• May 27, 2016 News!The submission for Special Issue is officially open now!   [Click]
  • May 03, 2016 News!Vol.6, No.6 has been indexed by EI (Inspec).   [Click]
  • Mar 17, 2017 News!Vol.9, No.2 has been published with online version. 13 peer reviewed articles from 4 specific areas are published in this issue.   [Click]
General Information
Prof. Wael Badawy
Department of Computing and Information Systems Umm Al Qura University, Canada
I'm happy to take on the position of editor in chief of IJCTE. We encourage authors to submit papers concerning any branch of computer theory and engineering.
IJCTE 2016 Vol.8(6): 439-443 ISSN: 1793-8201
DOI: 10.7763/IJCTE.2016.V8.1086

GPU-Accelerated Parton Cascade in Heavy-Ion Collisions

Qingjun Liu, Weiqin Zhao, Fang Liu, Ningming Nie, and Chunbao Zhou
Abstract—A widely used Monte Carlo event generator is A Multi-Phase Transport model (AMPT) for relativistic heavy-ion collisions. It depends on Zhang’s Parton Cascade (ZPC) package to simulate initial stage parton cascade. Based on ZPC, we have developed a code for the simulation of the parton cascade to exploit the powerful parallel processing capability of GPU. The goal is to accelerate the simulation of the parton cascade in a system of partons that is formed in ultrarelativistic heavy-ion collisions. Named PCG (Parton Cascade on GPU), the code makes real time collision detection among N interacting partons formed in a heavy-ion collision parallelized. The parallelization was implemented by using CUDA C. With simulating Pb-Pb collisions at sqrt(sNN)=2.76 TeV as a use case, we first verified the correctness of PCG through comparison of the output of PCG with those of ZPC, then we estimated the computational efficiency of PCG to be 2x to 3x relative to ZPC, which is a serial code and only runs on CPU. Therefore PCG is viable for being integrating into AMPT for simulating heavy-ion collisions and can save large amount of computing resources for large scale AMPT-based event generation in ultrarelativistic heavy-ion collisions at sqrt(sNN)=2.76 TeV.

Index Terms—GPU, CUDA C, simulation of parton cascade, ultrarelativistic heavy-ion collision.

Qingjun Liu is with the Beijing Institute of Petro-chemical Technology, Beijing 102617 China (e-mail: liuqingjun@bipt.edu.cn).
Weiqin Zhao is with the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 China (e-mail: zhaowq@ihep.ac.cn).
Fang Liu, Ningming Nie, and Chunbao Zhou are with the Supercomputer Center, Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190 China (e-mail: liuf@sccas.cn, nienm@sccas.cn, zhoucb@sccas.cn).


Cite: Qingjun Liu, Weiqin Zhao, Fang Liu, Ningming Nie, and Chunbao Zhou, "GPU-Accelerated Parton Cascade in Heavy-Ion Collisions," International Journal of Computer Theory and Engineering vol. 8, no. 6, pp. 439-443, 2016.

Copyright © 2008-2015. International Journal of Computer Theory and Engineering. All rights reserved.
E-mail: ijcte@vip.163.com