface between the user and database
system.

- This model uses the information cost to compare between
updating policies (the deviation update policy, the distance
update policy). In additional to, this model presents a new
method to distinguish between the updating policies. This
method is called the number of update message per unit
length (UPL).
 From the simulation results of the data model presented in

section V , the information cost (equals 39.8) of deviation
update policy is smaller than information cost (equals 104.8)
of the distance update policy. In additional to, the number of
update messages per unit length (UPL= 0.181) in deviation
update policy is smaller than the number of update messages
per unit length (UPL= 0.963) in distance update policy.
Furthermore, number of update messages (equals 3) in
deviation update policy is smaller than the number of update
messages (equals 16) in distance update policy at the same
threshold (th=0.55). Therefore, the deviation update policy is
better than distance update policy (theses comparisons are
shown in Table I). Fig. 10 shows the average number of
update messages per unit length of routes using the distance
and the deviation update policy.

VII. CONCLUSIONS

In this paper we addressed tracking of moving objects, i.e.
the continuous representation of their location in the database.
A framework of the proposed model based on
Network-Based Generator is introduced. Two updating
strategies are implemented based on the proposed model
architecture namely; distance and deviation updating policies.
Simulation results show the number of updating triggers
depends up on the adjusted threshold value for both updating
strategies. Finally we can conclude from simulation results
that the deviation update policy is better than the distance
update policy based on the information cost and the number
of update messages per unit length.

REFERENCES
[1] Hartmut, R., and Schneider, M. "Moving Object Databases", Morgan

Kaufmann Publishers 2005.
[2] Ralf Hartmut Güting, Markus Schneider: Moving Objects Databases,

web site:
http://www.informatik.fernuni-hagen.de/import/pi4/Lehre/Kurse/1676
-%23mod/KE1.pdf.

[3] Bin Lin · Jianwen Su “OneWay Distance: For Shape Based Similarity
Search of Moving Object Trajectories “ Geoinformatica 12:117–142
DOI 10.1007/s10707-007-0027-y-(2008)

[4] Ouri Wolfson, Liqin Jiang, , Sam Chamberlain, Bo Xu : Moving
Object Databases : Issues and Solutions, SSDBM 1998, pages 111-122,
1998.

[5] Ouri Wolfson, Liqin Jiang, A.Prasad Sistla, Sam Chamberlain,
Naphtali Rishe, and Minglin Deng: Databases for Tracking Mobile

Units in Real Time, Proceedings of the Seventh International
Conference on Database Theory (ICDT), pages 169-186, 1998.

[6] Ouri Wolsofon, Prasad Sistla, Bo Xu, Jutai Zhou, Sam Chamberlain,
Yelena Yesha, and Naphtali Rishe : Tracking Moving objects using
database technology in DOMINO, proceedings of NGITS 99, the
fourth workshop on next generation information technologies and
systems, pages 112-199, July 1999.

[7] QUALCOMM Inc.: http://www.qualcomm.com
[8] At Road Inc.: http://www.atroad.com/
[9] Ouri Wolfson and Huabei Yin: Accuracy and resource consumption in

tracking and location prediction, proceedings of 8 th international
symposium on spatial and temporal databases, pages 325-343, July
2003.

[10] R.Snodgrass and I.Ahn: The Temporal Database, IEEE computer, Sept.
1986.

[11] Brinkhoff Thomas, Generating Traffic Data. IEEE, 2003.
[12] Brinkhoff Thomas, A Framework for Generating Network-Based

Moving Objects. Tech.Report of the IAPG, http://www2.fh-
wilhelmshaven.de/oow/institute /iapg /personen
/brinkhoff/paper/TBGenerator.pdf

[13] Y. Theodoridos and M. Nascimento. Generating Spatiotemporal
Datasets on the WWW. ACM SIGMOD Record, pages 29(3):39-43,
2000.

[14] Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento. On the Generation
of Spatiotemporal Datasets, in Proceedings 6th International
Symposium on Large Spatial Databases, Hong Kong, China, Lecture
Notes in Computer Science, pages 1651:147-164, 1999.

Dr. H. M. Abdul-kader obtained his
B.S. and M.SC. (by research) both in
Electrical Engineering from the
Alexandria University , Faculty of
Engineering , Egypt in 1990 and 1995
respectively. He obtained his Ph.D.
degree in Electrical Engineering also
from Alexandria University , Faculty
of Engineering , Egypt in 2001
specializing in neural networks and its
applications. He is currently a

Lecturer in Information systems department, Faculty of Computers and
Information, Minufiya University, Egypt since 2004. He has worked on a
number of research topics and consulted for a number of organizations. He
has contributed more than 30+ technical papers in the areas of neural
networks, Database applications, Information security and Internet
applications.

http://www.informatik.fernuni-hagen.de/import/pi4/Lehre/Kurse/1676
http://www.qualcomm.com
http://www.atroad.com/
http://www2.fh

